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Abstract

This article proposes a method to classify multiple maneuvering targets at the same
time. This task is a much harder problem than classifying a single target, as sensors do
not know how to assign captured measurements to known targets. This article extends
previous results scattered in the literature and unifies them in a single global framework
with belief functions. Through two examples, it is shown that the full algorithm using
belief functions improves results obtained with standard Bayesian classifiers and that
it can be applied to a large variety of applications.

Keywords: Multi-target tracking, credal classification, data assignment, targets
management.

1. Introduction

The problem of joint multi-target tracking and classification, which is as old as the
invention of radars, is a much more complex task than the problem of tracking one
target. Indeed it includes a step, called the assignment problem, where sensors have to
associate known objects to new captured measurements. A full multi-target tracking
solution includes several interlaced components such as the tracking component, the
assignment component, the hypothesis rejection (new or disappeared targets...) and
finally the classification step. Probability-based solutions already exist in the literature
[1, 2, 3, 4, 5, 6, 7].

For about 40 years, other uncertainty models based on non-additive measures have
been developed, in particular the Transferable Belief Model [8] based on belief func-
tions [9, 10] which is sometimes referred to as the credal model. Applications of this
model can be found for example in classification tasks and decision support systems
[11]. Direct comparisons with Bayesian solutions are presented in [12, 13] with dis-
crete variables or in [14] with continuous variables.

Applications of this theory to multi-target tracking and classification problems are
scattered through several articles presenting different approaches. In [15, 13] and in
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[16] various distances between belief functions are used to tackle the assignment prob-
lem. Reference [15] has been recently improved in [17], but these two references only
tackles the assignment problem with uncertain measurements and do not cope with the
tracking problem. In [14] a solution to track and classify a single dynamical target is
proposed, but no extension to multi-target tracking is proposed.

The aim of this article is to gather these scattered results, to unify them in a single
and consonant framework based on belief functions, and to propose a solution for multi
target tracking using belief functions when no one exists in the recent literature. The
proposed solution also includes a step of hypothesis rejection, which means that it
manages new and disappeared targets.

The result is a complete solution to multi-target tracking and classification in a
cluttered environment. It mimics the standard and well accepted Bayesian solutions,
but it extends them, when possible, with belief functions. A short preliminary version
of this article was presented in [18].

The well known Interacting Multiple Model (IMM) algorithm is used to track mul-
tiple targets. The assignment problem of real measurements with known targets is
resolved by the means of a generalized Global Nearest Neighbor algorithm. Target
management is ensured by a score function representing the quality of target tracks.
Finally, the classification step is realized with the Transferable Belief Model instead of
a classical Bayesian solution.

This article is organized as follows. An introduction to belief function theory is
presented in Section 2. Section 3 deals with tracking problems. Assignment and hy-
pothesis rejection problems are tackled in Section 4. Bayesian and proposed algo-
rithms are summarized in Section 5. Finally, two application examples are detailed in
Section 6. The first one involves an academic example on aircraft classification with
constant classes, it allows a comparison with a Bayesian solution. The second example
concerns a pedestrian activity recognition, it highlights a first extension of the proposed
algorithm to time varying classes.

2. Belief functions

2.1. Main functions

This section introduces basic notions on belief function theory, which was firstly
introduced by Dempster in [9] and extended by Shafer [10] and Smets [8]. Knowledge
is expressed on a discrete set C = {c1, c2, ..., cnc} of nc mutually exclusive and exhaus-
tive hypotheses. Frame C is called the frame of discernment. A mass m(A) with A ⊆ C
is the part of belief supporting A that, due to a lack of information, cannot be given to
any strict subset of A [8]. A mass function m (or basic belief assignment) has to satisfy:∑

A⊆C

m(A) = 1 . (1)

Throughout this article, 2C represents all the subsets of C. A set A such that m(A) >
0 is called a focal element of m.
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In addition to the mass function, two other functions are defined in the following
manner. The plausibility function Pl represents the total amount of belief that may be
given to a subset A of C with further pieces of evidence:

Pl(A) =
∑

A∩B,∅

m(B) . (2)

Unlike the plausibility function, the belief function Bel represents the amount of
belief that is certain and cannot be reduced:

Bel(A) =
∑
A⊇B

m(B) . (3)

These functions are in one-to-one correspondence [10], so they are used indiffer-
ently with the same term belief function when the context is clear.

A belief function whose focal elements are singletons is called a Bayesian belief
function, it corresponds to a probability distribution and respects the property of addi-
tivity:

Pl(A ∪ B) = Pl(A) + Pl(B) , (4)

with (A, B) ⊆ 2C and A ∩ B , ∅. In general, this relation is false and belief functions
are non-additive measures.

A belief function such that m(C) = 1 respects Pl(A) = 1 for all A subsets of C,
A , ∅. Denoted by m0, it is called the vacuous belief function and represents the full
ignorance.

2.2. Fusion rule and discounting

When more than one mass function is expressed on the same frame of discernment,
they can be fused to obtain a single representation. The conjunctive combination used
in this work assumes independent and absolutely reliable sources. Let m1 and m2 be
two mass functions provided by two distinct sources and expressed on the same frame
of discernment C, their conjunctive combination is defined as follows:

m12(A) = (m1 ∩©m2)(A) =
∑

A1∩A2=A

m1(A1)m2(A2) . (5)

Equation (5) is the unnormalized rule, the normalized rule is referred to as Dempster’s
rule of combination, and is defined by:

m12(A) =

∑
A1∩A2=A

m1(A1)m2(A2)

1 −
∑

A1∩A2=∅

m1(A1)m2(A2)
. (6)

This rule is used in order to update a priori beliefs with online measurements, as in
the following Section 2.4.

The last example in this article involves the discounting of a source of information.
Such a discounting assumes that you can estimate the reliability of a source by a factor
λ ∈ [0, 1]. If λ = 1, the source is considered as absolutely reliable, while if λ = 0, the

3



source must be discarded and replaced by a vacuous belief. Thus the discounting mλ

of a source m is defined by:{
mλ(A) = λm(A) if A , C ,
mλ(C) = λm(C) + 1 − λ otherwise. (7)

If several sources of information mi have to be fused, each one with its own relia-
bility λi, a classical approach is to first discount all of them, and then to conjunctively
fuse them using Equation (5). Several other fusion rules are defined, and for a review,
readers can refer to [19]. For example, contextual data can be included also in the fu-
sion process, see [20], and reliability factors can be adapted online [21], although this
is not used in this article.

2.3. Decision rule

Several belief function interpretations exist, among them the Upper/Lower Prob-
abilities (ULP), usually called imprecise probabilities, and the Transferable Belief
Model (TBM) of Smets. Basically these models are equal when considering static
knowledge, but differ when conditioning steps are involved. Readers interested in this
topic can refer to [22]. In a few words, within an ULP model, conditioning requires
to condition every probability measure P(A) compatible with the bounds defined by
Bel(A) ≤ P(A) ≤ Pl(A). Then, the new bounds Bel(.|.) and Pl(.|.) must be recomputed
by checking every conditioned probability measures, and taking the new maximum and
minimum, while within the TBM it suffices to condition only the original Bel(A) and
Pl(A). Thus, the ULP model is more computationally demanding. In a recent article
[23], the ULP model has been advocated in a classification problem. But the authors of
this article do not find the provided examples conclusive and the advantage of the ULP
model over the TBM remains unclear. Since it is more complex to use, the TBM has
been chosen in this article, as in [14] for instance.

The TBM represents and manages knowledge with a two level model. The first one,
referred to as the credal level, concerns the representation and the manipulation of the
data. It is the place where data are encoded, combined and updated with belief func-
tions without assuming probability measures [12]. Decisions are made when necessary
at a second level called the pignistic level, where belief functions are transformed into
a probability measures using the pignistic transformation justified in [24] through ra-
tionality requirements and basic axioms. Pignistic probability BetP is defined by:

BetP({ci}) =
∑
ci∈A

m(A)
| A | (1 − m(∅))

. (8)

Let us remark that other decision rules have been introduced for belief functions,
among them the maximum of plausibility [25]. Comparing the drawbacks and advan-
tages of all the decision rules is outside the scope of this article, see for instance [24].

2.4. Generalized Bayes Theorem

Bayes theorem enables to compute the a posteriori probability from an a priori
one. With likelihoods l(ci|z) = P(z|ci), where z is a measure provided by a sensor, each
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probability P(ci|z) can be computed by:

P(ci|z) =
l(ci|z)P(ci)∑

c j

l(c j|z)P(c j)
. (9)

In a recursive scheme, P(ci) becomes Pk(ci) and P(ci|z) = Pk(ci|z), where the index
k represents a given time step. Initialization, without any further information, is usually
carried out with the uniform probability measure.

With the same ideas, Smets introduces a Generalized Bayesian Theorem (GBT) [26]
allowing the recursive calculation of mass functions. The GBT requires two steps.
Based on likelihoods l(ci|z), a conditional mass function m(A|z) for each A ⊆ C is
firstly calculated as follows:

m(A|z) =
∏
ci∈A

l(ci|z)
∏
ci∈Ā

(1 − l(ci|z)) . (10)

Formulated in a recursive manner, the second step consists in conjunctively merging a
priori and conditional beliefs with Equation (5):

mk = mk(.|z) ∩©mk−1 . (11)

The a priori belief is initialized with the vacuous belief m0.
GBT applications are numerous [12, 14, 27, 28, 29].

3. Target state and measurement models

3.1. Measurement model

The final goal of the credal algorithms presented in this article is to find each tar-
get class, which belongs to C, from a series of measurements. For simplicity reasons,
targets measurements z j

k, with j = 1, 2, ...,m where m represents the number of mea-
surements acquired at time k, are considered linearly dependent on the target state
vectors xi

k, with i = 1, 2, ..., n, where n is the number of known targets at time k. Target
state vectors evolutions are described by Equation (12) and measurements are taken
according to Equation (13).

xi
k = F(cs)xi

k−1 + Bui
k + wi

k , (12)

z j
k =

{
Hxi

k + vk known target originated measurement,
Hxi′

k + vk new target or noise originated measurement, (13)

where:

• xi
k ∈ R

p is the ith target state vector with i ∈ {1, 2, ..., n} representing the index of
the target at time step k.

• F(cs) is a p × p state matrix depending on class cs, with s ∈ {1, 2, ..., nc}.
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• ui
k is the ith target deterministic input at time step k and wk is a state Gaussian

noise with covariance matrix Q. The input matrix is denoted B.

• z j
k ∈ R

q is the jth received observation at time step k, with j ∈ {1, 2, ...,m}.

• H is a q × p time invariant observation matrix and vk is the measurement error,
it is considered as a Gaussian noise with zero mean value and covariance matrix
R.

The number of targets n is not constant over time and a given measurement z j
k at

time step k can come from a known target i, a new target i′ or even from noise.
The state model parameters < F, B, u,w > are given in a general manner in Equa-

tion (12). In maneuvering targets case, there will be r different model parameters sets,
where r is the number of different evolution modes.

The optimal Bayesian estimation of the ith target state and class at time step k
requires the calculation of the following probability density function:

p(xi
k, cs|Zi

k), i = 1, ..., n (14)

where Zi
k =

{
zi

1, z
i
2, ..., z

i
k

}
represents the cumulated measurement for the target i until

the time step k.

3.2. Discussion about the filters used to track
The Gaussian assumption on the state and measurement noises allows the proba-

bility density function of n maneuvering targets, represented by Equation (14), to be
optimally estimated by Kalman filter based Interacting Multiple Model (IMM) algo-
rithm. Each IMM algorithm is dedicated to track one target, it handles its r possible
evolution models. Details on the derivation of the targets motion models can be found
in [30, 31, 32]. More information on IMM algorithm can also be found in [30, 33].
Different than the IMM algorithm proposing an analytic estimation of the a posteri-
ori probability density in Equation (14), other more recent methods exist. Based on
Monte Carlo approximation of the a posteriori density, they are called either Probabil-
ity Hypothesis Density (PHD) [34, 35, 36] filters with different Monte Carlo sampling
methods, or also Particle Filter (PF) [37, 38]. The approximation of the a posteriori
probability density, in these methods, is done by performing a set of N weighted Monte
Carlo samples. The approximation is almost optimal when N tends to infinity. The ma-
jor advantage of Monte Carlo based methods is the capacity to estimate the a posteriori
probability density in Equation (14), regardless the nature of the variable x (linear or
non-linear) and regardless the nature of the noise affecting the targets evolution and
measurement models (Gaussian or non-Gaussian). However, these approaches need
a high number of samples (particles) N to achieve an acceptable approximation. For
example, Caron et al. in [39] use N = 250 particles to achieve the performance of the
same kinematic data based classification presented in [14] for one target classification,
and used in the first simulation example of Section 6 for multi-target classification.
In their work, Caron et al. use the so-called Rao-Blackwellised filter, the particles in
this filter are simply Kalman estimators where each Kalman estimator handles a target
linear model. This means that for a kinematic data based classification problem, it is
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better to have a set of different linear models describing targets evolutions instead of
unified non-linear one. Regarded this circumstance, Kalman filter based IMM algo-
rithm appears much more efficient in the case of Gaussian noises.

In a simple example of linear signal estimation illustrated in Figure 1, the Kalman
filter estimation error averaged on 100 different simulations has a mean value of 5.5721,
while the obtained mean error with a particle filter for N = 150 is about 7.1466. Know-
ing that one particle is approximately equivalent to a Kalman filter in terms of compu-
tation complexity, this example illustrates the great need on computation resource of
the particle filter. The estimation error in this comparison is calculated by: (x − x̂)2,
where the real state x and the estimated one x̂ are scalars.
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Figure 1: Kalman filter vs Particle filter.

This article is mainly devoted to the classification task. To simplify the problem
only linear models are considered. Of course, if non linear models are required to
describe the targets dynamic, Kalman filters, therefore IMMs, would be out performed
by such particle or PHD filters. This would not impact the classification stage where
only likelihoods of targets models are needed.

3.3. Difference between single object and multiple object classifications
This article deals with multiple object classification, where the difference between

the number of known targets n and the number of measurements m could be strictly
greater than 1.

As illustrated by the following examples, this task is much more complex in a multi-
target context as the classifier has to infer the association of captured measurements zk

with already known targets.
When only one object has to be classified, the Bayesian approach provides directly

the solution using Bayes rule (Equation (9)) as it can be observed in Figure 2 with Pk−1
representing the a priori probabilities and Pk the a posteriori ones.

As illustrated in Figure 3, with more than one target to track and classify, Bayes
rule can no more be applied directly and an association step is needed to assign new
measurements to known targets.
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Figure 2: Illustration of a single target classification task with a Bayesian approach.

Figure 3: Illustration of the assignment question in a 2-target classification task.

A solution to the assignment problem is presented in Section 4.

Remark. As readers can notice it, states and measurements equations presented in this
section are based on real numbers. This is in contrast with the work of Smets and Ristic
[14] on single dynamical target classification. Indeed in their approach, the authors
have decided to use belief functions at every step of the classification chain. So, they
have introduced continuous belief functions to describe targets states. Generalized
Kalman filters were used to handle continuous belief functions at that stage. This is
not the case here, since classical Kalman Filter based IMMs are used. But, as readers
will be able to check it, results proposed in simulation Section 6 behave similarly as
the ones of Smets and Ristic. The major improvement over the Bayesian classification
seems to lie in the use of belief functions at the classification stage and in particular the
use of the Generalized Bayesian Theorem. The crucial importance of this component
when trying to classify objects from measurements was also studied in [12].

4. Assignment problem with targets appearances and disappearances manage-
ment

Assignment problem and targets management is an intermediate step between the
prediction and the update steps of the IMMs. It is supplied by a set of predicted mea-
surements and their corresponding covariance matrices, respectively, ẑi and S i, with
i = {1, 2, ..., n}, of the n already known targets. For each target i, the quantities ẑi and
S i are aggregations of the corresponding IMM models predicted quantities, namely ẑi

l
and S i

l, where l = 1, ..., r and r is the number of models in the IMM, see [30, pages
225-226] for detailed information.

Targets predicted measurements ẑi, with i = {1, 2, ..., n}, are compared with a set of
m real measurements z j, j = {1, 2, ...,m} received at time step k, then an assignment
problem is resolved in such a way to answer the following questions:
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• How to assign the m received real measurements z j to the n already predicted
measurements ẑi?

• How to manage targets appearances, reappearances and disappearances?

The answers that should be given to the above questions are:

• Targets that have received an observation are updated following the IMMs update
process.

• Targets that have not received any observation are considered as non-detected.

• The non-assigned measurements are used to initialize new targets.

The following paragraphs discuss the main existing assignment solutions in litera-
ture, and the adopted solution to obtain the above expected answers.

4.1. Overview of assignment solutions for multi-target tracking
The problem of false assignments in multi-target tracking and recognition is treated

by researchers from various application domains. Namely, in the domain of artificial
vision where the problem becomes less difficult since complementary information (tex-
ture, color, etc.) can help to distinguish the kinematic observations of the objects and
get less conflicting assignment problem. Readers can refer for example to [40] where
appearance information (color, texture) are added to distinguish tracked people in a
video, this increases the robustness to false assignments. The same method benefits of
the low calculation complexity of the Hungarian algorithm used to resolve the assign-
ment problem, which makes it feasible online. Other works in artificial vision using
complementary information (color and sound characterizing the targets) to distinguish
the targets observations can be found in [41, 42].

In this work, the only available data are the kinematic ones. In this context, several
categories of approaches have been developed principally with probability measures,
deterministic approaches and Monte Carlo sampling based approaches.

Probabilistic approaches update each target with a weighted sum of the observa-
tions falling within its neighborhood. The weights represent the a posteriori proba-
bilities that the observations are originated from the considered targets. Examples are
Joint Probability Data Association (JPDA), Integrated Probability Data Association
(IPDA) [43, 44, 45], etc. These approaches consider as a new target the observation
having a low probability to be assigned to all the existing targets, and consider as a
non-detected target, the one going to be updated with a low weighted sum of observa-
tions. Multi-Hypotheses Tracking (MHT) algorithm [5] has a different principle, it is a
multi-scan approach that holds off the assignment decision until having more clear and
non-conflicting data. Considered as the best approach, it is also the most computation-
ally demanding. MHT, JPDA and IPDA computational complexities increase rapidly
with the number of targets and observations. Their performances are known to be weak
in a dense targets environment.

Deterministic approaches, like Nearest Neighbor (NN) which updates each target
with its nearest neighbor and Global Nearest Neighbor (GNN) [3, 46] take the optimal
solution which minimizes the global distance between the targets and observations.
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Credal versions of the GNN algorithm are proposed in [15] and [17] but have not
yet been tested in a tracking context where sensors noises are permanently changing
over time. Deterministic approaches are known to present some weakness when it
comes to track nearby or crossing targets (see Section 6.2). However, they are well
suited for real time applications, given their simplicity, low computational complexity
and their efficiency to handle appearances and disappearances, even in a dense targets
environments.

More recently, Markov Chain Monte Carlo (MCMC) based methods [47, 48, 49]
have been proposed to resolve the assignment problem. They are sub-optimal methods
that do not carry on the statistical distribution of the variables. Their performances
tend to the optimal one, when the number of performed Monte Carlo samples tends to
infinity. The problem of false assignments still remains even in MCMC based methods.
For example, the approach proposed in [47] presents a low rate of false assignments
for multiple interacting ants tracking, thanks to the use of a targets interacting model
and extended information such as ants orientations before and after crossing. MCMC
methods are preferred for their general aspect (no assumption on variables statistics)
but they are known to be computationally very complex.

To avoid the assignment problem in multi-target tracking, other conceptions of the
problem have emerged. For example, the work presented in [50] presents a so-called
”One State Filter” method. It gathers all state vectors of the tracked targets in one
extended state vector, modify accordingly all measurements models and then a sin-
gle unified estimator can be designed, be it an Extended Kalman Filter (EKF) or an
Unscented Kalman Filter (UKF). This way, explicit data association methods (GNN,
JPDA, MHT, etc..) can be disregarded. Although very interesting, this method suffers
from a major issue, as recognized by the authors: currently this approach can handle
two targets only, and it seems difficult to generalize it to more. A second issue, as
mentioned in [50], is that identities of crossing or nearby targets are lost. This means
that in a context of kinematic data based classification approach, like the one proposed
here, this approach can not be applied, because each target is classified based on its
own explicit observations.

4.2. Adopted assignment solution: GNN algorithm
In a few recent references [13, 30], the standard GNN algorithm is presented based

on a square matrix representing the distances between the n predicted states and the m
measurements with n = m.

To use the standard Munkres solution with a varying number of targets (which
means that possibly n , m), a more general GNN algorithm is considered in this article.
Its resolution is performed by the generalized Munkres algorithm [51] in such a way to
handle rectangular assignment matrices. The Generalized GNN algorithm is composed
of two main steps: the generalized affectation matrix calculation and its resolution.

A general formulation of the assignment matrix is given in Table 1. In this table,
[D j,i] ∈ Rm×n represents a special case of Mahalanobis distance (normalized Euclidean
distance), which follows a χ2 distribution with a degree of freedom q (dimension of the
measurement vector) [52]. The distance is calculated as follows:

D j,i = (z j − ẑi)T (S i)−1(z j − ẑi), (15)
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with j = {1, 2, ...,m}, i = {1, 2, ..., n} where S i represents target i expected measurement
error covariance matrix. It is related to the covariance matrices of the Kalman filters in
the corresponding IMM. Threshold T in Table 1 is drawn from the χ2 table based on an
a priori probability that the measurement corresponds to a new target with the degree
of freedom q. Initials NT stands for New Target.

♠♠♠ Give equation to deduce or compute T: it will be great to avoid ambiguities

Real measurements n known targets m possible new targets
ẑ1 ẑ2 . . . ẑn NT 1 NT 2 . . . NT m

z1 D1,1 D1,2 . . . D1,n T ∞ . . . ∞

z2 D2,1 D2,2 . . . D2,n ∞ T . . . ∞

...
...

...
...

...
...

...
...

...
zm Dm,1 Dm,2 . . . Dm,n ∞ ∞ . . . T

Table 1: General formulation of the assignment matrix.

Using modified Munkres algorithm [51], the assignment problem can be efficiently
resolved and the result is used in the following manner:

• Measurements assigned to known targets are processed by the targets corre-
sponding IMM algorithms.

• Measurements assigned to NT are used to initialize new IMMs. Let us note that
a measurement assigned to NT is either originated by a real new target or by
noise, so the measurement is not immediately confirmed as a new target. The
confirmation is done by the means of a score function described in the following
paragraph.

• Target which does not receive any measurement is updated by its predicted one
(trajectory prediction). Its score will decrease up to the point it will be considered
as a disappeared target. This action is ensured by the score function.

In some previous works [30], targets are confirmed or deleted depending on how
often they are detected or not.

A more efficient manner to validate and delete targets is to use a score function
which represents the quality of the targets tracks.

4.3. Targets appearances and disappearances management
The score function is a sequential probability ratio test. The test was first introduced

by Wald in [53] and its use in the targets tracking framework is clearly detailed in [30,
pages 327 − 334]. Since it is well known and clearly presented in textbooks, only the
outline of the test is given next. They are two hypothesis for each tracked target: a true
one, or a false one.
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The log-likelihood ratio Li(k) for each target i at time step k is updated sequentially
by:

Li(k) = Li(k − 1) + ∆Li(k) . (16)

Once the ratio is calculated, it is compared to two thresholds T1 and T2 which depend
on the false target confirmation and true target deletion probabilities. Then either a
target is confirmed, deleted, or the test continues until a decision is made.
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Example of multi-target appearances and disappearances management. This simu-
lated scenario is based on the model described in Section 6.1.1 Equation (24). Figures 4
and 5 show respectively the y direction evolutions of four targets and the evolutions of
their score functions. Difficulties managed in this simulation are summarized hereafter:

• Targets 3 and 4 appear respectively at time steps 15 and 45. Their respective
score functions are initialized at the same time (cf Figure 5).
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• Targets 2, 3 and 4 are not detected respectively at time steps 35, 55 and 90. Their
score functions adopt a decreasing evolution. It is possible to see that target 2 is
deleted at time step 100, when its score function reaches the deletion threshold
T1. In real life the missing detection can be caused among other things by a
remoteness targets or a possible occlusion.

• Target 3 reappeared at time step 69 after a missing detection period, its corre-
sponding score function increases again after a decreasing period.

Figure 6: Multi-target tracking algorithm architecture.

Figure 6 gives an overall view of the global architecture for multi-target tracking
which is used in this article. In this figure, ”IMM n Update ?”, for example, means
that target n is updated only if an observation is associated to it, else it is considered as
non-detected.

Next section deals with the last step of the global algorithm which is the classifica-
tion step.

5. Targets classification

A kinematic data based classification is considered. The problem is firstly studied
for a single target problem [6] where the provided solution is based on Bayesian model.
Using the credal formalism, the Bayesian solution was then enhanced in [14]. The idea
is based on the discretization of the state space in the IMMs (set of linear models),
this allows the characterization of the different behaviors of the different targets types.
It is considered that the IMM algorithms contain an exhaustive list of all the possible
evolutions models of the considered targets. The list of models is given by:

M = [m1,m2, ...,mr] , (17)

where r represents the total number of models.
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Based on an a priori knowledge, the different models are clustered so that each
group of models corresponds to a specific behavior. Finally, knowing the behavior(s)
of a given target, its class can be determined.

The set of possible behaviors can be defined by B = [b1, b2, ..., bnb], where nb is
the number of behaviors. The set of models belonging to behavior bi is defined by
Mbi ⊆ M, with i = 1, ..., nb. The number of models in Mbi is noted by rbi .

As an example, in pedestrian recognition, if the set M contains 5 constant velocity
models in an increasing order, the behavior of slowly walking mode can gather the 2
first models, which can correspond to the class of old persons for instance.

Bayesian and credal classification methodologies used in this article are now de-
scribed in the sequel. Note that for simplicity reasons, targets indices have been re-
moved.

5.1. Bayesian classification

5.1.1. Behaviors likelihoods calculation
At each time step k, each IMM provides the a posteriori probability µ j and the

likelihood Λ j concerning the r different models m j in M, where j = 1, . . . , r. Models
likelihoods for each given target evolution are calculated as follows:

Λ j =
exp[−d2

j/2]√
(2π)q|S j|

, (18)

where d2
j is a squared Euclidean distance between the jth model predicted measurement

ẑ j and its assigned real measurement, it is calculated as in Equation (15), q is the mea-
surement dimension and S j is the jth model expected measurement error covariance
matrix.

Once the probabilities and likelihoods of the models are obtained, the clustering
described above is adopted to determine the behaviors likelihoods lbi :

lbi =
∑

j:m j∈Mbi

µ′jΛ j , i = 1, ..., nb , (19)

with:
µ′j =

µ j∑
l:ml∈Mbi

µl
, l = 1, ..., rbi . (20)

Based on the already calculated behaviors likelihoods and an a priori probability dis-
tribution P(bi|Zk−1), the a posteriori probabilities P(bi|Zk) of the behaviors can be cal-
culated using Bayes inference rule given by Equation (9).

In order to calculate probabilities on the set C = {c1, c2, ..., cnc} of nc possible
classes, a projection of the behaviors probabilities on the classes space is realized.
This operation is referred to as probabilities conditioning.
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5.1.2. Probabilities conditioning
The probabilities conditioning is necessary in the case where the behaviors set B

and classes set C are not in one-to-one correspondence. As explained in [14], the
conditioning step can be performed using the following equation:

P(C) = M × P(B), (21)

where P(C) is an nc dimension vector containing the probabilities of C elements, P(B)
is an nb dimension vector containing the probabilities of B elements and M is an
nc × nb matrix expressing the behaviors and classes relations (conditional probabili-
ties P(ci|b j)).

For example, if the slowly walking mode behavior probability is equal to 1, by
knowing that a slowly walking person can correspond to an old person or a middle-
aged person, the conditional probabilities can be expressed by: P(old person|slowly
walking mode) = 1/2 and P(middle − aged person|slowly walking mode) = 1/2.
As it can be remarked, the conditioning step depends on the considered application,
therefore more details are provided in the proposed simulation examples in Section 6.

5.2. Classification within the TBM
As in the Bayesian classification, the credal classification uses the IMM models

probabilities µ j and likelihoods Λ j to calculate behaviors plausibilities computed as
behaviors likelihoods in the Bayesian case by:

Pl({bi}) =
∑

j:m j∈Mbi

µ′jΛ j i = 1, ..., nb , (22)

where likelihoods Λ j are calculated using Equation (18) and µ′j are normalized as in
Equation (20). Once the plausibility Pl({bi}) of each behavior (bi ∈ B) is obtained, mass
functions on B can be computed using the Generalized Bayesian Theorem [12, 26] with
Equations (10) and (11).

The Generalized Bayesian Theorem provides a mass function on the behaviors set
B. In order to obtain the targets classes, the behaviors mass function has to be projected
on the classes space C.

5.2.1. Belief function conditioning
The conditioning step is crucial in the new classification chain when the relation

between behaviors and classes are known. In the credal classification method, it is
more precise than in the Bayesian case. It transfers mass functions defined on B to
mass functions defined on C using the following equation:

mC = M̄ × mB, (23)

where M̄ is a matrix expressing the relations between behaviors and classes, it contains
masses m(A|D), with A ⊆ C and D ⊆ B. For example, if mB(slowly walking mode) = 1,
the corresponding conditioning for this simple example can be expressed as follows:
m({old person,middle − aged person}|slowly walking mode) = 1, because, even old
and middle-aged persons can walk slowly. This conditioning example illustrates a big
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difference between belief function and Bayesian models. With belief functions, it is
not required to estimate the respective a priori frequencies of the two classes old and
middle − aged when walking (1/2 with the Bayesian approach).

5.2.2. Decision making
The resulting cumulated mass function mk is supposed having all the available in-

formation. In order to make a decision about the tracked targets classes, the cumulated
mass function is simply transformed into a pignistic probability using Equation (8).

Bayesian and credal classification schemes are respectively illustrated in Figure 7
and in Figure 8.

Figure 7: Bayesian classification.
Figure 8: Credal classification.

6. Simulation examples

6.1. Multi-aircraft tracking and classification example
6.1.1. Description

In this simulation, targets dynamic models are chosen in the same manner as those
used in the works of Ristic et al. [6], Ristic and Smets [14], and Caron et al. [39] which
treat the case of a single target tracking and classification problem.

The state vector of all the targets is given by: x =
[
x ẋ y ẏ

]
. It represents the

position and the velocity in (x, y) directions. The state vector of each target evolves
according to the following equation:

xk = Fxk−1 + Buk + wk , (24)

where:

F =


1 ∆T 0 0
0 1 0 0
0 0 1 ∆T
0 0 0 1

 , B =


(∆T )2/2 0

∆T 0
0 (∆T )2/2
0 ∆T

 ,
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with ∆T the sampling time. The state noise covariance matrix is taken equal to 0.005(B×
B′), where B′ is matrix B transpose.

Targets measurements are taken according to Equation (13), with a measurement
noise variance equal to 0.2 and

H =

[
1 0 0 0
0 0 1 0

]
.

Vector u =
[
ax ay

]T
in Equation (24) represents a given acceleration mode. The

acceleration limitations for the a priori known targets classes are expressed as follows:

−Li ≤ {ax, ay} ≤ Li , (25)

where Li = 0g, 2g and 4g are respectively the acceleration limits of the classes c1, c2
and c3, with g = 9.81 m/s2 being the gravitational acceleration.

Figure 9: Acceleration modes over targets classes (standard example initially studied in [6] for a single target
classification).

The different acceleration modes, in this example, are initially defined in [6]. Their
distribution over possible classes are illustrated in Figure 9. Let us denote the set of
models in Figure 9 by M = {m1, ...,m13}. Based on a priori knowledge, the behaviors
models sets Mbi ⊆ M can be defined. In this example, three different behaviors are
defined:

• Behavior 1 (b1) corresponds to targets evolving with constant velocity only (e.g.
liners). The models set Mb1 = {m1} contains the only model corresponding to a
zero acceleration (u = [0 0]T ).
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• Behavior 2 (b2) concerns targets evolving with constant velocity and performing
medium maneuvers (e.g. bombers). The models set of behavior b2 is given by:
Mb2 = {m1, ...,m5}, it contains the models whose acceleration is limited to 2g.

• Behavior 3 (b3) is associated to targets evolving with constant velocity and per-
forming both medium and sharp maneuvers (e.g. fighters). Models set of be-
havior b3 is given by: Mb3 = {m1, ...,m13}, it contains all the possible evolution
models.

6.1.2. Classes conditioning
Tracked targets are classified according to the set of classes C = {c1, c2, c3} with:

• Class 1 (c1): liners class.

• Class 2 (c2): bombers class.

• Class 3 (c3): fighters class.

Beliefs/probabilities on the set of classes C can be obtained by converting the behaviors
beliefs/probabilities using the following relations:

• relation 1: a target with behavior 1 can correspond to a liner, a bomber or a
fighter. All of them can evolve with a constant velocity. This relation can be
written as: b1 = {c1, c2, c3}.

• Relation 2: a target with behavior 2 performs a medium maneuver, may cor-
respond to a bomber or a fighter. Liners are supposed unable to perform any
maneuver. This relation can be written as b2 = {c2, c3}.

• Relation 3: a target in behavior 3 performs a sharp maneuver, it can only be
a fighter, because liners and bombers can not perform sharp maneuvers. This
relation can be written as b3 = {c3}.

For the Bayesian classification task, the conditioning is performed using the Equa-
tion (21), according to the relations above. The corresponding conditioning matrix M
is given by:

M =

 1/3 0 0
1/3 1/2 0
1/3 1/2 1

 .
which corresponds to the following conditions:

• if P(b1) = 1 =⇒ P(c1|b1) = 1
3 , P(c2|b1) = 1

3 , P(c3|b1) = 1
3 .

• If P(b2) = 1 =⇒ P(c1|b2) = 0, P(c2|b2) = 1
2 , P(c3|b2) = 1

2 .

• If P(b3) = 1 =⇒ P(c1|b3) = 0, P(c2|b3) = 0, P(c3|b3) = 1.

For the credal classification, a different conditioning is made following Equation (23).
It transfers beliefs expressed on the set of behaviors B to the set of classes C such that:
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• mk({c1, c2, c3}|b1) = 1 (cf Relation 1)

• mk({c2, c3}|b2) = 1 (cf Relation 2)

• mk({c1, c2, c3}|{b1, b2}) = 1 (cf Relations 1 and 2)

• mk(c3|b3) = 1 (cf Relation 3)

• mk({c1, c2, c3}|{b1, b3}) = 1 (cf Relations 1 and 3)

• mk({c2, c3}|{b2, b3}) = 1 (cf Relations 2 and 3)

• mk({c1, c2, c3}|{b1, b2, b3}) = 1 (cf Relations 1, 2 and 3)

The corresponding complete conditioning matrix M̄ has a size (23 = 8)× (23 = 8), and
is given by:

M̄ =



1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 1 0 1 0 1 0 1


.

Belief conditioning, in this example is similar to those performed in [14] for single
target classification. This matrix enables to compute the mass functions on the classes
space C in order to perform the credal classifications.

6.1.3. Simulation results
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Figure 10: Targets measurements and estima-
tions on x and y positions.
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Figure 11: Targets measurements and estima-
tions on x positions over time.

In this scenario, 4 targets are involved and perform some maneuvers in (x, y) space.
Measurements and estimations are presented in Figures 10 and 11.
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For example, it can be noticed that targets 3 and 4 respectively appear at time steps
30 and 70.

Target 2 evolves firstly with a constant velocity in order to minimize fuel use and
then performs two maneuvers: a first medium acceleration in x direction during time
period 50−54, and a sharp deceleration during time period 70−75. Finally it disappears
at time step 100. The algorithm continues to predict its trajectory until the end of the
simulation at time step 120 because its score function has not yet reached the deletion
threshold.

According to this scenario, a full ignorance is expected on the true class of target 2
before its first medium maneuver (as it has only flown with a constant velocity), then
a complete doubt between the bomber and fighter classes is expected after the first
medium maneuver and before the sharp maneuver. Finally after this second maneuver,
only the fighter class remains possible.

The evolution of target 2 behaviors likelihoods and probabilities are, respectively,
presented in Figures 12 and 13. These results correspond to averages of 20 Monte
Carlo simulations.
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Figure 12: Behaviors likelihoods/plausibilities
of target 2.
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Figure 13: Behaviors probabilities of target 2.

Behaviors likelihoods/plausibilities are calculated using Equation (19) (or (22)). It
can be remarked that the likelihood/plausibility of behavior b1 drops to zero during the
two performed maneuvers and the likelihood/plausibility of behavior b2 drops to zero
during the sharp maneuver.

More significantly, it can be observed that during the period of time preceding the
first maneuver the likelihood/plausibility of behavior b1 is slightly more important than
the likelihoods/plausibilities of behaviors b2 and b3. As a consequence, it can be seen in
Figure 13 that during this same period of time before the first maneuver, the probability
corresponding to behavior b1 tends to grow while all behaviors are supposed to be
equally probable.

This deviation is due to the fact that as the behaviors are nested (b1 ⊂ b2 ⊂ b3)
and behavior b1 is composed of the least number of models (only m1), its likelihood
during the period of constant velocity is less influenced by non-concerned models un-
like behaviors b2 and b3. Formally it can be observed from Equation (19). The same

20



explanation can be adopted after the second maneuver where b2 is also unjustifiably ad-
vantaged over b3 because the number of models in behavior b2 is less than the number
of models in behavior b3.

Figure 13 is based on Bayes rule and does not concern the credal classification. The
conditioning operations described above are used to correct such an issue.
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Figure 14: Target 2 Bayesian classification (after
conditioning).
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Figure 15: Target 2 credal classification.

Using Bayesian conditioning on the behaviors probabilities in Figure 13, classes
probabilities are obtained as shown in Figure 14. It can be seen that, even if the target
is finally classified as a fighter (which is the truth), the Bayesian classifier fails in doubt
situations. On the other hand, the pignistic probabilities derived from the conditioned
classes mass function, given in Figure 15, shows that the credal classifier succeeds to
manage the imprecisions on behaviors and classification results are as expected.

It can also be mentioned that after time step 100, when target 2 is not detected,
the behaviors likelihoods are still constant because the target is updated with its pre-
dicted measurement. In the non-detection time, the classifiers (Bayesian and credal)
still believe that target 2 is a fighter.

Results presented in this section shows therefore that the credal model improves
the Bayesian classification results obtained in [6]. They also illustrate the strength of
the credal classification in a multi-target context by assuming that each target is at each
time updated with its corresponding measurement.

Influences on the classification of false assignments are presented in Section 6.2.

6.2. Tracking and classification of nearby targets
The problem of crossing and nearby targets is addressed in this section which aims

at studying the robustness of the tracking algorithm, especially the assignment step
ensured here by the generalized GNN algorithm.

6.2.1. Case of two targets evolving very closely
The extreme situation of two targets evolving very closely is considered. The goal

is to measure the rate of false assignments by varying sensor noise variance. In this
simulation, sensor noise varies from 0% to 200% of the distance between the two
targets. For each value of noise variance, an average value, of the false assignments
rate on 100 Monte Carlo simulations, is calculated. Results are presented in Figure 16.
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Figure 16: Rate of false assignments of GNN algorithm for two closely moving targets, with different sensor
noise values.

It can be observed that the rate of false assignments is relatively low even for an extreme
scenario of targets evolving closely and sensor noise exceeding the distance between
the targets.

The false assignment rate would be more important if the measurements were as-
signed to the targets estimates of time step k − 1. The capacity of the IMMs to predict
the expected measurements of the targets at time step k allows the reduction of the false
assignment rate.

6.2.2. Case of a fighter crossing an unknown target and evolving closely

In this section, a simple scenario is considered to illustrate what can be the impact of
false assignments on the proposed multi-target classification. A fighter and an unknown
aircraft evolve in (x, y) space according to the previously described models. Figure 17
illustrates the time evolution of the targets according to the y direction (the scenario is
the same in x direction). Targets pass each other and then evolve closely. The same
figure shows the false assignment happened at time step 38. The influence of this false
assignment on the two targets classifications is presented in Figure 18.

Note that in this example, during all the surveillance period, target 2 evolves only
with a constant velocity while target 1 starts its movement with a constant velocity and
makes two strong maneuvers, namely, acceleration and deceleration around time steps
23 and 35. Given this information, target 1 is expected to be classified as a fighter
(class c3) after its strong maneuvers, and a perfect doubt concerning the classification
of target 2 is expected.

Figure 18 gives the credal classification results of targets 1 and 2 respectively. As
expected, it can be seen that target 1 is correctly classified as a fighter after its first
strong maneuver and its classification is not influenced by the false assignment oc-
curred at time step 38 (a target classified in the third class can not be brought into
doubt). On the other hand, it can be seen that the false assignment at time step 38
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Figure 17: False assignment of the measurements of a fighter and an unknown aircraft.

has deteriorated the classification of the second target, each class having to be equally
probable. The false assignment misleads the classifier to a wrong classification by
advantaging the third and second classes over the first one.
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Figure 18: Credal classification results of two crossing targets: target 1 (on the left) and target 2 (on the
right).

This article is focused on the classification stage, so only a simple assignment algo-
rithm is used, i.e. the GNN algorithm. It could be replaced by any advanced assignment
algorithm like JPDA and MHT to overcome such problem of conflicting situations.
Some credal solutions [15, 17, 41, 54, 55, 56] can also be integrated to overcome the
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problem tackled in this section. This would enhance the results of the proposed classi-
fication strategy.

6.3. Pedestrians tracking and classification example

6.3.1. Description
This section proposes a classification problem concerning pedestrian activity recog-

nition. The structure of the dynamical models is close to the one used in the previous
aircraft tracking example. Indeed, this example is designed to be interesting, not for
the tracking issue, but for the classification stage.

However, compared to the previous examples based on aircraft targets, two impor-
tant differences are introduced. First, two classes of pedestrians are considered. They
contain a common pedestrian behavior and a distinct one (there is no relation of strict
inclusion as in the aircraft example). Secondly, pedestrians classes are not constant
over time which conducts to a different classification problem.

With slight adaptations, the credal classification algorithm is shown to provide cor-
rect results, demonstrating that the methodology presented in this article can be applied
to a wide variety of applications.

As in the former example, the state vector consists in the position and velocity on
x and y directions. The dynamical model is given by:

xk = A(sx, sy)xk−1 + wk , (26)

with:

A(sx, sy) =


1 sx∆T 0 0
0 1 0 0
0 0 1 sy∆T
0 0 0 1

 ,
where sx and sy represent the targets speeds (meter/second) according to x and y direc-
tions, respectively. According to different values of sx and sy, a set M = {m1,m2, ...,m7}

of 7 different models are designed and used by each target IMM to track its movement.
Pedestrians behaviors are defined according to the set of models M as follows:

• behavior 1 (b1) corresponds to the static mode. Behavior 1 models set is given by:
Mb1 = {m1}, where m1 corresponds to the matrix A(sx, sy) with, (sx, sy) = (0, 0).

• Behavior 2 (b2) corresponds to a walking mode. Behavior 2 models set is given
by: Mb2 = {m2,m3,m4}, it corresponds to the speed models (sx, sy) = {(2, 0), (0, 2), (2, 2)}.

• Behavior 3 (b3) corresponds to a running mode. Behavior 3 models set is given
by: Mb3 = {m5,m6,m7}, it corresponds to the speed models (sx, sy) = {(6, 2), (2, 6), (6, 6)}.

6.3.2. Classes conditioning
According to the behaviors described above, the problem consists in distinguishing

among the pedestrians, the ramblers and the sportsmen. This means to decide on the
set C = {c1, c2} which corresponds to C = {ramblers, sportsmen}. The conditioning
step in this example is done according to the following relations:
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• Relation 1: ramblers with static and walking behaviors (c1 = {b1, b2}).

• Relation 2: sportsmen with walking and running behaviors (c2 = {b2, b3}).

These relations show that the two classes are overlapping. Both ramblers and
sportsmen can adopt a walking mode. It is supposed that sportsmen do not stay static
and ramblers do not run.

In order to obtain a mass function on the classes space, a mass function on behaviors
space B is conditioned according to Equation (21), with a matrix M̄ expressing the
following conditions from Relations 1 and 2:

• mk(c1|b1) = 1

• mk({c1, c2}|b2) = 1

• mk({c1, c2}|{b1, b2}) = 1

• mk(c2|b3) = 1

• mk({c1, c2}|{b1, b3}) = 1

• mk({c1, c2}|{b2, b3}) = 1

• mk({c1, c2}|{b1, b2, b3}) = 1

The complete conditioning matrix M̄ transforms the belief mass on power set 23 of
three behaviors on a power set 22 of two classes, it is given as follows:

M̄ =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 1 0 1 1 1

 .
This conditioning provides a mass function on classes set C which is used to classify
pedestrians as explained in credal classification section.

6.3.3. Simulation results
An example including two pedestrians is provided. Pedestrians evolve in (x, y)

space. Pedestrians time evolutions according to y direction are exposed in Figure 19.
Evolutions in x direction are identical. Pedestrian 1 first walks, then runs and then
stops. It is then expected that after a doubt, Pedestrian 1 should be classified as a
sportsman and after that as a rambler.

As this is shown in Figure 20, the standard classification algorithm described in
Section 5.2 fails. In fact, it cannot even compute the pignistic probabilities after time
step 120. This is due to the fact that the class of pedestrian 1 has converged to a
sportsman, and suddenly at time step 120 the likelihoods are associated to another class,
and there is an absolute conflict between the two belief masses in Equation (11). The
credal classification algorithm exposed in Section 5.2 is not adapted for time varying
classes.
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Figure 19: Pedestrians trajectories.
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Figure 20: Activity of pedestrian 1 with the stan-
dard algorithm (without discounting).
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Figure 21: Activity of pedestrian 1 with the
twisted algorithm and discounting parameter λ =

0.3.

A simple solution to enable classification of such targets consists in adding a dis-
counting operation of the instantaneous belief mk(.|z) in Equation (11), which is ob-
tained from the likelihoods and the Generalized Bayesian Theorem, before applying
the conjunctive fusion rule. This way the conflict is lowered between old and new
beliefs, and there is an adaptation of the inferred classes. This discounting phase, per-
formed as described in Equation (7) with a value of λ = 0.3 (chosen small enough to
provide smooth and slow transitions) allows the classifier to follow the pedestrian class
even if it changes in time, as shown in Figure 21.

Let us also note that discounting the a priori belief mk−1, in Equation (11), instead
of mk(.|z) deduced from the GBT also enables to obtain a correct result, but only for
a given time. Indeed, the likelihoods are favored in that scheme. They are associated
to the doubt if the sportsman starts to walk again, depending on λ. Thus, sooner or
later, the classification of pedestrian 1 converges to a doubt again. In Figures 22 and
23, the previous simulation is continued so that a walking mode appears near time step
240. These figures show the differences in the classifications outputs based on the two
distinct discountings.
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Figure 22: Cumulative belief (mk−1) discounting,
with λ = 0.9.
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Figure 23: Instantaneous belief (mk) discount-
ing, with λ = 0.9.

More generally, a discounting of both belief functions could be introduced simulta-
neously, with optimization of the discounting factors λi, according to the dynamics of
the targets classes and other factors. The fusion rule could also be changed. But these
parameters would be very application dependent, and they cannot be studied further in
this article.

To conclude this section, the pedestrian example shows that the standard algorithm
proposed here can serve as a basis for more complex problems, since it can be adapted
easily to handle various situations while providing satisfactory results.

7. Conclusion

Multi-target classification is a fundamental problem, when it comes to classify mul-
tiple targets simultaneously. It is much more complex than the single target classifica-
tion problem, and even more when targets randomly appear and disappear for various
reasons.

This article presents a solution for multi-target classification with belief functions
exploiting the results provided by Interacting Multiple Model (IMM) algorithms in
charge of the tracking of the targets. Including the generalized Global Nearest Neigh-
bor (GNN) algorithm to solve assignment problems and a score function to handle tar-
gets appearances and disappearances, this full complete scheme for multi-target track-
ing and classification has been tested on two different kind of examples: one with
constant class targets and one with time varying class targets. It has been shown that
the full algorithm using belief functions outperforms standard Bayesian classifiers in
both situations.

In future work, tests of the credal classification may be undertaken by replacing any
elementary component of the decision chain by a more advanced one. For example,
the tracking task can be handled by PHD or particular filters and in the same way the
assignment task can be ensured by other solutions like JPDA, MHT and so on.

More deep investigations on time varying classes may be realized (for example,
the automatic computation of the discounting rate). Likewise, the assignment problem
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may be developed with belief functions.
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