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In this article, the contextual discounting of a belief function, a classical discounting generalization, is extended and its particular link with the canonical disjunctive decomposition is highlighted. A general family of correction mechanisms allowing one to weaken the information provided by a source is then introduced, as well as the dual of this family allowing one to strengthen a belief function.

Introduction

In the Dempster-Shafer theory of belief functions [START_REF] Dempster | Upper and Lower Probabilities Induced by Multivalued Mapping[END_REF][START_REF] Shafer | A mathematical theory of evidence[END_REF], the reliability of a source of information is classically taken into account by the discounting operation [21, page 252], which transforms a belief function into a weaker, less informative one. This operation is usually important in uncertain information management [START_REF] Bloch | Defining belief functions using mathematical morphology -Applications to image fusion under imprecision[END_REF][START_REF] Delmotte | Detection of defective sources with belief functions[END_REF][START_REF] Elouedi | Assessing sensor reliability for multisensor data fusion with the transferable belief model[END_REF][START_REF] Fabre | Presentation and description of two classification methods using data fusion based on sensor management[END_REF][START_REF] Ha-Duong | Hierarchical fusion of expert opinions in the Transferable Belief Model, application to climate sensitivity[END_REF][START_REF] Klein | Hierarchical and conditional combination of belief functions induced by visual tracking[END_REF][START_REF] Mercier | Decision fusion for postal address recognition using belief functions[END_REF][START_REF] Muñoz-Salinas | Multi-camera people tracking using evidential filters[END_REF][START_REF] Milisavljević | Improving mine recognition through processing and Dempster-Shafer fusion of ground-penetrating radar data[END_REF][START_REF] Périsse | Robust Diagnostics of Stator Insulation Based on High Frequency Resonances Measurements[END_REF][START_REF] Smets | Data Fusion in the Transferable Belief Model[END_REF].

Introduced in [START_REF] Mercier | Refined modeling of sensor reliability in the belief function framework using contextual discounting[END_REF], the contextual discounting is a refinement of the discounting operation. It takes into account the fact that the reliability of a source of information can be expected to depend on the true answer of the question of interest.

For instance, in medical diagnosis, depending on his/her speciality, experience or training, a physician may be more or less competent to diagnose some types of diseases. Likewise, in target recognition, a sensor may be more capable of recognizing some types of targets while being less effective for other types.

In this contextual model, the agent in charge of the fusion process or the decision making can hold knowledge regarding the reliability of a source of information in different contexts, which forms a partition of the universe of discourse. For example, a sensor in charge of recognizing targets can be more or less reliable depending on the fact that the target is a helicopter (ℎ), an airplane ( ) or a rocket( ), subsets {ℎ}, { } and { } forming the finest partition of the universe Ω = { , , }). However, this previous model can not handle a reliability knowing that the target is a helicopter or a rocket ({ℎ, }) as well as a reliability knowing that the target is an airplane or a helicopter ({ , ℎ}). Sets { , ℎ} and {ℎ, } do not form a partition of Ω. This last step is reached in this article. It is then shown that the contextual discounting exposed previously in [START_REF] Mercier | Refined modeling of sensor reliability in the belief function framework using contextual discounting[END_REF] is a particular case of a more general correction process [START_REF] Mercier | Belief function correction mechanisms[END_REF][START_REF] Mercier | A parameterized family of belief functions correction mechanisms[END_REF] allowing the discounting of a belief function in a finer way. In particular, a simple expression of this mechanism is given in the form of disjunctive combinations. At last, the dual version of the contextual discounting, allowing one to reinforce a belief function, is also introduced. This article extends deeply a first version of this work presented in [START_REF] Mercier | Extending the contextual discounting of a belief function thanks to its canonical disjunctive decomposition[END_REF].

To develop the justifications of these mechanisms, belief functions are interpreted as expressing weighted opinions, irrespective of any underlying probability distributions, and the Transferable Belief Model [START_REF] Smets | The Transferable Belief Model[END_REF][START_REF] Smets | What is Dempster-Shafer's model? In Advances in the theory of evidence[END_REF][START_REF] Smets | The Transferable Belief Model for quantified belief representation[END_REF] is adopted.

This article is organized as follows. Background material needed on belief functions is recalled in Section 2. Contextual discounting is extended in Section 3. A discussion is next launched in Section 4. A dual reinforcement process is introduced in Section 5, and finally, Section 6 concludes this article.

Belief functions: basic concepts

Representing information

Let us consider an agent in charge of making a decision regarding the answer to a given question of interest.

Let Ω = { 1 , . . . , }, called the frame of discernment, be the finite set containing the possible answers to question .

The information held by agent regarding the answer to question can be quantified by a basic belief assignment (BBA) or a mass function Ω , defined as a function from 2 Ω to [0, 1], and verifying:

∑ ⊆Ω Ω ( ) = 1 . (1) 
Function Ω describes the state of knowledge of agent regarding the answer to question belonging to Ω. By extension, it also represents an item of evidence that induces such a state of knowledge. The quantity Ω ( ) is interpreted as the part of the unit mass allocated to the hypothesis: "the answer to question is in the subset of Ω".

When there is no ambiguity, the full notation Ω will be simplified to Ω , or even .

The following definitions and notations are considered.

Definition 1 (Focal element). A subset of Ω such that ( ) > 0 is called a focal element of .
Definition 2 (Categorical BBA). A BBA with only one focal element is said to be categorical and is denoted ; we thus have ( ) = 1.

Definition 3 (Vacuous mass function).

Total ignorance is represented by the BBA Ω , called the vacuous mass function.

Definition 4. A BBA is said to be:

• dogmatic if (Ω) = 0;
• non-dogmatic if (Ω) > 0;

• normal if (∅) = 0;

• subnormal if (∅) > 0;

• simple if has no more than two focal sets, Ω being included.

Definition 5 (Negation of a BBA). Function denotes the negation of [START_REF] Dubois | A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets[END_REF], defined by ( ) = ( ), for all ⊆ Ω such that is the complement of in Ω. Definition 6. The belief, plausibility, implicability and commonality functions associated with a mass function are defined, respectively, as:

( ) = ∑ ∅∕ = ⊆ ( ), (2) 
( ) = ∑ ∩ ∕ =∅ ( ), (3) 
( ) = ( ) + (∅) = 1 -( ), (4) 
and

( ) = ∑ ⊇ ( ), (5) 
for all ⊆ Ω. Functions , , and are all in one-to-one correspondence [START_REF] Smets | The application of the matrix calculus to belief functions[END_REF], and represent then the same information.

Combining pieces of information

Two BBAs 1 and 2 induced by distinct and reliable sources of information can be combined using the conjunctive rule of combination (CRC), also referred to as the unnormalized Dempster's rule of combination, defined for all ⊆ Ω by:

1 ∩ ⃝ 2 ( ) = ∑ ∩ = 1 ( ) 2 ( ) . (6) 
Alternatively, if we only know that at least one of the sources is reliable, BBAs 1 and 2 can be combined using the disjunctive rule of combination (DRC), defined for all ⊆ Ω by:

1 ∪ ⃝ 2 ( ) = ∑ ∪ = 1 ( ) 2 ( ) . (7) 

Marginalization and vacuous extension on a product space

A mass function defined on a product space Ω × Θ may be marginalized on Ω by transferring each mass Ω×Θ ( ) for ⊆ Ω × Θ to its projection on Ω:

Ω×Θ↓Ω ( ) = ∑ ⊆Ω×Θ, Proj( ↓Ω)= Ω×Θ ( ), (8) 
for all ⊆ Ω where Proj( ↓ Ω) denotes the projection of onto Ω. Conversely, it is usually not possible to retrieve the original BBA Ω×Θ from its marginal Ω×Θ↓Ω on Ω. However, the least committed, or least informative BBA [START_REF] Smets | Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem[END_REF] such that its projection on Ω is Ω×Θ↓Ω may be computed. This defines the vacuous extension of Ω in the product space Ω × Θ, noted Ω↑Ω×Θ , and given by:

Ω↑Ω×Θ ( ) = { Ω ( ) if = × Θ, ⊆ Ω, 0 otherwise. (9) 
2.4. Conditioning and ballooning extension on a product space Conditional beliefs represent knowledge that is valid provided that an hypothesis is satisfied. Let be a mass function and ⊆ Ω an hypothesis; the conditional belief function [ ] is given by:

[ ] = ∩ ⃝ . ( 10 
)
If Ω×Θ is defined on the product space Ω × Θ, and is a subset of Θ, the conditional BBA Ω [ ] is defined by combining Ω×Θ with Θ↑Ω×Θ , and marginalizing the result on Ω:

Ω [ ] = ( Ω×Θ ∩ ⃝ Θ↑Ω×Θ ) ↓Ω . ( 11 
)
Assume now that Ω [ ] represents the agent's beliefs on Ω conditionally on , i.e., in a context where holds. There are usually many BBAs on Ω×Θ, whose conditioning on yields Ω [ ]. Among these, the least committed one is defined for all ⊆ Ω by:

Ω [ ] ⇑Ω×Θ ( × ∪ Ω × ) = Ω [ ]( ). ( 12 
)
This operation is referred to as the deconditioning or ballooning extension [START_REF] Smets | Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem[END_REF] of Ω [ ] on Ω × Θ.

Discounting

When receiving a piece of information represented by a mass function , agent may have some doubts regarding the reliability of the source that provided this information. Such metaknowledge can be taken into account using the discounting operation introduced by Shafer [21, page 252], and defined by:

= (1 -) + Ω , (13) 
where

∈ [0, 1].
A discount rate equal to 1, means that the source is not reliable and the piece of information it provides cannot be taken into account, so 's knowledge remains vacuous:

Ω = 1 = Ω .
On the contrary, a null discount rate indicates that the source is fully reliable and the piece of information is entirely accepted: Ω = 0 = . In practice, however, agent usually does not know for sure whether the source is reliable or not, but has some degree of belief expressed by:

{ ℛ ({ }) = 1 - ℛ (ℛ) = , (14) 
where ℛ = { , }, and standing, respectively, for "the source is reliable" and "the source is not reliable". This formalization yields expression [START_REF] Mercier | Refined modeling of sensor reliability in the belief function framework using contextual discounting[END_REF], as demonstrated by Smets in [START_REF] Smets | Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem[END_REF]Section 5.7].

The discounting operation (13) of a BBA is also equivalent to the disjunctive combination [START_REF] Elouedi | Assessing sensor reliability for multisensor data fusion with the transferable belief model[END_REF] of with the mass function Ω 0 defined by:

Ω 0 ( ) = ⎧  ⎨  ⎩ if = ∅ if = Ω 0 otherwise, (15) 
with ∈ [0, 1] and = 1 -. Indeed:

∪ ⃝ Ω 0 ( ) = ( ) Ω 0 (∅) = ( ) = ( ), ∀ ⊂ Ω , (16) 
and

∪ ⃝ Ω 0 (Ω) = (Ω) Ω 0 (∅) + Ω 0 (Ω) ∑ ⊆Ω ( ) = (Ω) + = (Ω) . (17) 

Contextual Discounting based on a coarsening

Let Θ = { 1 , . . . , } be a coarsening of Ω, which means that 1 , . . . , form a partition of Ω [21, chapter 6].

Unlike [START_REF] Mercier | Decision fusion for postal address recognition using belief functions[END_REF], in the contextual model, agent is assumed to hold beliefs on the reliability of the source of information conditionally on each ℓ , ℓ ∈ {1, . . . , }:

{ ℛ [ ℓ ]({ }) = 1 -ℓ = ℓ ℛ [ ℓ ](ℛ) = ℓ . (18) 
For all ℓ ∈ {1, . . . , }, ℓ + ℓ = 1, and ℓ represents the degree of belief that the source is reliable knowing that the true answer of the question of interest belongs to ℓ .

In the same way as in the discounting operation [START_REF] Mercier | Refined modeling of sensor reliability in the belief function framework using contextual discounting[END_REF], agent considers that the source can be in two states: reliable or not reliable [START_REF] Smets | Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem[END_REF][START_REF] Mercier | Refined modeling of sensor reliability in the belief function framework using contextual discounting[END_REF]:

• If the source is reliable (state ), the information Ω it provides be- comes 's knowledge. Formally, Ω [{ }] = Ω .
• If the source is not reliable (state ), the information Ω it provides is discarded, and remains in a state of ignorance:

Ω [{ }] = Ω .
The knowledge held by agent , based on the information Ω from a source as well as metaknowledge ℛ concerning the reliability of the source can then be computed by:

• Deconditioning the BBAs ℛ [ ℓ ] on the product space Ω × ℛ using [START_REF] Mercier | A parameterized family of belief functions correction mechanisms[END_REF];

• Deconditioning Ω [{ }]
on the same product space Ω × ℛ using [START_REF] Mercier | A parameterized family of belief functions correction mechanisms[END_REF] as well;

• Combining them using the CRC (6);

• Marginalizing the result on Ω using [START_REF] Fabre | Presentation and description of two classification methods using data fusion based on sensor management[END_REF].

Formally:

Ω [ Ω , ℛ ] = ( ∩ ⃝ ℓ=1 ℛ [ ℓ ] ⇑Ω×ℛ ∩ ⃝ Ω [{ }] ⇑Ω×ℛ ) ↓Ω . ( 19 
)
As shown in [START_REF] Mercier | Refined modeling of sensor reliability in the belief function framework using contextual discounting[END_REF], the resulting BBA Ω , only depends on and on the vector = ( 1 , . . . , ) of discount rates. It is then denoted by Θ .

Proposition 1 ([13, Proposition 8]). Contextual discounting Θ of a BBA is equal to the disjunctive combination of with a BBA Ω 0 such that:

Ω 0 = Ω 1 ∪ ⃝ Ω 2 ∪ ⃝ . . . ∪ ⃝ Ω , (20) 
where each Ω ℓ , ℓ ∈ {1, . . . , }, is defined by:

Ω ℓ ( ) = ⎧  ⎨  ⎩ ℓ if = ∅ ℓ if = ℓ 0 otherwise. (21) 
Remark 1. Two special cases of this discounting operation can be considered.

• If Θ = {Ω} denotes the trivial partition of Ω in one class, combining with 0 defined by ( 15) is equivalent to combining with 0 defined by [START_REF] Pichon | Belief functions: canonical decompositions and combination rules[END_REF], so this contextual discounting operation is identical to the classical discounting operation.

• If Θ = Ω, the finest partition of Ω, this discounting is simply called contextual discounting and denoted . It is defined by the disjunctive combination of with the BBA Ω

1 ∪ ⃝ Ω 2 ∪ ⃝ . . . ∪ ⃝ Ω , where each Ω , ∈ {1, . . . , } is defined by Ω (∅) =
and Ω ({ }) = .

Canonical conjunctive and disjunctive decompositions

In [START_REF] Smets | The canonical decomposition of a weighted belief[END_REF], extending the notion of separable BBA introduced by Shafer [21, chapter 4], Smets shows that each non-dogmatic BBA can be uniquely decomposed into a conjunctive combination of generalized simple BBAs (GS-BBAs), denoted ( ) with ⊂ Ω, and defined from 2 Ω to ℝ by:

( ) : Ω → ( ) → 1 -( ) → 0 , ∀ ∈ 2 Ω ∖ { , Ω} , (22) 
with ( ) ∈ (0, ∞).

The function : 2 Ω ∖ {Ω} → (0, ∞) is yet another representation of a non-dogmatic mass function and is called the conjunctive weight function.

Let us note that the higher is the weight ( ), the higher is the incertitude on .

The canonical conjunctive decomposition of a non-dogmatic BBA is then given by: =

∩ ⃝ ⊂Ω ( ) . (23) 
In [START_REF] Denoeux | Conjunctive and Disjunctive Combination of Belief Functions Induced by Non Distinct Bodies of Evidence[END_REF], Denoeux introduces another decomposition: the canonical disjunctive decomposition of a subnormal BBA into negative GSBBAs (NGSBBAs), denoted ( ) with ⊃ ∅, and defined from 2 Ω to ℝ by:

( ) : ∅ → ( ) → 1 -( ) → 0 , ∀ ∈ 2 Ω ∖ {∅, } , (24) 
with ( ) ∈ (0, ∞).

Every subnormal BBA can be canonically decomposed into a disjunctive combination of NGSBBAs:

= ∪ ⃝ ⊃∅ ( ) . (25) 
Indeed, as remarked in [START_REF] Denoeux | Conjunctive and Disjunctive Combination of Belief Functions Induced by Non Distinct Bodies of Evidence[END_REF], the negation of a BBA can also be conjunctively decomposed as soon as is subnormal:

= ∩ ⃝ ⊂Ω ( ) (as is non-dogmatic) ⇒ = ∩ ⃝ ⊂Ω ( ) = ∪ ⃝ ⊂Ω ( ) = ∪ ⃝ ⊃∅ ( ) . (26) 
The relation between functions and is then ( ) = ( ) for all ∕ = ∅, and function : 2 Ω ∖ {∅} → (0, ∞), called the disjunctive weight function, is another representation of a subnormal mass function.

Practically, functions and have the following properties [START_REF] Denoeux | Conjunctive and Disjunctive Combination of Belief Functions Induced by Non Distinct Bodies of Evidence[END_REF]:

• for all :

∏ ⊂Ω ( ) = (Ω) , (27) 
• for all :

∏ ⊃∅ ( ) = (∅) , (28) 
• for all subset ⊂ Ω:

1 ( ) ∩ ⃝ 2 ( ) = 1 ( ) 2 ( ) ,
• for all subset ⊃ ∅:

1 ( ) ∪ ⃝ 2 ( ) = 1 ( ) 2 ( ) ,
• function can be conveniently obtained from the commonality function as follows:

∀ ⊂ Ω, ( ) = ∏ ⊇ , (| |)∕ = (| |) ( ) ∏ ⊇ , (| |)= (| |) ( ) , (29) 
where ( ) means the parity of an integer ( ( ) = 0 if is even, 1 otherwise),

• likewise, function can be computed from the implicability function as follows:

∀ ⊃ ∅, ( ) = ∏ ⊆ , (| |)∕ = (| |) ( ) ∏ ⊆ , (| |)= (| |) ( ) , (30) 
For "quasi-Bayesian" BBAs, another convenient way to compute is given by the following property.

Proposition 2 ([4, Proposition 1]). Let be a BBA which focal sets are Ω, 1 , 2 , . . . , , and possibly ∅, such that the subsets verifies ∩ = ∅ for all , ∈ {1, . . . , }. The conjunctive weight function associated with is then defined by:

( ) = ⎧  ⎨  ⎩ (Ω) ( )+ (Ω) if = , (Ω) ∏ =1 (1 + ( ) (Ω) ) if = ∅ , 1 otherwise. ( 31 
)
Remark 2. If has only one focal element in addition to ∅ and Ω, Proposition 2 holds as well.

The dual version of this property to compute disjunctive weights can be obtained as follows.

Proposition 3. Let be a BBA which focal sets are ∅, 1 , 2 , . . . , , and possibly Ω, such that the subsets verifies ∪ = Ω for all , ∈ {1, . . . , }. The disjunctive weight function associated with is then defined by:

( ) = ⎧  ⎨  ⎩ (∅) ( )+ (∅) if = , (∅) ∏ =1 (1 + ( ) (∅) ) if = Ω , 1 (32) 
Proof 1. Focal sets of are Ω, 1 , 2 , . . . , , and possibly ∅, such that ∩ = ∅ for all , ∈ {1, . . . , }. Consequently, from Proposition 2, the conjunctive weight function associated with is given by:

( ) = ⎧  ⎨  ⎩ (Ω) ( )+ (Ω) if = , (Ω) ∏ =1 (1 + ( ) (Ω) ) if = ∅ , 1 otherwise. (33) 
Then:

( ) = ( ) = ⎧  ⎨  ⎩ (Ω) ( )+ (Ω) if = , (Ω) ∏ =1 (1 + ( ) (Ω) ) if = ∅ , 1 otherwise, (34) 
and, as ( ) = ( ) ∀ , Equation (32) is obtained.

□ Remark 3. Proof 1 also implies, from Remark 2, that if has only one focal element in addition to ∅ and Ω, Equation ( 32) is still valid.

Extending the contextual discounting

In this section, the contextual discounting operation on a coarsening is extended to any subsets of the frame of discernment, and a general formulation linked with the canonical disjunctive decomposition of a BBA is developed.

According to the previous definitions ( 22) and ( 24), BBAs ℓ , ℓ ∈ {1, . . . , }, defined in ( 21) by ℓ (∅) = ℓ and ℓ ( ℓ ) = ℓ , can be denoted ℓ ℓ or ℓ in a simple way.

From ( 20) and ( 25), the contextual discounting on a coarsening Θ = { 1 , . . . , } of Ω of a subnormal BBA is thus defined by:

Θ = ∪ ⃝ 1 ∪ ⃝ . . . ∪ ⃝ = ∪ ⃝ ⊃∅ ( ) ∪ ⃝ 1 ∪ ⃝ . . . ∪ ⃝ .
In particular:

• The classical discounting (15) of a subnormal BBA = ∪ ⃝ ( ) is defined by: = Ω (Ω) ∪ ⃝ Ω⊃ ⊃∅ ( ) ; (35) 
• The contextual discounting (Remark 1) of a subnormal BBA = ∪ ⃝ ⊃∅ ( ) is defined by:

= ∪ ⃝ ∈Ω { } ({ }) ∪ ⃝ ⊂Ω,| |>1 ( ) . (36) 
These discounting operations can then be viewed as particular cases of a more general correction mechanism defined by:

∪ = ∪ ⃝ ⊃∅ ( ) , (37) 
where ∈ [0, 1] for all ∕ = ∅ and is the vector { } ∕ =∅ . In [START_REF] Mercier | Refined modeling of sensor reliability in the belief function framework using contextual discounting[END_REF], the interpretation of each has been given only in the case where the union of the subsets forms a partition of Ω, being interpreted as the degree of belief held by the agent regarding the fact that the source is reliable, knowing that the value searched belongs to .

Instead of considering [START_REF] Muñoz-Salinas | Multi-camera people tracking using evidential filters[END_REF], let us now suppose that agent holds beliefs regarding the reliability of the source, conditionally on each subset of Ω:

{ ℛ [ ]({ }) = 1 - = ℛ [ ](ℛ) = , (38) 
where ∈ [0, 1]. In the same way as in Section 2.6, the knowledge held by agent , based on the information Ω from a source and on metaknowledge ℛ (38) regarding the reliability of this source, can be computed as follows:

Ω [ Ω , ℛ ] = ( ∩ ⃝ ⊆Ω ℛ [ ] ⇑Ω×ℛ ∩ ⃝ Ω [{ }] ⇑Ω×ℛ ) ↓Ω . (39) 
Proposition 4. The BBA Ω resulting from (39) only depends on Ω and the vector = { } ⊆Ω . It is equal to the disjunctive combination of Ω with a BBA Ω 0 defined by:

Ω 0 ( ) = ∏ ∪ = ∏ ∪ = , ∀ ⊆ Ω. ( 40 
) Proof 2. See Appendix A.1. □
Like in the case of contextual discounting operations considered in Section 2.6, BBA Ω 0 defined in Proposition 4 admits a simple decomposition described in the following proposition.

Proposition 5. The BBA Ω 0 defined in Proposition 4 can be rewritten as:

Ω 0 = ∪ ⃝ ⊃∅ .
Proof 3. Directly from (40) and the definition (7) of the DRC. □ From (41), the contextual discounting resulting from (39) of a subnormal BBA = ∪ ⃝ ⊃∅ ( ) is then defined by:

∪ ⃝ ⊃∅ ( ) ∪ ⃝ ⊃∅ = ∪ ⃝ ⊃∅ ( ) = ∪ . (42) 
Correction mechanism ∪ is then the general formulation for a contextual discounting on any subsets of Ω.

The following theorem sums up the contextual discounting operation in its general formulation. Theorem 1. On the one hand, agent receives an information from a source .

On the other hand, agent knows that this source is reliable with a degree in different contexts of Ω, which means that the source is reliable with a degree knowing that the true answer to the question of interest belongs to . Let us note the set containing these contexts. Then, agent 's mass function is given by the contextual discounting of defined by:

= ∪ ⃝ ∈ . (43) 
Moreover, if is subnormal then:

= ∪ ⃝ ⊃∅ ( ) ∪ ⃝ ∈ , = ∪ ⃝ / ∈ ( ) ∪ ⃝ ∈ ( ) . (44) 
Example 1. Let us consider a two-lane road section, the question of interest concerning the number of lanes where the traffic is flowing freely. Frame of discernment Ω is equal to { 0 , 1 , 2 } with:

• 0 standing for "0 lane is free": both are blocked,

• 1 meaning "1 lane is free": one is blocked,

• 2 signifying "2 lanes are free": traffic is flowing freely on both lanes.

A source provides information regarding the traffic on this road section. For instance:

⎧ ⎨ ⎩ (∅) = .1 , ({ 0 }) = .8 , (Ω) = .1 . ( 45 
)
On the other side, you know that the source is very reliable in case of heavy traffic (situation { 0 , 1 }), and less reliable when the traffic is rather light (situation { 1 , 2 }). Formally, let us suppose that { 0 , 1 } = .8 and

{ 1 , 2 } = .6.
Contextual discounting of is then given by:

= ∪ ⃝ { 0 , 1 } .8 ∪ ⃝ { 1 , 2 } .6 . (46) 
From Remark 3, the disjunctive weight function associated with can be computed in the following manner:

{ ({ 0 }) = (∅) (∅)+ ({ 0 }) = 1 9 , (Ω) = (∅)(1 + ({ 0 }) (∅) ) = .1(1 + .8
.1 ) = .9 .

(47)

Contextual discounting of knowing { 0 , 1 } = .8 and { 1 , 2 } = .6 is then given by:

= ∪ ⃝ { 0 , 1 } .8 ∪ ⃝ { 1 , 2 } .6 = { 0 } 1 9 ∪ ⃝ Ω .9 ∪ ⃝ { 0 , 1 } .8 ∪ ⃝ { 1 , 2 } .6 , (48) 
which can be also written by definition from [START_REF] Smets | What is Dempster-Shafer's model? In Advances in the theory of evidence[END_REF] in the following manner: As it can be observed in the previous example, the contextual discounting allows the transfer of masses on intermediate subsets between focal sets and the frame of discernment Ω. More precisely (cf Equation ( 43)), contextual discounting consists in transferring each mass to its union with subsets not precisely known by the source.

= { ∅ →1/9 { 0 } →8/9 ∪ ⃝ { ∅ →.9 Ω →.1 ∪ ⃝ { ∅ →.8 { 0 , 1 } →.2 ∪ ⃝ { ∅ →.6 { 1 , 2 } →.4 = ⎧     ⎨     ⎩ ∅ →.048 { 0 } →.384 { 0 , 1 } →.108 { 1 , 2 } →.032 Ω →.428 ( 
The following example illustrates a case where a sensor is totally reliable if an object is of a certain type, and not reliable for another type.

Example 2. Let us consider a sensor in charge of the recognition of two types of objects: Ω = { , }.

The sensor knows very well how to recognize objects of type , whereas it is not the case for objects of type . Which means that:

• an object is of type , the sensor will recognize it;

• an object is of type the sensor will hesitate and make mistakes.

For instance, a possible confusion matrix for such a sensor is represented in Table 1. truth ∖ decision 10 0 5 5

A contextual discounting knowing that { } = 1 and { } = 0 (S totally in context { }, not reliable in context { }) applied on a mass function provided by is given by:

= ∪ ⃝ { } 1 ∪ ⃝ { } 0 = ∪ ⃝ { } 0 . (50) 
In particular:

• if ({ }) = 1 then ({ , }) = 1, • if ({ }) = 1 then ({ }) = 1.
In other words, if the source says it is an object of type : it is an object of type or an object the source does not recognize. And, in the particular case where the source says it is an object of type , and the source knows very well the other types of object: it that the object is of type . If it had been an object of type , the source would have said it, because objects of type are very well recognized by the source.

On the notion of reliability

In the simple Example 2, we have a situation where when the source decides : it is indeed , and when the source decides : the truth is or . However, the source is totally reliable for and not for . The notion of reliability introduced in this article has then to be clearly distinguished from a different notion of reliability which would be linked with the reliability of the decision made by a source.

In the contextual discounting, the definition of the reliability (38) is given conditionally on Ω by:

ℛ [ ]({ }) = , (51) 
and not conditionally on results of a decision-making process:

ℛ ["The source decides A"]({ }) = . (52) 
Let us remark that this second definition will imply to define the notion of conditioning on processes (even belief functions?) which is not known at present by the authors.

To be subnormal and non-dogmatic

In order to exploit simple expressions obtained with both conjunctive and disjunctive canonical decompositions, should each mass function be subnormal and non-dogmatic?

As already mentioned in [START_REF] Denoeux | Conjunctive and Disjunctive Combination of Belief Functions Induced by Non Distinct Bodies of Evidence[END_REF], it may be argued that most (if not all) pieces of information provided in real-life applications are imperfect, and then the mass on the frame of discernment should be always strictly positive.

For instance, let us consider a coin tossing and a universe equal to {ℎ , }. As remarked by Denoeux, it is absolutely not certain in practice that the coin is perfectly balanced. An appropriate BBA may then be ( ) = 0.5(1 -), ( ) = 0.5(1 -) and (Ω) = for some small > 0.

However, we can also add that when we are trying to model a complex real life problem, there are always some approximations, and then some doubts on the model are always possible, so the mass on the conflict should These two correction mechanisms can thus be seen as belonging to a general family of correction mechanisms.

In a nutshell, if is subnormal, a contextual discounting of is given by: =

∪ ⃝ ⊃∅ ( ) , (56) 
and, the negation of a contextual discounting of defines a dual reinforcement process:

= ∪ ⃝ ⊃∅ ( ) = ∩ ⃝ ⊂Ω ( ) . (57) 
The application of this reinforcement process as well as its comparison with other correction mechanisms [START_REF] Denoeux | Relevance and Truthfulness in Information Fusion Correction and Fusion[END_REF][START_REF] Mercier | Belief function correction mechanisms[END_REF] has been left for future researches.

Conclusion future work

In this article, the contextual discounting operation of a belief function has been extended to any subsets, and a simple and practical expression, based on disjunctive combinations, to compute it has been given. This expression has highlighted the close relationship between contextual discounting and canonical disjunctive decomposition. The dual expression of this discounting, allowing one to strengthen a belief function, has also been exposed.

Future work will aim at testing it on real data. Likewise, it would also be interesting to automatically learn the coefficients of these correction mechanisms from data, as done for the classical and the contextual discounting operations [START_REF] Elouedi | Assessing sensor reliability for multisensor data fusion with the transferable belief model[END_REF][START_REF] Mercier | Refined modeling of sensor reliability in the belief function framework using contextual discounting[END_REF].

Finally, the marginalization of this BBA on Ω is given for all subsets of Ω, by:

( ) = ∑ ∪ = ⎡ ⎣ ∏ ∪ = ∏ ∪ = ⎤ ⎦ Ω ( ) . (A.4)
Let us note that the above proof has many similarities with proofs presented in [START_REF] Mercier | Refined modeling of sensor reliability in the belief function framework using contextual discounting[END_REF]Sections A.1 and A.3].
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Table 1 :

 1 Confusion matrix associated with source S.
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also be strictly positive: in real life, the coin can fall against a book and lands on edge, which may not have been considered.

Consequently, a more appropriate BBA may be ( ) = 0.5(1 -1 )(1 -2 ), ( ) = 0.5(1 -1 )(1 -2 ), (Ω) = 1 (1 -2 ) and (∅) = 2 some small 1 , 2 > 0.

An other approach: combining discountings

Let us consider a separable BBA , which means that = ∩ ⃝ ⊂Ω

As recently exposed in [START_REF] Kallel | Combination of partially nondistinct beliefs: the cautious adaptive rule[END_REF], a classical discounting on each simple BBA ( ) can be undertaken with a discount rate ∈ [0, 1], the result being

. The discounted simple BBAs can then be conjunctively combined which yields to the following discounting operation

. This operation, restricted to separable BBAs, is different from a contextual operation. The conjunctive combination of discounted BBAs is not a discounting of the BBAs combination in general.

However, as developed in the next section, we can remark that the dual of the contextual discounting operation, which is nevertheless a reinforcement, has a close formulation.

A new reinforcement process

In a similar way, a correction mechanism for a non-dogmatic BBA can be defined from the conjunctive decomposition of as follows:

where ∀ ⊂ Ω, ∈ [0, 1], and is the vector { } ⊂Ω . The smaller is the uncertain weight, the higher is the mass on . This process allows then the reinforcement of a BBA .

Correction mechanisms ∩ (37) and ∪ (53) are related in the following way.

Let us consider a subnormal BBA , is then non-dogmatic:

Then:

Appendix A.1. Proofs of Proposition 4

For each ⊆ Ω, the deconditioning of ℛ [ ] on Ω × ℛ is given by:

With ∕ = :

Then:

or, by exchanging the roles of and :

, ∀ ⊆ Ω .

It remains to combine conjunctively

which have focal sets of the form × { } ∪ Ω × { } and × { } ∪ × ℛ, respectively, with , ⊆ Ω. The intersection of two such focal sets is:

and it can be obtained only for a particular choice of and . Then: