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Associative classification has been shown to provide interesting results whenever of use to classify data. With the increasing complexity of new databases, retrieving valuable information and classifying incoming data is becoming a thriving and compelling issue. The evidential database is a new type of database that represents imprecision and uncertainty. In this respect, extracting pertinent information such as frequent patterns and association rules is of paramount importance task. In this work, we tackle the problem of pertinent information extraction from an evidential database. A new data mining approach, denoted EDMA, is introduced that extracts frequent patterns overcoming the limits of pioneering works of the literature. A new classifier based on evidential association rules is thus introduced. The obtained association rules, as well as their respective confidence values, are studied and weighted with respect to their relevance. The proposed methods are thoroughly experimented on several synthetic evidential databases and showed performance improvement.

Introduction

The extraction of hidden information from large databases held a great importance. Within the encountered masses of data in databases lie hidden knowledge nuggets of strategic importance. One of the newest answer for this problematic is the knowledge discovery domain. Indeed, the latter proposes a process that uses a variety of data analysis tools to discover patterns and relationships in data that may be used to make valid predictions. For that reason, the application fields of data mining are so various that it assimilates many fields, e.g., image mining [START_REF] Ordonez | Discovering association rules based on image content[END_REF], web mining [START_REF] Manjusha | Web mining framework for security in e-commerce[END_REF], medical domain [START_REF] Ordonez | Constraining and summarizing association rules in medical data[END_REF] and classification of multiple databases [START_REF] Wu | Database classification for multi-database mining[END_REF], to cite but a few. Chronologically, the Apriori algorithm [START_REF] Agrawal | Fast algorithm for mining association rules[END_REF] was the first one that aimed to extract frequent patterns and then derive interesting association rules thanks to a level-wise sweeping of the search space. Later, several improvements were brought giving rise to new and more efficient extraction algorithms such that [START_REF] Ben Yahia | Frequent closed itemset based algorithms: a thorough structural and analytical survey[END_REF][START_REF] Pasquier | Efficient mining of association rules using closed itemset lattices[END_REF][START_REF] Stumme | Computing iceberg concept lattices with titanic[END_REF]. Provided algorithms were applied on precise and certain data constituting boolean databases. Nevertheless, in real world, gathering such types of data is hard achievable since almost all acquired data might suffer from imperfection. Therefore, uncertain data mining has become a hot topic in data mining community [START_REF] Aggarwal | Managing and Mining Uncertain Data[END_REF][START_REF] Aggarwal | Frequent pattern mining with uncertain data[END_REF][START_REF] Tong | Mining frequent itemsets over uncertain databases[END_REF][START_REF] Yin | Data mining in incomplete database[END_REF]. Uncertainty is generally represented with probabilities. Recently, this discipline has flourished with new mining algorithms such as UApriori [START_REF] Chui | Mining frequent itemsets from uncertain data[END_REF], UFP-Growth [START_REF] Leung | A tree-based approach for frequent pattern mining from uncertain data[END_REF] and UH-Mine [START_REF] Aggarwal | Frequent pattern mining with uncertain data[END_REF]. However, the uncertainty is not the only origin of imperfection. In [START_REF] Dubois | Possibility Theory: An Approach to Computerized Processing of Uncertainty[END_REF], Dubois and Prade highlighted two possible origins for imperfection that are imprecision and uncertainty. In [START_REF] Lee | An extended relational database model for uncertain and imprecise information[END_REF], Lee detailed both sides of imperfection that could manifest in data and proposed a new database handling imperfection. This database uses the belief function theory, also called the evidence theory, as a formalism to represent information [START_REF] Lee | Imprecise and uncertain information in databases: an evidential approach[END_REF]. This data structure was denoted as the evidential database. In [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF] an imprecise and uncertain answer tuples of a query with evidence theory is presented. This permits the partial values to be overlapping sets, rather than disjoint sets forming a partition. Correspondingly, mass function values are attached to the partial values in order to represent degrees of uncertainty in the attribute values. With the growing interest for those databases, studying them from a data mining view has never been more challenging. The redefinition of data mining tools gave rise to a particular interest as it was also the case for fuzzy data mining [START_REF] Hong | Mining association rules from quantitative data[END_REF]. In this context, Hewawasam et al. [START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF] proposed a methodology to assess patterns' support and model them through a tree-based representation. Interestingly enough, the authors [START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF] paid attention to associative classification where the authors introduced association rules. The pertinence of association rule is assessed through a conditional belief. In this work, we tackle the problem of the extraction of hidden and pertinent information from an evidential database. To do so, we shed the light on evidential support measure limits and we introduce a new alternative that is denoted precise support. The latter not only brings coherence with binary and probabilistic support measures but also flags out interesting running time. In addition, we address the problem of association rules' extraction. A new confidence measure is provided. The gathered rules are used for classification purposes. An Evidential Data Mining Apriori algorithm (EDMA) is then introduced for the information extraction. The retrieved association rules are then used for classification with a rule fusion system thanks to the Evidential Associative Classifier algorithm (EvAC). This paper is organized as follows: Section 2 recalls the main concepts of belief function theory and the evidential database. The pioneering state-of-the-art works on confidence measure are scrutinized and we highlight their limits. In Section 3, a ramification for their method that improves the performance is presented. In addition, we introduce a new method for evidential itemsets' support computing providing more precision in its estimation. In Section 4, a new method for association rule generation is detailed. The provided rules are screen out and combined through a fusion system with the EvAC algorithm. The performance of this algorithm is studied in Section 6. Finally, we conclude and we sketch issues of future work.

Evidential Database: fundamental concepts

In this section, we briefly review evidence theory, also known as belief functions theory or Dempster-Shafer theory, and extend it to introduce the basic concepts of evidential databases [START_REF] Lee | Imprecise and uncertain information in databases: an evidential approach[END_REF].

Belief Function Theory

The belief function theory presents a large framework for imperfection handling. As highlighted by [START_REF] Dubois | Possibility Theory: An Approach to Computerized Processing of Uncertainty[END_REF], the belief function theory not only models imprecision but also uncertainty. Several interpretations for this theory exist such that [START_REF] Dempster | Upper and lower probabilities induced by multivalued mapping[END_REF][START_REF] Gärdenfors | Probabilistic reasoning and evidentiary value[END_REF][START_REF] Smets | The Transferable Belief Model[END_REF]. In our work, we rely on the Transferable Belief Model (TBM) interpretation that was originally introduced by Smets in [START_REF] Smets | The Transferable Belief Model[END_REF]. The TBM model is a non-probabilistic interpretation of the belief function theory that represents quantified beliefs following two distinct levels: (i ) a credal level where beliefs are entertained and quantified by belief functions; (ii ) a pignistic level where beliefs can be used to make decisions and are quantified by probability functions. The evidence theory is based on several fundamentals such as the Basic Belief Assignment (BBA). A BBA m is the mapping from elements of the power set 2 Θ onto [0, 1], i.e.,

m : 2 Θ -→ [0, 1]
where Θ is the frame of discernment. It is the set of possible answers for a treated problem and is composed of N exhaustive and exclusive hypotheses:

Θ = {H 1 , H 2 , ..., H N }.
A BBA m also fulfills some constraints such that:

   A⊆Θ m(A) = 1 m(∅) ≥ 0. (1)
Each subset X of 2 Θ fulfilling m(X) > 0 is called a focal element. A categorical BBA is a BBA with only one focal element A and is defined as follows:

m(A) = 1 ∀A ⊂ Θ and m(B) = 0 ∀B ⊆ Θ, B = A. (2) 
Constraining m(∅) = 0 is the normalized form of a BBA and this corresponds to a closed-world assumption [START_REF] Smets | Belief functions[END_REF], while allowing m(∅) ≥ 0 corresponds to an open world assumption [START_REF] Smets | The Transferable Belief Model[END_REF]. From a BBA, other functions are commonly defined from 2 Θ into [0, 1]: the first one, Bel(A), called as the belief function, is interpreted as the degree of justified support given to the proposition A by the available evidence and is defined as:

Bel(A) = ∅ =B⊆A m(B). (3) 
On the other hand, P l(.) is the plausibility function and is defined as follows:

P l(A) = B∩A =∅ m(B). (4) 
The plausibility denotes the maximum potential support that could be given to a hypothesis, if further evidence becomes available. One of the asset of belief function theory is information fusion. From a multisource context, a combination operator can be applied in order to extract the veracious proposition. In the case of two sources S 1 and S 2 , both defined in Θ, we define the conjunctive combination rule that was initially introduced in Smets' work [START_REF] Smets | The Transferable Belief Model[END_REF]:

m ∩ (A) = B∩C=A m 1 (B) × m 2 (C) ∀A ⊆ Θ. (5) 
The normalized version of conjunctive combination rule, proposed by Dempster [START_REF] Dempster | Upper and lower probabilities induced by multivalued mapping[END_REF], integrates a conflict management approach that redistributes the generated conflictual mass. For two sources S 1 and S 2 having respectively m 1 and m 2 as BBA, the Dempster's rule of combination, aka orthogonal sum, is defined as follows:

m ⊕ (A) = 1 1 -m ∩ (∅) B∩C=A m 1 (B)×m 2 (C) = 1 1 -m ∩ (∅) m ∩ (A) ∀A ⊆ Θ, A = ∅ (6) 
where m ∩ (∅) is defined by:

m ∩ (∅) = B∩C=∅ m 1 (B) × m 2 (C). (7) 
m ∩ (∅) represents the conflict mass between m 1 and m 2 .

Generally in an information fusion problem, all considered sources do not share the same domain (frame of discernment). This constraint prevents from using usual combination tools [START_REF] Dempster | Upper and lower probabilities induced by multivalued mapping[END_REF]. Let us consider two belief functions m 1 and m 2 defined respectively in Θ 1 and Θ 2 , the conjunctive combination rule can be extended to this special case. A unique and larger frame Θ = Θ 1 × Θ 2 is used so that the combination can be expressed as follows:

m Θ 1×2 = m Θ1↑Θ 1 ∩ m Θ2↑Θ 2 ( 8 
)
where ↑ is the vacuous extension that can be written as follows:

m Θ1↑Θ (A) = m Θ1 (B) if A = B × Θ 2 0 otherwise. ( 9 
)
The result of Equation ( 8) can be retrieved following the Cartesian product as follows:

m Θ 1×2 (A × B) = m Θ1 1 (A) × m Θ2 2 (B). (10) 
After source combination which integrates the credal stage of the TBM model, taking decision is necessary. In [START_REF] Smets | The Transferable Belief Model and other interpretations of Dempster-Shafer's Model[END_REF], the pignistic probability is introduced allowing probabilistic decision from BBA following this formula:

BetP (H n ) = A⊆Θ |H n ∩ A| |A| (1 -m(∅)) × m(A) ∀H n ∈ Θ (11) 
where |•| is the cardinality operator. In the following subsection, we present the basic concepts of the evidential databases that rely on the evidence theory to handle uncertainty.

Evidence database concept

An evidential database stores data that could be either perfect or imperfect [START_REF] Lee | An extended relational database model for uncertain and imprecise information[END_REF]. Data's imperfection in such database is expressed through the belief function theory. An evidential database, denoted by EDB, with n columns and d lines where each column i (1

≤ i ≤ n) has a domain Θ i of discrete values.
m ij the cell, of line j and column i, contains a normalized BBA as follows:

m ij : 2 Θi → [0, 1] with    m ij (∅) ≥ 0 A⊆Θi m ij (A) = 1. ( 12 
)
Unlike binary, probabilistic or fuzzy database, the columns of the evidential database represent attributes rather than items. Indeed, columns are assimilated to questions. Each line is an information source. The BBA m ij could be seen as the answer of an information source i to a question j. Such kind of modelling makes the evidential database a generalisation of several types of databases [START_REF] Samet | Evidential database: a new generalization of databases?[END_REF]. For example, a fuzzy database can be obtained by constructing a consonant BBAs within its cells.

Table 1: Example of an evidential database EDB

Transaction Attribute A Attribute B T 1 m 11 (A 1 ) = 0.7 m 12 (B 1 ) = 0.4 m 11 (Θ A ) = 0.3 m 12 (B 2 ) = 0.2 m 12 (Θ B ) = 0.4 T 2 m 21 (A 2 ) = 0.3 m 22 (B 1 ) = 1 m 21 (Θ A ) = 0.7
In an evidential database, as shown in Table 1, an item corresponds to a focal element. An itemset (i.e., pattern) corresponds to a conjunction of focal elements having different domains. Two different itemsets can be related via the inclusion or intersection operator. Indeed, the inclusion operator [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF][START_REF] Samet | Mining frequent itemsets in evidential database[END_REF] for itemsets is defined as follows, let X and Y are two itemsets:

X ⊆ Y ⇐⇒ ∀x i ∈ X, x i ⊆ y j .
where x i and y j are the i th and the j th elements of respectively X and Y . For the same itemsets X and Y , the intersection operator [START_REF] Samet | Mining frequent itemsets in evidential database[END_REF] is defined as follows:

X ∩ Y = Z ⇐⇒ ∀z i ∈ Z, z i ⊆ x j and z i ⊆ y k .
An association rule [START_REF] Samet | Classification with evidential associative rules[END_REF] R is a causal relationship between two itemsets that can be written as follows R :

X → Y fulfilling X ∩ Y = ∅. Example 1 In Table 1, A 1 is an item and Θ A × B 1 is an itemset such that A 1 ⊂ Θ A × B 1 and A 1 ∩ Θ A × B 1 = A 1 . In Table 1, A 1 → B 1 is considered as an association rule.
In the following, we present how to extract hidden information within evidential databases. Evidential data mining is detailed through the definition of literature support and confidence measures.

Evidential Data mining

Unfortunately, only a few studies were carried out on evidential data mining. In [START_REF] Hewawasam | Rule mining and classification in the presence of feature level and class label ambiguities[END_REF], Hewawasam et al. proposed a methodology to estimate itemsets' support and model them in a tree-based representation: Belief Itemset Tree (BIT). The BIT representation brings easiness and rapidity for the estimation of the association rule's confidence. Their proposed support measure relies on the following inclusion operator:

X ⊆ Y ⇐⇒ ∀x i ∈ X, x i ∈ Y.
In [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF], the authors introduced a new approach for itemset support computing and applied it on a Frequent Itemset Maintenance (FIM) problem. All approaches [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF][START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF] were based on Cartesian product between BBAs. In this context, we study the support of an itemset X = i∈ [1...n] x i such that x i is an item belonging to the frame of discernment Θ i . Since, items do not share the same frame of discernment, fusion rules cannot be applied. The belief support introduced by [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF] is computed by the following equation:

m j (X) = xi∈X m ij (x i ) (13) 
where m j (X) is the Cartesian product of all BBA in the transaction T j . Thus, the BBA of the itemset X expressed in the EDB database becomes:

m EDB (X) = 1 d d j=1 m j (X). (14) 
Then, the support of X in the EDB database is deduced as follows:

Support Bel EDB (X) = Bel EDB (X). ( 15 
)
Remark 1 An itemset or a pattern is said to be frequent if and only if its allocated support is greater than or equal to a min-threshold fixed by the user otherwise it is called infrequent.

The Cartesian product-based support, as presented above, fulfils several mathematical properties such that the anti-monotony property, i.e., the supersets of an infrequent itemset are also infrequent. The opposite is true, all subsets of a frequent itemset are also frequent. Owe to this property, the construction of an Apriori-based algorithm becomes straightforward [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF].

The aim of frequent itemsets is to find all interesting association rules. Originally, the retrieval of frequent itemsets and association rules were carried out on binary databases [START_REF] Agrawal | Fast algorithm for mining association rules[END_REF]. The proposed approach considers every itemset of size k from which it generates 2 k -2 potential interesting rules. The set of generated rules are then filtrated following their confidence measure. The confidence denotes the relevance of a rule and only valid1 rules are retained. For a rule R : R a → R c , such that R c and R a are respectively the conclusion and the antecedent (premise) part of the rule R, the confidence is expressed as follows:

Conf idence(R) = P (R c |R a ) = d i=1 P Ti (R a ∩ R c ) d i=1 P Ti (R a ) . ( 16 
)
The confidence is seen as an apriori probability (i.e., the probability of having R c knowing that R a is true). P Ti (X) indicates the probability of X appearance within the transaction T i . In addition, even in fuzzy data mining association rule's confidence is built upon conditional fuzzy measures [START_REF] Hong | A fuzzy AprioriTid mining algorithm with reduced computational time[END_REF]. In this respect, Hewawasam et al. [START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF] applied the conditional reasoning in evidential data mining. The confidence is computed with the basics of conditional belief. Thus, the confidence of a rule R in the set of all rules R, i.e., R ∈ R, is computed as follows:

Conf idence(R) = Bel(R c |R a ) (17) 
where Bel(.|.) is the conditional belief. Despite the existence of several interpretations and formulations for conditional belief, Hewawasam et al. [START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF] defined the confidence following Fagin et al. [START_REF] Fagin | A new approach to updating beliefs[END_REF] interpretation such that:

Bel(R c |R a ) = Bel(R a ∩ R c ) Bel(R a ∩ R c ) + P l(R a ∩ Rc ) . (18) 
In [START_REF] Fagin | A new approach to updating beliefs[END_REF], this conditional belief interpretation is considered more consistent than the original work of Dempster [START_REF] Dempster | Upper and lower probabilities induced by multivalued mapping[END_REF] which is written as follows:

Bel(R c |R a ) = Bel(R c ∪ R a ) -Bel(R a ) 1 -Bel(R a ) . ( 19 
)
Example 2 Through the following example, we highlight the inadequacy of the conditional belief use. Let us consider the Transaction 1, of Table 1, from which we try to compute the confidence of A 2 → B 1 (i.e., Bel(B 1 |A 2 )). The conditional belief, introduced in [START_REF] Dempster | Upper and lower probabilities induced by multivalued mapping[END_REF] , is equal to:

Bel(B 1 |A 2 ) = Bel(B 1 ∪ A 2 ) -Bel(A 2 ) 1 -Bel(A 2 ) = Bel(B 1 ) 1 = 0.4
The belief of B 1 , knowing that A 2 is true, is equal to that of Bel(B 1 ) due to the independence between A 2 and B 1 . In addition, both hypothesis might be correlated so that the event B 1 does not occur knowing already the happening of A 2 .

In the following section, we study existing support measures within evidential databases. First, a simplification of the belief-based support is introduced. Then, we highlight the limits of this approach and we introduce a new measure called the precise support.

Evidential precise support

In the following, the state-of-the-art of evidential support measures is scrutinized. A simplification for the existing approach is discussed. The simplification brings easiness and computation rapidity. A new alternative is proposed that brings more precision comparatively to existing works. The introduced support estimation is denoted in the sequel precise support.

Support ramification

The support definition proposed by [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF][START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF] relies on a Cartesian product. Despite being adequate in case of combining BBAs with different frames of discernment, its computational complexity is exponential. Indeed, for an evidential database, with d transactions, we have k attributes having each n focal elements, the arithmetic complexity of a Cartesian product is:

C = d × n k = O(n k ).
In the following, we provide a new formulation for the belief-based support.

Proposition 1 Let us consider an evidential database EDB and the itemset

X = x 1 × • • • × x n constituted by the product of items (focal elements) x i (1 ≤ i ≤ n) of the exclusive frames of discernment Θ i .
For a transaction T j , we have:

Support Bel Tj (X) = i∈[1...n] Support Bel Tj (x i ) = i∈[1...n] Bel(x i ) (20) Support Bel EDB (X) = 1 d d j=1 Support Bel Tj (X) (21) 
Proof Let us consider two items and focal elements x 1 and x 2 belonging respectively to m 1 and m 2 BBA such that m = m 1 × m 2 .

Bel(

xi∈Θi,1≤i≤n

x i ) = a⊆x1ו••×xn m 1ו••×n (a) Bel( xi∈Θi,1≤i≤n x i ) = y1⊆x1,...,yn⊆xn m 1 (y 1 ) × • • • × m n (y n ) Bel( xi∈Θi,1≤i≤n x i ) = y1⊆x1 m 1 (y 1 ) × • • • × yn⊆xn m n (y n ) Bel( xi∈Θi,1≤i≤n x i ) = Bel(x 1 ) × • • • × Bel(x n ) = i∈[1...n] Bel(x i )
Owe to this new formulation, the initial theoretical complexity is lowered to about C = d × |X|O [START_REF] Aggarwal | Managing and Mining Uncertain Data[END_REF].

Example 3 Let us consider the evidential database given in Table 1, the support of A 1 × B 1 is computed by using Equations ( 14) and ( 15) as follows:

           m EDB (A 1 × B 1 ) = m11(A1)•m21(B1)+m12(A1)•m22(B1) 2 = 0.14 m EDB (A 1 × B 2 ) = m11(A1)•m21(B2)+m12(A1)•m22(B2) 2 = 0.07 m EDB (A 1 × Θ B ) = m11(A1)•m21(Θ B )+m12(A1)•m22(Θ B ) 2 = 0.14 . . . Thus, the support of A 1 × B 1 becomes: Support Bel EDB (A 1 × B 1 ) = Bel(A 1 × B 1 ) = 0.14
The same result can be found by:

Support Bel EDB (A 1 ×B 1 ) = Bel T1 (A 1 ) × Bel T1 (B 1 ) + Bel T2 (A 1 ) × Bel T2 (B 1 ) 2 = 0.14
The main concern of the literature approaches for the support computation rely on the belief function. As highlighted by [START_REF] Dempster | Upper and lower probabilities induced by multivalued mapping[END_REF], the plausibility is an upper bound whereas the belief is lower one for each hypothesis happening (occurrence probability). In fact, Bel(.) assesses the belief by referring only to a small subset of the superset. The support of X is evaluated by considering only subsets included in it. In the following, we introduce the precise support definition that gets rid of this limitation.

Precise support

Let us consider an evidential database EDB and the itemset X = x 1 × • • • × x n constituted by the product of items (focal elements) x i (1 ≤ i ≤ n) of the exclusive frame of discernment Θ i . The degree of presence of an item x i in a transaction T j (BBA) can be measured as follows:

P r : 2 Θ → [0, 1] ( 22 
) P r(x i ) = x⊆Θi |x i ∩ x| |x| × m(x) ∀x i ∈ 2 Θi . ( 23 
)
As illustrated above, the P r(.) is a measure that computes a probability in a single BBA. The P r is also assimilated to the pignistic probability in case of

x i ∈ Θ i . The evidential support of an itemset X = i∈[1...n]
x i is then computed as follows:

Support P r Tj (X) = Xi∈Θi,i∈[1...n] P r(X i ) (24) Support P r EDB (X) = 1 d d j=1 Support P r Tj (X). ( 25 
)
Interestingly enough, the precise support definition presents a larger element inclusion than those given in respectively [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF][START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF]. The proposed definition allows us to overcome the limits of the belief-based support previously mentioned. Indeed, P r(.) function does not only consider all subsets of X but also those having intersection with it. The probabilistic formulation of the support sustains previous data mining support works such that [START_REF] Agrawal | Fast algorithm for mining association rules[END_REF] pioneering work on binary databases in case of certain BBAs 2 . Even fuzzy support definition [START_REF] Hong | A fuzzy AprioriTid mining algorithm with reduced computational time[END_REF] is consistent with the precise support in case of consonant BBAs 3 . Moreover, the formulation of the support provides an interesting performance since we avoid the pitfall of the computation of the Cartesian product.

Property 1 The precise support estimation function fulfils the anti-monotony property, i.e.,

Support P r EDB (A) ≤ Support P r EDB (B) ∀A ⊆ B. ( 26 
)
Proof Assuming an evidential database EDB, let us consider two evidential itemsets A and A × X where A ⊂ A × X such that ∀x ∈ A, x ∈ A × X. We aim at proving this relation Support P r EDB (A × X) ≤ Support P r EDB (A):

Support P r Tj (A × X) = P r(A) × P r(X) Support P r Tj (A × X) ≤ Support P r Tj (A) Since P r(X) ∈ [0, 1] then Support P r EDB (A × X) ≤ Support P r EDB (A).
The definition of the proposed support is computed with transactional precise probability (i.e., Support P r Tj (.)). To avoid the computation of the support of a single item several times, we store all item's support in a table, which is called Precise Table (

PT).

Example 4 Table 2 shows the precise table constructed from the evidential database EDB (Table 1). Each item in EDB rows has a Pr value.

The extraction of frequent itemsets is detailed in Algorithm 1. This Algorithm is denoted EDMA that stands for Evidential Data Mining Apriori. It generates frequent evidential itemsets in a level-wise manner as did the Apriori [START_REF] Agrawal | Fast algorithm for mining association rules[END_REF]. The use of a Apriori-based algorithm is justified for several reasons. In 2 A BBA with only one focal element H and H ∈ Θ is said to be certain and is denoted m(H) = 1.

3 A BBA is said consonant if focal elements are nested. 

T 1 P r Θ A (A 1 ) = 0.85 P r Θ A (A 2 ) = 0.15 P r Θ A (Θ A ) = 1.00 P r Θ B (B 1 ) = 0.60 P r Θ B (B 2 ) = 0.40 P r Θ B (Θ B ) = 1.00 T 2 P r Θ A (A 1 ) = 0.35 P r Θ A (A 2 ) = 0.65 P r Θ A (Θ A ) = 1.00 P r Θ B (B 1 ) = 1.00 P r Θ B (B 2 ) = 0.00 P r Θ B (Θ B ) = 1.00
fact, UApriori which is the uncertain probabilistic version of Apriori, actually performs rather well among the other tree-based algorithms and is usually faster one in dense uncertain dataset [START_REF] Tong | Mining frequent itemsets over uncertain databases[END_REF]. The evidential databases are naturally dense. Even though, more efficient algorithms were so far introduced, Apriori is of extensive use owe the efficiency of its pruning of candidates, that relies on the anti-monotony property [START_REF] Aggarwal | Managing and Mining Uncertain Data[END_REF]. Indeed, the majority of approaches in imperfect data mining uses Apriori [START_REF] Aggarwal | Managing and Mining Uncertain Data[END_REF], undoubtedly due to the difficulty to replicate binary simplification approaches. Finally, as a result for the lack of research in this thematic, evidential data mining works rely on a level-wise approach for frequent patterns generation [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF][START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF]. As the UApriori, EDMA includes a trimming part [START_REF] Chui | Mining frequent itemsets from uncertain data[END_REF]. The basic idea behind it is to trim away items with low existential presence from the evidential database and then to mine the trimmed structure. As a result, a structure called T rim T able is constructed that stores either the precise values (i.e., Pr(.)) or the belief function (i.e., Bel(.)) of interesting items. The trimming module has two benefits. First, it allows removing items with low existential presence within the database and therefore a low probability of being either frequent or generates ones. More importantly, it allows to remove uninteresting items. For example, considering a medical predictive model, some items should be removed before any mining process. Indeed, predicting a patient disease is a critical application. Therefore, items as disjunction focal elements or total ignorance items (e.g Θ i ) should be removed.

The extraction of the frequent patterns relies on two main functions. Support estimation(), in line 11, computes the precise support of an itemset taken as an input. F requent itemset() (line 24) determines whether an itemset is frequent based on the minsup and the precise support values. Furthermore, support computing within evidential databases has a cost. Indeed, for an evidential database of n attributes and d rows, an approximative complexity of support estimation can be expressed as follows:

C = d × (C BBAtreatment × n)
where C BBAtreatment indicates the complexity of a BBA treatment (i.e., pignistic probability computing, belief function computing, etc). For the precise support, the computational complexity is higher than the belief one. For an attribute of l focal elements, the belief-based support has O(l 2 ) as complexity since for each focal element the inclusion is studied with other elements. This complexity drops to O(l×log(l)) with some heuristics. However, for the precise support, the computational complexity is 2 × O(l 2 ). 

Associative classification in evidential databases

In the following, we introduce a new association rules-based classifier. This classifier is based on valid association rules found by the use of the newly defined support measure.

Precise confidence measure

As highlighted in subsection 2.3, measuring the confidence of an evidential association rule with a conditional belief function has many shortcomings. In the following, we introduce a new evidential measure of confidence for association rules that relies on probabilistic fundamentals. This measure is denoted as the precise measure and is equal to:

Conf idence(R) = d j=1 P r Tj (R a ) × P r Tj (R c ) d j=1 P r Tj (R a ) ( 27 
)
where d is the number of transactions in the evidential database. In addition, the proposed metric sustains previous confidence measure such that introduced in [START_REF] Agrawal | Fast algorithm for mining association rules[END_REF].

Example 5 Let us consider the example of the evidential database given in Table 1. The confidence of the association rule R 1 : A 1 → B 1 is computed as follows:

Conf idence(R 1 ) = P r T1 (A 1 ) × P r T1 (B 1 ) + P r T2 (A 1 ) × P r T2 (B 1 ) P r T1 (A 1 ) + P r T2 (A 1 ) = 0.75

The generated rules, with their respective values of confidence, could be useful in many applications. In the following, we tackle the classification problem case, in which an associative classifier is introduced. In this section, we study how to select valid association rules for classification purposes. Two types of rule are introduced: the generic and the precise association rules.

Generic and precise rules

To perform a classification with association rules, we retain only those concluding on a class label. Indeed, from a rule such that i∈[1,I],I<n

X i → j∈[1,J],J<n Y j ,
we only keep those having in the conclusion part, a class hypothesis (i.e., Y j ∈ Θ C where Θ C is the frame of discernment).

Example 6 Considering the following set of the association rules

S = {A 1 → C 1 ; A 1 , B 2 → C 1 ; A 1 → B 1 } and the class frame of discernment Θ C = {C 1 , C 2 }.
After the classification rule reduction step, the set S is reduced to

S = {A 1 → C 1 ; A 1 , B 2 → C 1 }.
Even with the classification rule reduction, their number is still overwhelming requiring further filtrating strategies. Two main ideas can be distinguished. A first one consists in retaining only the generic rules (i.e., the most generic in terms of premise). The second one is the opposite. It relies on pruning all rules and keeping those having the largest premise (those types of rule are denoted precise rules). In the following, we explicitly define those two heuristics for rule filtration.

The generic rule reduction approach consists in retaining only classification rules with a minimal premise. These rules can be viewed as a generalization for other redundant ones. Indeed, a rule R 1 is considered as a redundant one if and only if it does not bring any additional information having at hand a rule R 2 . The retained rules from the reduction process constitute the set of generic rules extracted from the set of frequent itemsets FI.

Another heuristic consists in retaining only the rule of the largest premise. Those kind of rules are considered as the most precise and the brought information is considered as reliable.

Example 7 Considering the previous set of the association rules

S = {A 1 → C 1 ; A 1 , B 2 → C 1 ; A 1 → B 1 }. After redundant rule reduction, the set S be- comes equal to S = {A 1 → C 1 ; A 1 → B 1 }. The rule A 1 , B 2 → C 1 is not re- tained since

it brings no further information having already the rule

A 1 → C 1 .
The set S of precise rules is, then, equal to S = {A 1 , B 2 → C 1 }.

In the next subsection, we describe our approach of classification based on association rules within evidential databases.

Classification with association rules

Let us suppose the existence of an instance X, to classify, represented by a set of BBAs belonging to the evidential database EDB such that:

X = {m i |m i ∈ X, x j i ∈ Θ i } (28) 
where x j i is a focal element of the BBA m i . Each retained association rule, from the rule set R, is considered as a potential piece of knowledge that could be helpful for the class retrieval of X. In order to select rules that may lead to the adequate classification, we look for rules having a non null intersection with X such that:

RI = {R ∈ R, ∃x j i ∈ Θ i , x j i ∈ R a }. (29) 
Each rule found in the set RI constitutes a piece of information concerning the membership of the instance X. Since several rules can be found and fulfilling the intersection condition, it is of importance to benefit from them all. In our work, we assume that all information is valuable and should be handled within the information fusion problem. From the set RI, we extract the set of generic or precise classification rules. Indeed, each rule from the computed set R l ⊂ RI, l ∈ [1 . . . L] and L < |RI|, that brings a new information (different R a ) is transformed into a BBA with respect to the frame of discernment Θ C (i.e.,frame of discernment of R c ):

m Θ C R l ({R c }) = Conf idence(R l ) m Θ C R l (Θ C ) = 1 -Conf idence(R l ) (30) 
Table 3: The evidential transaction X under classification

Attribute A Attribute B m 1 (A 1 ) = 0.6 m 2 (B 1 ) = 0.5 X m 1 (A 2 ) = 0.2 m 2 (B 2 ) = 0.1 m 1 (Θ A ) = 0.2 m 2 (Θ B ) = 0.4
where R c is the conclusion part of the rule R l . The L constructed BBAs are then fused following the Dempster's rule of combination [START_REF] Dempster | Upper and lower probabilities induced by multivalued mapping[END_REF] as follows:

m ⊕ = ⊕ L l=1 m Θ C R l . (31) 
Equation ( 31) combines all association rules with the same consideration. Indeed, each secant rule is considered and summed with the other ones having even more intersection with X. From this point, it is interesting to make distinction between rules during the combination. To do so, it is important to distinguish between the reliability of a rule and the confidence found through the use of the function Conf idence(.). The confidence expresses the pertinence of a rule in the studied database. However, the reliability of a rule describes the weight accorded to a rule during the fusion process.

In order to compute the reliability of a rule, enumerating all possible criteria for rule distinction held a great importance. In the following, we highlight the importance of weighting up the classification association rules in use (i.e., RI). The rule's selection is an important step in our classification process. However, it does not guarantee the presence of only quality rules. Indeed, since the set RI of classification rules relies on secant rules (i.e., rules having an intersection with the instance under classification), several non pertinent rules could be retained for fusion. Besides that fact, the performance of the orthogonal sum (Equation ( 31)) could be deteriorated by the number of retained rules (i.e., rule's BBA in Equation ( 30)) as well as by its combination property. The property 2 shows both properties that must be used for weighting the association rules.

Property 2 Let us assume a set of association rules RI having a non-null intersection with X, two properties must be fulfilled:

-P 1 : A significant weight must be assigned to the highest precise rule with regard to the instance X under classification, i.e., R 1a ⊂ R 2a . -P 2 : The mass assigned to each focal element within the instance X should be a criteria for rule weighting

The following example sheds light on the encountered problem in rules' aggregation.

Example 8 Let us consider the evidential transaction X under classification shown in Table 3.

Let RI = {R 1 : A 1 , B 1 → C 1 ; R 2 : Θ A , B 1 → C 1 ; R 3 : A 1 → C 1 ; R 4 : B 2 → C 2 }
be a set of classification association rules. R 1 would get a higher weight than R 2 with respect to the property P 1 . R 4 is not P 2 -pertinent since m 2 (B 2 ) is too low.

In the following, we introduce a new approach for weighting the classification association rules. This method has to fulfil both criteria risen in Example 8. Let us assume an association rule R : R a → R c that we aim to assess the relevance of the rule's premise part with the instance X under classification. For each item part of the considered premise

{x j i ∈ R a |x j i ∈ Θ i , i ∈ [1, I], j ∈ [1, J]},
we compute its distance with the appropriate part of the instance under classification. From each

x j i ∈ R a , i ∈ [1, I], j ∈ [1, J],
we build a categorical BBA m c i ({x j }) (Equation ( 2)). The resulting BBA is compared to m i to assess their separating distance in terms of the P 1 -criterion. The distance is computed as follows:

d i (m c i , m i ) = 1 2 (m c i -m i ) t .D.(m c i -m i ) ( 32 
)
where:

D(A, B) = 1 if A = B = ∅ |A∩B| |A∪B| if A, B ⊆ 2 Θ . ( 33 
)
d i is the Jousselme's distance [START_REF] Jousselme | Distance in evidence theory: Comprehensive survey and generalizations[END_REF]. The matrix D(A, B) establishes the inclusion relationship between superset elements. The rule's weight is found by considering all computed distances {d i |i ∈ I} as follows:

weight(R) = 1 - i∈[1,I] d i I . (34) 
Thus, Equation ( 30) becomes:

α m Θ C R l ({R c }) = weight(R l ) × Conf idence(R l ) α m Θ C R l (Θ C ) = 1 -weight(R l ) × Conf idence(R l ) ( 35 
)
Example 9 Let us assume the set of rules shown in Example 8. Table 4 is a numerical example of association rules' fusion. Considering the case of four association rules, the column Reliability shows association rules' weight based on the computed distance d l (Equation ( 34)). The reliability factors flag out the expected results, e.g., R 1 is more P 1 -reliable than R 2 and that sustains the P 1 property. On the other hand, R 3 is more P 2 -reliable than R 4 . The rules are then modelled and weighted following Equation [START_REF] Wu | Database classification for multi-database mining[END_REF]. The decision with pignistic probability gives the C 1 class which is naturally the case.

Evidential Associative Classifier: EvAC

In the following, we introduce the Evidential Associative Classifier (EvAC) that extracts all valid association rules from frequent patterns and classifies evidential instances. The EvAC algorithm, whose pseudo-code is sketched by 

Θ C R l α m Θ C R l m ⊕ BetP R 1 : A 1 , B 1 → C 1 0.66 m Θ C R 1 (C 1 ) = 0.59 α m Θ C R 1 (C 1 ) = 0.39 m Θ C R 1 (Θ C ) = 0.41 α m Θ C R 1 (Θ C ) = 0.61 m ⊕ (C 1 ) = 0.59 R 2 : Θ A , B 1 → C 1 0.60 m Θ C R 2 (C 1 ) = 0.32 α m Θ C R 2 (C 1 ) = 0.19 m Θ C R 2 (Θ C ) = 0.68 α m Θ C R 2 (Θ C ) = 0.81 m ⊕ (C 2 ) = 0.06 BetP (C 1 ) = 0.77 R 3 : A 1 → C 1 0.69 m Θ C R 3 (C 1 ) = 0.32 α m Θ C R 3 (C 1 ) = 0.22 m Θ C R 3 (Θ C ) = 0.68 α m Θ C R 3 (Θ C ) = 0.78 m ⊕ (Θ C ) = 0.35 BetP (C 2 ) = 0.23 R 4 : B 2 → C 2 0.27 m Θ C R 4 (C 2 ) = 0.66 α m Θ C R 4 (C 2 ) = 0.18 m Θ C R 4 (Θ C ) = 0.34 α m Θ C R 4 (Θ C ) = 0.82
Algorithm 2, extracts all interesting classification association rules by computing their confidence. The rule extraction is caried out at the beginning of the algorithm. In fact, the user can select to work with either generic or precise rules. The confidence is computed thanks to F ind Conf idence() function (line 4) that implements the precise confidence, given in section 4, and only retains valid rules. In addition, rules are filtrated by redundancy. Interested reader may refer to [START_REF] Samet | Classification with evidential associative rules[END_REF] for further details about rule's filtration. From each secant rule R to the instance under classification X, EvAC models a BBA through invoking the construct BBA() function (line 19). The resulting BBA is studied and weighted via a reliability factor. Those reliability factors are retrieved in the compute reliability() function (line 25), which integrates the Jousselme's distance. Finally, the decision is made upon the use of the pignistic probability and the class of the instance under classification is returned. EvAC algorithm computational complexity depends highly on the association rules used for classification. The computational complexity is polynomial C comb O(l 2 ). C comb is the complexity of combining l BBAs with the Dempster's rule of combination.

Experiments

In this section, we assess the performance of EDMA and EvAC algorithms on evidential databases. The evidential databases are obtained through dataset transformation. In the following, evidential databases' construction is highlighted. Different practical uses of evidential database can exist. We can imagine a medical database in which we store patients medical records. Those records are doctors diagnostics expressed with BBAs relatively to their certainty about patient's sickness. Even though some works are worth of cite, e.g [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF][START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF], none of them worked on a real evidential database. In [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF], tests were carried out on a synthetic database. On the other hand, Hewawasam et al. [START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF] worked on a simplified naval anti-surface warfare scenario and such kind of databases is hardly accessible. In the following, we propose a method that makes it possible to straighforwardly construct an evidential database from a Algorithm 2 Evidential Associative Classifier (EvAC)

Require: P r T able, minconf, Θ C , X, EIF F Ensure: Class 1: for all x ∈ EIF F do 2: R ← Construct Rule(x, Θ C ) 3: if R = ∅ then 4:
conf idence ← F ind Conf idence(R, P r T able, minconf ) 5:

R ← Redundancy(R, R, conf idence) 6: end if 7: end for 8: for all R ∈ R do 9:

if X ∩ R = ∅ then 10:

RI ← RI ∪ R 11:
end if 12: end for 13: for all R ∈ RI do 14:

weight I ← compute reliability(R, X) 15:

α BBA ← construct BBA(R, weight I ) 16:

m ← m ⊕ α BBA 17: end for 18:

Class ← argmax H k ∈Θ C BetP (H k ) 19: function Construct BBA(R, weight I ) 20: m R (R.conclusion) ← weight I × R.conf idence 21: m R .(Θ) ← 1 -weight I × R.conf idence 22: BBA ← m R 23:
return BBA 24: end function 25: function compute reliability(R,X) 26:

d ← 0 27:
for all r ∈ Ra do 28:

d ← d + Jousselme distance(mr, X i ) 29:
end for 30:

weight I ← d sizeof (Ra)

31:

return α I 32: end function numerical dataset. We based evidential database construction on the ECM clustering approach [START_REF] Masson | ECM: An evidential version of the fuzzy c-means algorithm[END_REF]. It is an FCM-like-based algorithm on the concept of credal partition, extending those of fuzzy and possibilistic ones. To derive such a structure, we minimized the proposed objective function:

J ECM (M, V ) d i=1 {j/Aj =∅,Aj ⊆Ω} c α j m β ij dist 2 ij + n i=1 δ 2 m β i∅ (36) 
subject to:

{j/Aj =∅,Aj ⊆Ω} m ij + m i∅ = 1 ∀i = 1, . . . , d (37) 
where m i∅ and m ij respectively denote m i (∅) and m i (A j ). M is the credal partition M = (m 1 , . . . , m d ) and V is a cluster centers matrix. c α j is a weighting coefficient and dist ij is the Euclidean distance. In our case, we use the default values prescribed by the authors in [START_REF] Masson | ECM: An evidential version of the fuzzy c-means algorithm[END_REF], i.e. α = 1, β = 2 and δ = 10.

The ECM algorithm was successfully applied on several UCI benchmarks [START_REF] Frank | UCI machine learning repository[END_REF] in order to construct our evidential databases. The characteristics of the constructed evidential databases are summarized in Table 5 in terms of number of instances and attributes. For each dataset, the number of focal elements, after the ECM application, was addressed. The number of focal element is related to the objective function J ECM that was minimized (the reader is referred to the appendix A for further details). The fourth column of Table 5 illustrates the sum of all generated focal elements that indicates the actual width size of each evidential database. Indeed, the actual column's size of the database is computed as follows: n i=1 f i . The variable f i is the number of focal element of the i th attribute found by the minimization of the subjective equation (Equation (37)). We used two types of benchmarks. The largest databases such as Skin Segmentation EDB, KEGG EDB and MAGIC EDB were used to assess the scalability of the mining algorithm. The smallest databases such as Iris EDB, Wine EDB, Vertebral column EDB and Diabetes EDB were tested to assess the accuracy of the classifier. 

Pattern extraction performance

In the following, we compare the precise support measure introduced in section 3 that of the belief-based support [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF]. The performance and the quality of both support measures are scrutinized. The quality is highlighted in terms of the number of frequent patterns. In addition, the performance is shown by the computational time. Table 6 shows the performance of the precise support (denoted precise) and the belief-based support (denoted Bel ). For our experiments, we integrated the ramification support (proposed in subsection 3.1) into the mining itemsets algorithm.

In terms of quality, as expected, the precise support discovers more frequent patterns than do the belief-based one. This result corroborates the theoretical bases found in subsection 3.2. Indeed, precise support evaluates properly the support. On the contrary, the belief-based support under-evaluates the support because of the intrinsic Bel(.) function nature. The number of frequent patterns increases linearly as far as the considered minsup threshold The extraction performances, running time-wise, of the belief-based support is better than those of the precise one. This observation can be explained by the number of extracted patterns. The more frequent candidates generated are, higher the consumed time is. In addition, the precise support studies more subsets than does the belief-based one that badly influences the obtained performances.

Figure 1 shows the runtime performances of several algorithms on the largest datasets. In fact, we compared EDMA algorithm to B-Apriori which is the Apriori-based algorithm that use the belief-based support [START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF]. It is important to notice that B-Apriori outperforms EDMA in terms of computation times as far as the size of the database increases. This can be explained by two reasons. First, by the cost of using the precise support rather than the belief-based one. In fact, the precise-based support computes the intersections between sets. Finally, since EDMA generates more candidates in a level-wise manner than B-Apriori, the support computation is a costly task. In the following, we study the classification result performance of the generic and precise rules. Table 8 compares the classification differences in the use of precise rules. The precise rules are studied, in this table, by adding the weighting approach. The weighting approach has shown its usefulness since we improved the classification for Iris EDB and Vertibral EDB. We maintained the same perfect result for the Wine EDB whereas it has dropped in Diabete EDB. Overall, the rule weighting approach has proven its efficiency and has optimized the results of non weighted precise rules. The results of the weighting approach has been carried out using the generic rules. The performance of EvAC associative classifier has been scrutinized by investigating the generic rules. The results are shown in Table 9. The rule's weighting approach has also proven its efficiency for classification with generic rules. Indeed, the results have been drastically improved comparatively to the classification with non weighted generic rules. Wine EDB and Iris EDB classification rates have been improved and we maintained the same results for the other databases. It is also worth of to mention that the proposed weighting approach for rule use in classification has shown promising results without being tested on an adequate experimental field. Indeed, the premise of generic rules are constituted with at most two items. In that case, not all criteria evoked in subsection 4.3 are considered since only the genericity and pertinence are considered. The same also holds for precise rules.

The comparison between the generic and the precise association rules is possible. The precise rules (with and without weighting) better highlight results than do the generic ones. Indeed, the larger the rule's premise is, the more pertinent the rule becomes. On the other hand, EvAC with generic rules merges much more rules than do with precise ones. In addition, all generic rules are considered with the same weight in the fusion process despite their pertinence difference. These characteristics along with the Dempster's rule of combination behaviour mislead the fusion process to errors. Indeed, as shown in Figure 2, the high number of fused rules depends highly from the minsup value. Unlike the generic approach, the number of precise rule is defined by number of larger premise's rule which is dependent from the treated evidential transaction. In Table 10, we confront the EvAC associative classifier to several wellknown other classifiers. We compared the accuracy of classification of the introduced EvAC to other associative classifiers such as EDMA [START_REF] Samet | Classification with evidential associative rules[END_REF] and CMAR [START_REF] Li | CMAR: Accurate and efficient classification based on multiple class-association rules[END_REF].

EDMA [START_REF] Samet | Classification with evidential associative rules[END_REF] is an associative classifier on evidential databases, as EvAC, deprived from association rules weighting whereas CMAR [START_REF] Li | CMAR: Accurate and efficient classification based on multiple class-association rules[END_REF] is a classical association rule classifier. The results through the table show the EvAC outperforms EDMA for all databases except the Diabete EDB. This comfort us on the importance of the association rule weighting process. We also outperform CMAR for all datasets except Iris one. A possible reason would be the non effectiveness of imprecision modelling on Iris dataset with belief functions. Finally, by comparing EvAC accuracy to those of SVM and Neural Networks, we notice that our algorithm is competitive and provides better classification accuracy on several datasets. This could be explained by the contribution of imprecision modelling since EDMA outperforms them too.

Conclusion

In this paper, we tackled data mining problem in evidential databases. We detailed state-of-the-art of evidential support metric and confidence. In the first part of the remainder, we proposed a simplification of existing support measure. We also introduced a new support formula that brings precision by analysing deeply the BBA's frame of discernment. The proposed precise measure extracts more hidden frequent patterns than the usual method. In addition to frequents generation, we tackled association rule's extraction from evidential databases. We proposed a new confidence measure for association rules in evidential databases. The proposed measure is based on precise support (i.e., probability measure). The rules are then filtrated to retain only classification and non redundant rules. We also introduced an algorithm, denoted EvAC, that makes it possible to classify with evidential association rules. All generated rules are scrutinized following two criteria and a new measure for rule's relevance is introduced. The classification is based on rule's fusion with regards to their relevance. As illustrated in the experimentation section, the proposed method provides an interesting performance rates. In this work, all transaction's database are considered with the same weight. In real life applications, a transaction may represents expert's opinion. In future work, we may overcome this constraint by revising the support formula if not all expert are reliable.

instances and 2 features. This dataset is composed of 2 classes {C 1 , C 2 }. Figure 3 illustrates the representation of these data in the feature space. From this database, the case of instance #28 will be studied (in bold in Table 11). In Figure 3, this point is represented by a pentagram.

ECM starts by creating the user requested number of cluster for each feature. In this example, we choice respectively 3 and 2 clusters for Feature n • 1 and Feature n • 2.

According to one feature, ECM estimates the distance between each instance and each cluster' center. A BBA is created depending on the computed distance. Afterwards, ECM tries to minimize the objective function defined in Equation [START_REF] Yin | Data mining in incomplete database[END_REF]. ECM computes recursively the cluster's center until the objective function is no more minimization is possible. From evidential data mining point of view, ECM allows us to construct for each instance, according to each feature, a BBA that represents its membership to each cluster. The clusters are different categories that we may extract for a dataset feature (column). In the proposed example, results of clustered are illustrated in Figure 4. In this figure, the studied instance is also represented by a pentagram. Thus for this instance, a BBA m 1 is obtained, with ECM, on frame of discernment Θ A = {A 1 , A 2 , A 3 } according to Feature n • 1. A second BBA, m 2 , is computed on frame of discernment Θ B = {B 1 , B 2 } according to Feature n • 2. These BBAs correspond to mass functions of the evidential database for each attribute (column). Table 12 shows BBAs obtained for instance #28 according to these 2 features. 
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 1 Fig. 1: Runtime performance on several database benchmarks

Fig. 2 :

 2 Fig. 2: Generic association rule's number for different support values

Fig. 3 :

 3 Fig. 3: Representation of data proposed in Table11.

Feature n • 2 clustered into 2 classesFeature n • 2 Feature 5 Fig. 4 :

 2254 Fig. 4: ECM clustering from the given dataset of Table 11

Transaction Attribute n • 1

 1 Attribute n • 2 (from Feature n • 1) (from Feature n • 2) m 1 ({A 1 }) = 0.6855 m 1 ({A 2 }) = 0.0175 m 1 ({A 1 , A 2 }) = 0.0260 m 2 ({B 1 }) = 0.0425 #28 m 1 ({A 3 }) = 0.0060 m 2 ({B 2 }) = 0.8146 m 1 ({A 1 , A 3 }) = 0.0147 m 2 (Θ B ) = 0.1429 m 1 ({A 2 , A 3 }) = 0.0712 m 1 (Θ A ) = 0.1791

Table 2 :

 2 Precise Table deduced from the evidential database EDB presented in

Table 1

 1 

  Algorithm 1 Evidential Data Mining Apriori (EDMA) algorithm

	Require: EDB, minsup, P T, Size EDB
	Ensure: EIF F
	1: T rim T able ← construct trim(P T, minsup)
	2: EIF F ← ∅
	3: size ← 1
	4: candidate ← candidate apriori gen(T rim T able, size)
	5: While (candidate = ∅)
	6: f req ← F requent itemset(candidate, minsup, T rim T able, Size EDB)
	12:	Sup I ← 0
	13:	for j=1 to d do
	14:	Sup T rans ← 1
	15:	
	18:	end if
	19:	end for
	20:	Sup I ← Sup I + Sup T rans
	21: 22:	end for return Sup I
	25:	f requent ← ∅
	26:	for all X in candidate do
	27:	if Support estimation(T rim T able, X, Size EDB) ≥ minsup then
	28:	f requent ← f requent ∪ {X}
	29:	end if
	30:	end for
	31:	return f requent
	32: end function

7: size ← size + 1 8: EIF F ← EIF F ∪ f req 9: candidate ← candidate apriori gen(EDB, size, f req) 10: End While 11: function Support estimation(T rim T able , I, d) for all i ∈ T rim T able(j).f ocal element do 16: if T rim T able(j).f ocal element ∈ I then 17: Sup T rans ← Sup T rans × T rim T able(j).value d 23: end function 24: function Frequent itemset(candidate, minsup, T rim T able, Size EDB)

Table 4 :

 4 Numerical example of rule's weighting and fusion

	Rule	Reliability (weight)	m

Table 5 :

 5 Database characteristics

	Database	#Instances #Attributes #Focal elements
	Iris EDB	150	5	40
	Vertebral Column EDB	310	7	116
	Diabetes EDB	767	9	132
	Wine EDB	178	14	196
	Magic EDB	19020	11	30
	KEGG EDB	53414	24	96
	Skin Segmentation EDB	245057	4	32

Table 6 :

 6 Comparative results in terms of the number of frequent extracted patterns In addition to the study of generated frequent patterns, Table7shows the difference in terms of performance between precise and two variants of the belief-based support. A first version applies the Cartesian product (denoted Cart-Bel) in order to find the support which computes all possible BBAs needed for support measure. The second one is the proposed ramification of the belief support that uses the Table Bel (denoted Bel) which is the belief version of the precise table.

	Support	Iris EDB Diabete EDB Vertebral Column EDB Precise Bel Precise Bel Precise Bel	Wine EDB Precise Bel	Magic EDB Precise Bel
	0.9	23	23 1013	757	56	56	4850	4082	1011 1011
	0.8	42	23 3831	1013	88	56		4082	1011 1011
	0.7	107	23 12408 1397	411	56	24565 8179	1011 1011
	0.6	244	91 38887 3958	795	88	71258 12275 3574 3574
	decreases.							

Table 7 :

 7 Comparative results in terms of execution time (seconds)

	Support	Iris EDB Precise Bel Cart-Bel ≈ Precise Diabete EDB Bel Cart-Bel ≈ Precise Bel Vertebral Column EDB Cart-Bel ≈	Precise	Wine EDB Bel Cart-Bel ≈	Precise	Magic EDB Bel Cart-Bel ≈
	0.9	0,18 0.17 6.38E+12 14.60 9.35 3.29E+72 0.77 0.21 4.60E+24	58.88	37.32 1.83E+188 163.86 94.92 2.75E+50
	0.8	0.21 0.17 6.38E+12 120.36 9.36 3.29E+72 0.82 0.21 4.60E+24	109.39 40.70 1.83E+188 159.40 92.92 2.75E+50
	0.7	0.58 0.17 6.38E+12 851.70 17.77 3.29E+72 4.28 0.22 4.60E+24 1536.93 89.42 1.83E+188 161.59 90.87 2.75E+50
	0.6	2.29 0.50 6.38E+12 11586 71.01 3.29E+72 9.05 0.30 4.60E+24 16172.59 179.88 1.83E+188 867.72 771.78 2.75E+50

Table 8 :

 8 Comparative result with precise classification rules

	Database	Iris EDB Vertebral Column EDB Diabetes EDB Wine EDB Magic EDB
	Precise rules	80.67%	88.38%	83.20%	100%	93.88%
	Precise rules with weighting 82.00%	89.03%	82.81%	100%	94.39 %

Table 9 :

 9 Comparative result with Generic classification rules

	Database	Iris EDB Vertebral Column EDB Diabetes EDB Wine EDB Magic EDB
	Generic rules	78.67%	67.74%	65.10%	51.68%	64.83%
	Generic rules with weighting 80.00%	67.74%	65.10%	76.40%	67.58%

Table 10 :

 10 Classification accuracies for several evidential databases

	Dataset	EvAC EDMA [28] CMAR [21] SVM Neural Networks
	Iris EDB	82.00%	80.67%	94.00%	96.00%	97.33%
	Diabete EDB	82.81%	83.20%	75.10%	77.47%	80.60%
	Wine EDB	100%	100%	95.00%	99.43%	100%
	Vertebral column EDB 89.03%	88.38%	81.61%	80%	87.74%

Table 11 :

 11 Numerical Dataset.

	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.

Table 12 :

 12 BBAs obtained with ECM for instance #28.

An association rule is considered as valid if its confidence is greater than or equal to a threshold minconf .
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A Evidential database creation through Evidential C-Means

From a set of numerical data such as those in Table 11, it is possible to construct an evidential database with ECM. For example, the database, presented in Table 11, is composed of 30