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Abstract

In the belief function framework, a unique function is induced from the
use of a combination rule so allowing to synthesize all the knowledge of the
initial belief functions. When information sources are reliable and indepen-
dent, the conjunctive rule of combination, proposed by Smets, may be used.
This rule is equivalent to the Dempster rule without the normalization pro-
cess. The conjunctive combination provides interesting properties, as the
commutativity and the associativity. However, it is characterized by having
the empty set, called also the conflict, as an absorbing element. So, when we
apply a significant number of conjunctive combinations, the mass assigned
to the conflict tends to 1 which makes impossible returning the distinction
between the problem arisen during the fusion and the effect due to the ab-
sorption power of the empty set.

The objective of this paper is then to define a formalism preserving the
initial role of the conflict as an alarm signal announcing that there is a kind
of disagreement between sources. More exactly, that allows to preserve some
conflict, after the fusion by keeping only the part of conflict reflecting the
opposition between the belief functions. This approach is based on dissim-
ilarity measures and on a normalization process between belief functions.
Our proposed formalism is tested and compared with the conjunctive rule of
combination on synthetic belief functions.
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1. Introduction

Since many years, the belief function theory [8, 43] has known an increas-
ing interest from scientific community since it allows to deal with imperfect
data (imprecise and uncertain) and to combine them using a combination
rule. One of the classical combination rules is the conjunctive rule. This
latter, introduced by Smets [44, 48], is equivalent to the Dempster rule of
combination [8, 43] without the normalization process. Properties and also
hypotheses that sources should satisfy before being combined by this rule are
well established.

This rule has an orthogonal behavior which is very precious because it
permits a fast and clear convergence towards a solution, but in return, the
empty set is an absorbing element. Smets supports that the existence of
this mass on the empty set, called also conflict, can play a role of alarm. So,
contrary to Dempster’s rule where the conflict is reallocated proportionally to
the other masses of the focal elements, this conflict must not be redistributed
since it may be at the origin of important information concerning the progress
of the fusion process and show the disagreement between sources. In fact, if
the conflict is small, it means that the joint bba fits with the opinions given
by the sources to fuse and consequently try to reinforce them, whereas when
the conflict is high, it means that the induced bba is largely in contradiction
with the previous opinions. Nevertheless, due to its absorbing conjunctive
effect, a series of combinations aims at getting the empty set equal to 1,
making impossible the distinction between a real problem between sources
to fuse and an effect caused by the absorbing of the empty set.

In addition to the conflict definition of Smets, other works have been dealt
with the conflict definition namely Liu [30] proposes a quantitative measure
taking into account the mass on the empty set induced from the combination
of two or more bbas and the distance between betting commitments of these
same bbas after applying the pignistic transformation. However, this mass
on the empty set remains not sufficient to exactly express the conflict. On
the other hand, in [38], Osswald and Martin present another interpretation
of the conflict by defining the auto-conflict as the amount of intrinsic conflict
of a belief function, in other words it is the conflict generated by such a
function relative to one information source.

Besides in [11], Destercke and Burger present some properties that a mea-
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sure of extrinsic conflict should satisfy. They defined conflict as the incon-
sistency arising from a conjunctive combination, and based on properties,
they also proposed conflict measurements making no a priori assumptions
regarding the dependence between sources.

Thus, two types of conflict can be defined:

• The conflict which allows the estimation of the confusion rate of a
source and which will be called intrinsic conflict [5, 20, 38, 42],

• The conflict which evaluates the discordance between two bodies of
evidence and will be labeled extrinsic conflict [23, 39, 49].

In this paper, we characterize the opposition between belief functions
by means of a measure of dissimilarity. This measure is then used in our
proposed approach named Combination With Adapted Conflict (CWAC)
providing an adaptive weighting between Dempster’s rule and conjunctive
rule, allowing to keep the initial meaning of the conflict obtained during the
combination and so to restore its initial role of alarm. Thus, it permits to
the conflict to take back its initial sense by only mentioning that there is a
problem somewhere and reducing its absorbing power. Our proposal is not a
conflict measure but a combination rule preserving the main role of a conflict
as a signal making aware of this opposition between sources. A preliminary
work of this approach has been proposed in [29].

This paper is organized as follows. Section 2 presents the basics of the
belief function theory. Combination rules, proposed in the belief function
framework, are detailed in Section 3. The definition and properties of our
CWAC rule are exposed in section 4. Section 5 brings to light our proposed
approach by comparing its behavior with that of the conjunctive combination
in the case of synthetic data. Section 6 concludes our study and presents some
future works.

2. Belief function theory: background

The belief function theory is considered as a useful theory for representing
and managing uncertain knowledge. In this Section, we shall briefly recall
some basics of this theory. More details can be found in [43, 44, 48].
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2.1. Representing information
Let Ω be a finite non empty set including all the elementary events related

to a given problem. These events are assumed to be exhaustive and mutually
exclusive. Such set Ω is named frame of discernment.

The impact of a piece of evidence on the different subsets of the frame of
discernment Ω is represented by the so-called basic belief assignment (bba),
called initially by Shafer [43] basic probability assignment.

The bba m is a function m : 2Ω → [0, 1] that satisfies:
∑

A⊆Ω

m(A) = 1 (1)

The basic belief massm(A), expresses the part of belief exactly committed
to the event A of Ω given a piece of evidence. Due to the lack of information,
this quantity cannot be apportioned to any strict subset of A.

Shafer [43] has initially proposed a normality condition expressed by:

m(∅) = 0 (2)

Such bba is called a normalized basic belief assignment.
Smets [44, 45] relaxes this condition by considering m(∅) as the amount

of conflict between the pieces of evidence or as the part of belief given to the
fact that none of the hypotheses in Ω is true. All the subsets A of Ω such
that m(A) is strictly positive, are called the focal elements of m.

Associated with m is the belief function, denoted bel, corresponding to a
specific bba m, assigns to every subset A of Ω the sum of masses of belief
committed to every subset of A bym [43]. This belief function, bel, represents
the total belief that one commits to A without being also committed to A.
The belief function bel : 2Ω → [0, 1] is defined so that:

bel(A) =
∑

∅6=B⊆A

m(B), ∀A ⊆ Ω (3)

bel(∅) = 0 (4)

The plausibility function pl : 2Ω → [0, 1] quantifies the maximum amount
of belief that could be given to a subset A of Ω. It is equal to the sum of the
masses given to subsets B compatible with A:

pl(A) =
∑

A∩B 6=∅

m(B), ∀A ⊆ Ω (5)

pl(∅) = 0 (6)
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2.2. Special belief functions

In this subsection, we propose some belief functions used to express par-
ticular situations related generally to uncertainty. A vacuous bba is defined
as follows [43]:

m(Ω) = 1 and m(A) = 0 ∀A 6= Ω (7)

Such function quantifies the state of total ignorance by having only Ω as
a focal element.

A categorical bba is a normalized bba defined as follows:

m(A) = 1 ∀A ⊂ Ω and m(B) = 0 ∀B ⊆ Ω, B 6= A (8)

This function has a unique focal element different from the frame of dis-
cernment Ω.

A certain bba is a particular categorical bba such that its focal element
is a singleton. A certain bba is defined as follows:

m(A) = 1 and m(B) = 0 ∀B 6= A and B ⊆ Ω and |A| = 1 (9)

where A is a singleton event of Ω. This function represents a state of total
certainty on the focal element.

A simple support function (ssf) if it has at most one focal element different
from the frame of discernment Ω. A simple support function is defined as
follows [46]:

m(X) =







w if X = Ω
1− w if X = A ∀A ⊆ Ω
0 otherwise

(10)

where A is the focal element and w ∈ [0, 1]. It presents a belief function
induced by a piece of evidence supporting A (with 1 − w) and leaving the
remaining beliefs for Ω. This bba can also be noted Aw.

A Bayesian bba is a particular case of belief functions where all the focal
elements are singletons. The corresponding bba is defined as follows:

m(A) > 0 only when |A| = 1 (11)

In this case, bel = pl and they are considered as a probability distribution.
A consonant bba is a bba when all its focal elements (A1, A2, . . . , An) are

nested, that is A1 ⊆ A2 ⊆ . . . ⊆ An. It is a special case of possibilities.
A dogmatic belief function is defined such that m(Ω) = 0. Inversely a

non-dogmatic belief function is defined such that m(Ω) > 0 [46].

5



2.3. The discounting operation

Handling evidence given by experts requires to take into account the level
of expertise of each information source. Indeed, reliability differs from one
expert to another and a discounting method is imperative to update experts’
beliefs based on weighting most heavily the opinions of the best experts and
conversely for the less reliable ones.

Let α ∈ [0, 1], be the discounting rate, and consequently 1−α is regarded
as a degree of confidence on the expert. Updating the expert’s opinions leads
to:

{

mα(A) = (1− α)m(A), ∀A ⊂ Ω,
mα(Ω) = (1− α)m(Ω) + α ,

(12)

The larger α, the closer mα is from the vacuous belief function. So, when
α = 1, it means that the expert is not reliable at all, and his opinions should
be totally ignored. On the other hand, when α = 0, it means that the expert
is totally reliable.

2.4. Pignistic transformation

To make a decision, Smets proposes to transform beliefs to a probability
measure, denotedBetP [48]. The link between these two measures is achieved
by the pignistic transformation such that:

BetP (A) =
∑

B⊆Ω

|A ∩ B|

|B|

m(B)

1−m(∅)
, ∀A ∈ Ω. (13)

BetP can be extended as a function on 2Ω as:

BetP (A) =
∑

ω∈A

BetP (ω) ∀A ⊆ Ω and ω ∈ Ω. (14)

2.5. Distance between bbas

Several researchers have proposed distances under a belief function frame-
work. Some of them are based on the pignistic transformation [1, 16, 49, 55],
where an unavoidable step is the pignistic transformation of the bbas. On the
other hand, some distances based directly on bbas, are also proposed [17, 23]
defined on the power set of the frame of discernment.

In this paper, we will focus on the Jousselme distance [23] considered as
one of the most known distances.
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Letm1 andm2 two bbas, the Jousselme distance [23] is defined as follows:

dJ(m1,m2) =

√

1

2
(m1 −m2)tD(m1 −m2) (15)

where D is the Jaccard index defined by:

D(A,B) =

{

0 if A = B = ∅
|A∩B|
|A∪B|

∀A,B ∈ 2Ω.
(16)

3. Combination of pieces of evidence

In the case of imperfect data (uncertain, imprecise and incomplete), data
fusion becomes an interesting solution allowing to obtain more relevant in-
formation. The belief function theory offers appropriate tools for ensuring
fusion. The objective of the combination is then to synthesize the information
issued of a set of belief functions in a unique function. Based on the fusion
of bbas induced from several sources, the conflict between these sources may
be arisen. The conflict is defined as a measure of a disagreement between the
sources. In the belief function framework, several combination approaches
were developed. They can be classified in two categories according whether
sources are reliable or not.

3.1. Reliable sources

When information sources, inducing belief functions, are considered as
reliable, the used operators are based on the conjunctive combination. Hence,
the induced result of the conjunctive combinations of two bbas m1 and m2,
is noted m ∩© and is defined by [48]:

m ∩©(A) =
∑

B∩C=A

m1(B)m2(C) ∀A, B, C ⊆ Ω. (17)

This rule considers m ∩©(∅) as the discord between sources implied in the
fusion process and called it conflict.

Another kind of conjunctive combination is Dempster’s rule [8], based on
the orthogonal sum, and is considered as the standard fusion rule used in the
case of reliable sources. The induced bba is noted m⊕ and is defined by:

m⊕(A) =
1

1−m ∩©(∅)
m ∩©(A) ∀A 6= ∅ and m⊕(∅) = 0 (18)
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where 1
1−m ∩©(∅)

is the normalization factor making m⊕(∅) = 0.

These two combination rules namely the conjunctive and the Dempster
rules are commutative and associative but not idempotent. Therefore, they
cannot be used when the sources are not independent1.

In addition, Denœux [10] has developed the cautious conjunctive rule
having also a conjunctival behavior. This rule is idempotent, and can conse-
quently be applied when information sources are dependent. It is defined by
the following relation:

m1 ∧©m2 = ∩©
A⊂Ω

Aω1(A)∧ω2(A) (19)

where ∧ is the minimum operator and ωi are the weights obtained from the
decomposition based on the conjunctive combination of mi in simple support
functions such as:

mi = ∩©
A⊂Ω

Aωi(A). (20)

It is useful to note that these various combinations can also be applied
even in the case of unreliable information sources. In such a case, a discount-
ing is then necessary to be applied before the combination. This approach
was used in several works [36, 50]. The difficulty remains then in the assess-
ment of the degrees of reliability. There are several strategies to estimate
this reliability. One of them is based on the calculation of a measure of
dissimilarity between the belief functions to be combined. This measure is
used as a degree of discounting. Hence, contradictory belief functions are
discounted before fusion phase. This approach was studied by several au-
thors [26, 31, 32, 33, 41, 53]. Another technique consists in using further
information on the belief functions to define the discounting degree coeffi-
cients [15, 16].

3.2. Unreliable sources

If one source in the fusion process is not reliable and there is no possi-
ble adjustment then combinations based exclusively on the conjunctive rule
cannot be used. As a first rule dealing with such a case, is the disjunctive

1The notion of independence is relatively delicate to define. We consider here the idea
of cognitive independence [45].
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rule of combination proposed by Dubois and Prade [12]. Then, in the case
of two bbas m1 and m2, this rule is defined by:

m ∪©(A) =
∑

B∪C=A

m1(B)m2(C) ∀A, B, C ⊆ Ω. (21)

This kind combination is the dual of the conjunctive combination. It
is discussed within the Generalized Bayes Theorem by Smets [45]. As the
conjunctive one, this rule is also associative and commutative but not idem-
potent. In the case where sources are dependent, Denœux [10] suggests using
the bold disjunctive rule. For combining two bbas m1 and m2, this rule is
defined in the following way:

m1 ∨©m2 = ∪©
A 6=∅

Aν1(A)∧ν2(A) (22)

where ν1 and ν2 represent the disjunctive decomposition2 of m1 and m2 based
on simple generalized masses such that:

mi = ∪©
A 6=∅

Aνi(A). (23)

Besides, rules having intermediate behavior between the conjunctive and
disjunctive rules of combination were developed these last years [7, 13, 14, 19].
Among these rules, we mention the one introduced by Florea [19] which
allows to define a family of rules having an intermediate behavior between
conjunctive and disjunctive operators according to two functions γ1 and γ2
dependent on the conflict m ∩©(∅). This rule is defined in the following way:

mF (A) = γ1(m ∩©(∅))m ∩©(A) + γ2(m ∩©(∅))m ∪©(A) ∀A 6= ∅ (24)

Several definitions for the functions γ1 and γ2 were proposed. However,
the authors recommend the use of logarithmic forms which better correspond
to the non-symmetric distribution of the conflict. This rule is called robust
rule of combination. For other combination rules, it is a question to redis-
tribute the partial conflict [4, 18, 35, 52]. Finally, we can also note the other
rules, less used, which allow too to combine bbas [21, 22, 37, 51, 54]. The
objective of all these rules is to redistribute the conflict induced during the
combination.

2The function νi is the disjunctive counterpart of function ω, see [9, 10] for a detailed
definition of function ν.

9



3.3. Discussion

Some tricky situations may often happen, when it is necessary to combine
a set of sources where some of them are contradictory. The term of singular
sources can be defined for sources that supply different information of what
the other sources propose [27]. So, being singular or not depends on the fact
to be in agreement with the majority. This discord with the majority can
result [28, 47]:

• That the source at the origin of the discord is not reliable. For example,
a failing sensor or working outside his range of functioning can disagree
with the other information sources. In that case, the information in-
duced from this source is not relevant.

• Or what this source possesses as information not perceived by the oth-
ers. For example in the case of the detection of target, several sensors
cannot see a target hidden by an obstacle while a source positioned
in a different way sees perfectly this target. This source is then very
instructive.

So, for a given application, the selection of a combination operator, among
those proposed, is relatively sensitive to handle. In fact, in most of the situ-
ations, it is impossible to know if some sources are (or will become) reliable
or not reliable. The use of a strategy of combination of reliable sources (for
example conjunctive rule) containing one or several non-informative singular
sources is so going to end in a process of less robust fusion. In the same man-
ner, the use of a combination of unreliable sources with informative singular
sources means, generally, redistributing some conflict. Redistribution which
may be likened to a loss of information.

To identify the situation and thus select the appropriate combination,
recent works [6, 27, 30, 33, 40, 41] introduced measures of conflict, other
than the value of m(∅), allowing to quantify the opposition between belief
functions. However, these measures are decoupled by the combination be-
lief functions. So, these solutions produce a set of measures. Each of these
measures reflecting the opposition between a source and the other sources
involved in the process of fusion. This set of measures remains still difficult
to interpret and thus the identification of the situation (reliable or unreliable
sources) is tricky. In the following section, a formalism, which allows to pro-
tect the part of opposition between belief functions during the combination,
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is presented. This formalism supplies an alarm to the decision maker, con-
cerning his process of fusion, allowing him to choose adequate measures as for
example to strengthen the weight of the singular source if it is informative or
to treat it as an erroneous source in the opposite case. This approach allows
to obtain the result of the combination and a measure of the quality of the
fusion process.

4. Combination with adapted conflict (CWAC)

In this paper, belief functions are considered as outcomes of independent
information sources. In this frame, the conflict m(∅) obtained during the
combination of belief functions allows to draw the attention on a possible
problem like bad modelling, to an unreliable source now and more generally
the presence of a singular source. Most of the combinations proposed in the
literature (see Section 3) try to redistribute this conflict and not to use it as
indicator. Only the conjunctive combination allows to preserve the mass on
the empty set.

However, when the conjunctive combination is applied on a large num-
ber of belief functions, the conflict can take important proportions without
reflecting a real problem. In such a case, this value does not represent a real
opposition. This phenomenon is due to the absorbing character of the empty
set.

Based on this analysis, we intend to develop a method allowing to trans-
form the mass on the empty set as a real indicator of problems even if the
number of sources to be combined is important. Our approach is named
Combination With Adapted Conflict (CWAC).

Considering that there is a problem when sources produce strongly dif-
ferent belief functions, the conflict must be kept during the fusion. On the
contrary, in the case of the combination of information sources for which the
distributions of masses are equivalent, the conflict does not have to exist. The
spirit of CWAC is to keep the conflict exclusively reflecting the disagreement
between sources without taking into account the part that could be called
auto-conflict is defined for only one source [34, 38]. To define CWAC rule, a
measure allowing to determine the resemblance between bbas is necessary.

So, one of the interests of our CWAC rule is to detect the unreliable
source(s). In fact, an information source is not usually reliable and its re-
liability may change from time to time. Two solutions are then possible.
The first one consists in checking before fusing if each source is reliable or
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not. It is then necessary to compute the reliability of each source at each
time and then fuse them (if sources are identified enough as reliable). The
second solution has only one phase, using CWAC for combination, so get at
the meantime, the fusion result and the disagreement measure (so potentially
the unreliability of a source). According to the value of this measure, the
expert may accept or not the results of the fusion. If he does not accept it, he
should then look for the unreliable source(s) (like the first solution). Hence,
our proposed solution needs less time than the first one.

So, through CWAC, we can discover this through the mass on the empty
set, whereas as mentioned using the conjunctive rule, it is not so obvious
due to the absorbing behavior of the empty set and also especially when the
number of the sources is important.

4.1. With two belief functions

At first, only the case of two bbas m1 and m2 is considered. The dissimi-
larity notion may be obtained from a measure of distance. This distance may
be calculated by the method proposed in section 2.5 and is noted d(m1,m2)

3.
The borders of the function d are:

• d(m1,m2) = 0: m1 and m2 are similar (and consequently in agreement)
and their combination should not generate a conflict. In this case, the
conflict must be redistributed in the same manner as the combination
rule of Dempster.

• d(m1,m2) = 1: m1 and m2 are antinomic (i.e. m1({ωj}) = 1 and
m2({ωi}) = 1 with ωi 6= ωj, ωi ∈ Ω and ωj ∈ Ω). Their combination
produces a conflictual mass expressing their opposition. This value
must be kept in the same way as with the conjunctive combination.

CWAC combination is defined by an adaptive weighting between the con-
junctive and Dempster’s rules. This adaptive weighting allows to obtain a
behavior similar to that of the conjunctive rule when belief functions are

3However, the other measures of dissimilarity could be used [2, 3]. Details of the
measures of dissimilarity are given in [24, 25]. Besides, the use of measures of conflict, as
that proposed in [27], can be considered. The objective of this paper is not to compare
these approaches but simply to use one of these measures to supply to the decision maker
a unique belief function, induced from the combination, containing a part of belief on the
revealing empty set of the existing opposition.
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antinomic and equivalent to that of the Dempster rule when belief functions
are similar. Between these two extremes, a gradual passage may be consid-
ered. The combination rule which we propose noted ↔© can be written then
in the following way:

m↔©(A) = γ1m ∩©(A) + γ2m⊕(A) ∀A ⊆ Ω (25)

with:

m⊕(A) = (m1 ⊕m2)(A) ∀A ⊆ Ω (26)

m ∩©(A) = (m1 ∩©m2)(A) ∀A ⊆ Ω (27)

where γ1 and γ2 are dependent functions of distance d(m1,m2). These func-
tions should satisfy the following constraints:

γ1 = f1(d(m1,m2)) with f1(0) = 0 and f1(1) = 1 (28)

γ2 = f2(d(m1,m2)) with f2(0) = 1 and f2(1) = 0 (29)

with γ1 + γ2 = 1. However other functions are possible, we can choose at
first, linear functions such that:

γ1 = d(m1,m2) (30)

γ2 = 1− d(m1,m2). (31)

Hence, our rule can be written ∀A ⊆ Ω and m ∩©(∅) 6= 1:

m↔©(A) = m1 ↔©m2(A) = d(m1,m2)m ∩©(A)+(1− d(m1,m2))m⊕(A). (32)

When m ∩©(∅) = 1, then we have m↔©(∅) = 1.

4.2. General case

The generalization of this approach arises when more than two bbas are to
be merged. Indeed, in a classic way the measures of dissimilarity are defined
only between two bbas functions. LetN bbas notedm1, . . . ,mi . . . ,mN which
should be fused. The measure of dissimilarity between these functions, which
it is necessary to use in the case of the proposed approach, may be a synthesis
of the distances between bbas. The objective of the proposed approach is
to offer to the decision maker, after the fusion, a measure of conflict which
allows to distinguish the presence of a singular source among bbas. It seems
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then natural to make this synthesis by using, for example, the maximal value
of the set of distances4. In that case, the value of D may be defined by:

D = max
i,j

[d(mi,mj)] (33)

with i ∈ [1, N ] and j ∈ [1, N ]. Our rule can be generalized as the following
manner ∀A ⊆ Ω and m ∩©(∅) 6= 1:

m↔©(A) =

(

↔©
i

mi

)

(A) = Dm ∩©(A) + (1−D)m⊕(A) (34)

and
m↔©(∅) = 1 when m ∩©(∅) = 1 (35)

with:

m ∩©(A) =

(

∩©
i

mi

)

(A) and m⊕(A) =

(

+©
i

mi

)

(A) ∀i ∈ [1, N ]. (36)

4.3. Properties

Here are some properties characterizing our CWAC rule:

• Commutativity: CWAC is commutative, for all m1, m2:

m1 ↔©m2 = m2 ↔©m1.

• Associativity: CWAC is not associative, for all m1, m2, m3:

m1 ↔©(m2 ↔©m3) 6= (m1 ↔©m2) ↔©m3.

• Neutral element: The neutral element of the CWAC is Ω. Let m0

be the vacuous bba. So for all m:

m ↔©m0 = m.

• Absorbing element: The absorbing element of the CWAC is ∅. Let
me be a bba having ∅ has the unique focal element (m(∅) = 1). So, for
all m:

m ↔©me = me.

• Idempotent: CWAC is not idempotent, for all m:

m ↔©m 6= m.

4According to the wished behavior, the decision maker can use the other approaches
(such as the average for example) to synthesize the measures of dissimilarity.
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5. Experimental results

In this Section, the proposed combination is compared to the conjunctive
combination on synthetic data. The first experimentation more emphasizes
on the study of the behavior of the different operators in the case of a reduced
number of belief functions. Then, the second and the third experimentations
allow to study the behavior of the operators according to the number of bbas
and to the similarity between them.

5.1. Example n◦1

For this first experimentation, we consider a frame of discernment Ω =
{ω1, ω2, ω3}. At first, we consider 5 bbas defined in Table 1. We notice
that these bbas are relatively similar. In this Table, we find the results of
the combination of these 5 sources with the conjunctive operator (m1,...,5

∩© )
and our CWAC operator (Jm1,...,5

↔© with Jousselme’s distance). The conflict
induced by the conjunctive combination is relatively important which is not
the case with our approach (0.9317 against 0.1118 if we use the Jousselme
distance).

Now, let us consider the case, where a 6th source is added. This source
is singular with regard to 5 first ones. Results of the combination of these 6
bbas are also presented in Table 1. These results allow to deduce that there is
an important increase of the value of the conflict in the case of our proposed
approach. This value is, according to the used distance, from 5 to 6 times
more important than during the first combination. On the other hand, in the
conjunctive combination case, the increase is only 6.4 % (that is only 1.06
more important). So, the detection of the presence of a singular source in the
fusion process is more easier with our CWAC operator. These conclusions
are consolidated by the experimentations presented in the following sections.

5.2. Example n◦2

For this experimentation, we are going to study the evolution of the con-
flict, according to the maximal distance, in a set of N belief functions. The
focal elements as well as degrees of beliefs are randomly generated according
to a normal law. The focal elements are altogether selected in 2Ω with the
cardinal of Ω equal to 3. Results presented on Figure 1 are the average of
100 experiences. In that case, the behavior of our proposal is almost lin-
ear according to the maximal distance. This conclusion is usually true for
any chosen distance and also for any number of belief functions involved in
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bba ∅ {ω1} {ω2} {ω1, ω2} {ω3} {ω1, ω3} {ω2, ω3} Ω
m1 0 0.55 0 0 0.40 0 0.05 0
m2 0 0.50 0 0 0.30 0 0.2 0
m3 0 0.60 0 0 0.25 0. 0.15 0
m4 0 0.52 0 0 0.25 0 0.23 0
m5 0 0.59 0 0 0.22 0 0.19 0

m
1,...,5
∩© 0.9317 0.0506 0 0 0.0176 0 0.0001 0

J
m

1,...,5
↔© 0.1118 0.6580 0 0 0.2294 0 0.0009 0

m6 0 0 0.5 0 0.30 0 0.2 0
m

1,...,6
∩© 0.9911 0.0001 0 0 0.0088 0 0 0

J
m

1,...,6
↔© 0.5628 0.0016 0 0 0.4349 0 0.0006 0

Table 1: Behavior of the different combinations

the fusion process. In case with more than 10 belief functions and when the
maximum distance is greater than 0.5, the conjunctive combination produces
already a conflictual mass close to 1, this is not the case for our proposal.
In this situation, the proposed approach yet allows us to distinguish the
opposition between the belief functions.

We can also note that when the maximal distance is low, the conflict is
almost null. On the contrary, and in the same case, the use of the conjunctive
combination induces a significant conflict (superior or equal to 0.5 according
to the number of the belief functions combined) while bbas are similar. Fur-
thermore, the convergence towards a maximal value of conflict is fast as the
number of bbas is important.

While both approaches have the same behavior, the dynamics obtained
by CWAC function is more important. Indeed, the combination CWAC, the
conflicting mass ranges from 0 (no conflict) to 0.8 (conflict situation). In this
case, the dynamics is then 0.8. With the conjunctive combination in the best
case, this value is only 0.5. With a variation range greater, it is more easily
to define the threshold at which the system can be questioned (unreliable
source or singular source). Finally, for a given combination rule, the results
vary according to the number of sources (N = 10, 20 or 30). However, these
variations are more important in the case of conjunctive combination and
remain very limited with CWAC.

5.3. Example n◦3

In this experimentation, two sets of belief functions S1 and S2 are con-
sidered. Within every set, bbas are identical. On the other hand, between
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Figure 1: Behavior of conflict when the distance between bbas varies.
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both sets, bbas are randomly generated so as to obtain maximal distances
according to 3 categories:

• D′ category: where the maximal distance between bbas of the two sets
is included in [0; 0.3]

• D′′ category: where the maximal distance between bbas of the two sets
is included in ]0.3; 0.6]

• D′′′ category: where the maximal distance between bbas of the two sets
is included in ]0.6; 0.9]

The generation of bbas is realized in the following way. We generate
randomly, according to a normal law, the focal elements of the bba belonging
to the set S1. Then, we generate, according to a normal law, the degree of
belief to be assigned to each of these focal elements. The same process will be
repeated for bbas belonging to the set S2 by verifying the constraint imposed
on the maximal distance. Once these bbas were obtained, we duplicate them
in each of the sets according to the wished proportion. For that purpose,
we note r the proportion of the set S1 which expresses itself in the following
way:

r =
|S1|

N
(37)

Where N = |S1|+ |S2| and |.| represent the cardinal of the considered set.
In this example, we consider N = 20 and |Ω| = 3. This experiment is 100

times realized and then the results are averaged and represented in Figure 2
with Jousselme’s distance.

On these figures, when the proportion is equal to 0 or to 1, the involved
bbas in the fusion process belong all to the same set. In that case, the
conjunctive combination gives nevertheless an important conflicting mass5.

The evolution of r only modifies very slightly this value especially in the
case of a low distance. In the case of our CWAC operator, when all the bbas
arise from the same set (r = 0 or r = 1), the conflicting mass is null.

As soon as a singular source is involved in the fusion process, our rule
allows to reach a maximal value which will remain unchanged. This maxi-
mum stays in reasonable proportions when the maximal distance is included

5This value is lesser when the distance is high because in that case the generated bbas
are more categorical.
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Figure 2: Behavior of conflict when the proportion of conflictual bbas varies. The CWAC
operator is obtained with Jousselme’s distance.

between [0; 0.3], that is when bbas of both sets are considered as relatively
similar. This remark is not verified in case of the conjunctive combination.

6. Conclusion

In this paper, we have proposed an approach with adapted conflict pre-
serving the initial role of the conflict which is an alarm signal for the com-
bination of belief functions. CWAC presents an adaptive weighting between
Dempster’s and conjunctive rules based on Jousselme et al.’s distance. Ex-
perimentations have shown that through CWAC, the absorbing power of the
conflict is reduced compared with the conjunctive rule of combination. As
future works, we intend to deal with the interpretation of the conflict when
sources are dependent. Besides, the dual of CWAC will be proposed in the
disjunctive behavior where the frame of discernment Ω is the absorbing ele-
ment.
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bination rules for evidence theory. Information Fusion, 10(2):183–197,
2009.

[20] T. George and N. R. Pal. Quantification of conflict in dempster-shafer
framework: A new approach. International Journal of General Systems,
24(4):407–423, 1996.

21



[21] A. Josang. The consensus operator for combining beliefs. Artificial
Intelligence, 141(1-2):157–170, 2002.

[22] A. Josang, J. Diaz, and M. Rifqi. Cumulative and averaging fusion of
beliefs. Information Fusion, 11(2):192–200, 2010.

[23] A-L. Jousselme, D. Grenier, and E. Boissé. A new distance between two
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