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Abstract

Decision trees are well-known machine learning techniques for solving com-

plex classification problems. Despite their great success, the standard deci-

sion tree algorithms do not have the ability to process imperfect knowledge,

meaning uncertain, imprecise and incomplete data. In this paper, we de-

velop new decision tree approaches to cope with data that have uncertain

attribute values and class labels. More concretely, we tackle the case where

the uncertainty is represented and managed through the evidence theory.

Keywords: Decision tree classifier, imperfect data, evidence theory.

1. Introduction

Decision trees are commonly seen efficient machine learning techniques that

are widely used in several fields, notably in artificial intelligence [1]. Their

success is adequately explained by their ability to provide simple representa-

tions that are easily understandable by experts and even by ordinary users
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(i.e., non-expert users).

In several real world domains (e.g. medicine, fault detection and object

recognition), data may suffer from imperfection due to some factors such as

randomness and data incompleteness. Data imperfection may take different

forms: it can be part either of the attribute values, the class labels or both of

them. Since the standard decision tree versions cannot handle such kind of

data, probability decision trees have been suggested [2]. Although the proba-

bility theory is widely used for modeling uncertainty, several researchers have

proven that probability cannot always be the adequate tool for representing

uncertain and incomplete data [3]. This shortcoming has led to the introduc-

tion of fuzzy decision trees [4], the possibilistic decision trees [5], the uncertain

decision trees [6, 7, 8]. Other theories have been proposed to deal with un-

certain knowledge, notably the belief function theort also called the evidence

theory. It has the advantage to represent all kinds of knowledge availability

[9], the process of incorporating belief function theory within decision tree

techniques has been extensively studied [10, 11, 12, 13, 14, 15, 16, 17]. De-

spite its benefits, decision trees that handle data with uncertain attribute

values and class labels have not attracted attention from the community.

In this paper, we propose new decision tree classifier approaches to cope with

data imperfection pervading both attribute values and class labels. The re-

maining of this paper is organized as follows. Section 2 is devoted to high-

lighting the fundamental concepts of the belief function theory. We recall, in

Section 3, some basic concepts of standard decision tree classifiers. Section 4

is dedicated to describe machine learning algorithms within evidential data.
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Section 5 details our decision trees procedure. In Section 6, we detail the

parameters enabling the construction of our proposed decision tree classifier

techniques. Our experimentations are described in Section 7. We draw our

conclusions and discuss future directions in Section 8.

2. Evidence theory

The evidence theory is seen as a very effective and efficient framework to

represent and manage uncertain knowledge. In this section, we provide a

brief overview of the fundamental concepts of this theory as introduced by

Smets [18] with his Transferable Belief Model (TBM).

2.1. Knowledge representation

Let Θ = {θ1, θ2, . . . , θN} denotes the frame of discernment including a finite

non empty set of N elementary hypotheses. An expert’s belief over the

subsets of the frame of discernment Θ is represented by the so-called basic

belief assignment (bba) denoted by m. It is carried out in the following

manner:
∑

A⊆Θ

m(A) = 1. (1)

The basic belief mass (bbm), denoted by m(A), implies the degree of belief

exactly assigned to the event A. Each subset A of 2Θ having fulfilled:

m(A) > 0 (2)

is called a focal element.
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From a mass function m, we can define the so called belief function denoted

by bel. It reflects the sum of beliefs exactly committed to every subset of A

by m [19]. It is set to:

bel : 2Θ → [0, 1]

bel(A) =
∑

∅6=B⊆A

m(B). (3)

2.2. Combining information sources

Let m1 and m2 be two bbas induced from two independent information

sources and defined in the same frame of discernment Θ. Several combi-

nation rules have been proposed to combine several bbas. One of the most

widely used is the conjunctive rule [20]. This combination rule combines two

bbas provided by reliable and distinct information sources. The resulting

bba, denoted by m1 ∩©m2, is defined by:

(m1 ∩©m2)(A) =
∑

B,C⊆Θ:B∩C=A

m1(B).m2(C). (4)

Several real world applications require to combine bbas defined on different

frames of discernment. Assuming that Θ1 and Θ2 are two frames of discern-

ment, the idea consists of extending Θ1 and Θ2 to a joint frame of discernment

Θ = Θ1 × Θ2. The extended mass function of m1 which is defined on Θ1

and whose focal elements are the cylinder sets of the focal elements of m1 is

computed as follows:

mΘ1↑Θ(X) =m1(Y ) where X = Y×Θ2, Y ⊆ Θ1

mΘ1↑Θ(X) =0 otherwise.
(5)
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2.3. Discounting

Information sources, within the belief function theory framework, may be

quantified by reliability rates in the range between 0 and 1. Indeed, when

a bba is induced from not fully reliable information sources, a discounting

process is necessary to update beliefs. Let m be a bba induced from an

information source with a reliability rate 1 − α. The discounted bba mα is

obtained as follows [21]:

mα(A) =(1− α)m(A) for A ⊂ Θ

mα(Θ) =α + (1− α)m(Θ).
(6)

2.4. Decision making

Decision making aims to select the most reasonable hypothesis for a given

problem. Several functions have been introduced for decision making within

the belief function framework. In the Transferable Belief Model (TBM), the

pignistic probability is commonly used to make a decision from a bba [22]:

BetP (A) =
∑

B⊆Θ

|A ∩B|

|B|

m(B)

1−m(∅)
∀ A ∈ Θ (7)

where

∑

A∈Θ

BetP (A) = 1. (8)

2.5. The dissimilarity between two bbas defined on the same space of discern-

ment

Several measures have been proposed to compute the dissimilarity between

two given bbas [23, 24]. One of the earliest and best-known measures is the
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Jousselme distance. Formally, the Jousselme distance, for two given bbas m1

and m2, is defined as [23]:

d(m1,m2) =

√

1

2
(−→m1 −

−→m2)T .D.(−→m1 −
−→m2) (9)

where

−→m1 =











m1(∅)
...

m1(Θ)











and −→m2 =











m2(∅)
...

m2(Θ)











The Jaccard similarity measure D is set to:

D(A,B) =











1 if A=B= ∅

|A ∩B|

|A ∪B|
∀ A,B ∈ 2Θ.

(10)

Note that d(m1,m2) ∈ [0, 1]. A value of 1 reflects that the two bbas m1 and

m2 are in total disagreement, while a value of 0 means that m1 = m2.

3. Decision tree classifier

Decision trees are recognized among the most effective and efficient machine

learning approaches and they have been successfully applied to solve real

world problems within the artificial intelligence field. This success is mainly

due to their great ability for solving complex problems through human-

readable and computer-readable graphical representations. A plethora of

algorithms have been introduced to construct decision trees from a given
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training set and to ensure the classification of query instances [25, 26, 27].

The most used algorithms follow a Top Down Induction of Decision Tree

approach (TDIDT) that consists on a recursive divide and conquer strategy

by following the steps below:

• select, through the use of an attribute selection measure, the attribute

that enables the best possible partitioning of the training set;

• split the current training data into training subsets according to the

selected attribute values.

• nominate a training subset as a leaf when a stopping criterion is reached.

As regards the attribute selection process, several measures have been pro-

posed in the literature [28, 26, 27]. The information gain, measuring the ef-

ficiency of an attribute when classifying the training instances, is one among

the best known and most widely used measures. Given a training data S

and an attribute A, the information gain will be set to:

Gain(S,A) = Info(S)− InfoA(S) (11)

where

Info(S) = −

Q
∑

i=1

pi.log2pi (12)

and

InfoA(S) = −
∑

v∈Domain(A)

|SA
v |

|S|
(13)
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where pi reflects the proportion of objects having θi as class (i.e. i ∈ {1, . . . , Q})

and SA
v corresponds to the training subsets for which the attribute A has v

as value.

One major limitation of this measure is that the attributes with the largest

values are the most promoted ones [27]. This had led to the introduction of

the GainRatio measure used in the C4.5 algorithm [26, 27]. It is given as

follows:

GainRatio(S,A) =
Gain(S,A)

SplitInfo(A)
(14)

where

SpliInfo(A) =
∑

v∈Domain(A)

|SA
v |

|S|
.log2

|SA
v |

|S|
. (15)

4. Classification from evidential data

Evidential databases allow to process imperfect knowledge by expressing

imperfect knowledge through the belief function theory. Each object Oj

within an evidential database is described by n evidential attributes A =

{A1, . . . , An}. Each attribute Ak (i.e. k ∈ {1, . . . , n}) has a domain of discrete

values denoted by ΘAk , and an evidential class label having Θ = {θ1, . . . , θQ}

as domain (i.e. Q represents the total number of classes). The idea behind

evidential databases consists of representing all kinds of data availability,

including total certainty as well as totally and partially ignorance:

• Total certainty: A certain bba, is a bba that has a singleton as its
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unique focal element, and it is used to represent the state of total cer-

tainty.

• Total ignorance: In case of total ignorance, a vacuous bba refers to a

bba having Θ as its unique focal element.

• Partially ignorance: Regarding the case of partially ignorance, a

quantity of belief has to be assigned to a subset of the frame of dis-

cernment Θ.

An example of evidential databases is given below.

Example 1. Assuming a credit risk management problem. Overall, a bank

loan officer has to predict the customer profitability levels Θ={Good, Mod-

erate, Bad} on the basis of some parameters (Attributes). To put it simply,

in this example, Table 1 describes the data knowledge for training, where we

relied on three characteristics:

• Income with possible values ΘIncome={No, Low, Average, High}.

• Property: This attribute reflects whether the loan requested by the client is

greater or less than its property value and consequently it takes values as

ΘProperty={Greater, Less}.

• Unpaid Credit: This attribute providing information about client’s unpaid

Credit with two possible values ΘUnpaidCredit={Yes, No}.
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Table 1: Uncertain training data within the belief function framework

width=1.2center

O Income Property Unpaid Credit

O1 mIncome
1 ({High}) = 1 m

Property
1

({Greater}) = 0.6

m
Property
1

({Less}) = 0.3

m
Property
1

(ΘProperty) = 0.1

m
UnpaidCredit
1

({Y es}) = 1

O2 mIncome
2 ({Average}) = 1 m

Property
2

({Greater}) = 1 m
UnpaidCredit
2

({No}) = 1

O3 mIncome
3 ({Low}) = 1 m

Property
3

({Less}) = 0.5

m
Property
3

(ΘProperty) = 0.5

m
UnpaidCredit
3

({Y es}) = 1

O4 mIncome
4 ({No}) = 1 m

Property
4

({Less}) = 1 m
UnpaidCredit
4

({No}) = 1

O5 mIncome
5 ({Low}) = 1 m

Property
5

({Greater}) = 0.8

m
Property
5

(ΘProperty) = 0.2

m
UnpaidCredit
5

({No}) = 1

O6 mIncome
6 ({High}) = 1 m

Property
6

({Greater}) = 0.2

m
Property
6

({Less}) = 0.7

m
Property
6

(ΘProperty) = 0.1

m
UnpaidCredit
6

({Y es}) = 1

We intend, in this paper, to construct decision tree classifiers from evidential

data using the following notations:

• T = {O1, . . . OM}: a given training set composed by M objects Oj; j =

{1,. . . ,M}.

• S: a subset of objects belonging to the training set T .

• A={A1,. . .,An}: the set of n attributes.

• ΘAk : set of all possible values v of an attribute Ak ∈ A where k =
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{1, . . . , n}.

• Θ= {θ1,. . . , θQ}: represents the Q possible classes of the classification

problem.

• SAk
v : subset of objects from S having v ∈ ΘAk as value.

• mj
ΘAk (v): denotes the bbm assigned to the hypothesis that the actual

attribute value of the object Oj belongs to v ⊆ ΘAk .

• mΘAk
v : is the certain bba corresponding to the attribute Ak and having

v as its unique focal element.

• mΘ
j : corresponds to the bba relative to the class of the object Oj.

• L= {L1,. . . , LF}: represents the F generated leaves when building the

decision tree.

5. Decision tree procedure

This section presents the two main levels enabling the use of our belief deci-

sion tree classifiers: the construction and the classification levels. We provide,

in the following, a description of each level.

5.1. Construction level

The construction of our belief decision trees follows the same Quinlan algo-

rithm steps [27]. In fact, it requires a top down approach as the standard

case. Assume that T is our training set, the different steps of our decision

tree learning algorithm are given as follows:
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1. We start by creating the root node from the whole training set T .

2. We check if the root node satisfies any stopping criteria.

• If one stopping criterion is reached, the treated node will be de-

clared as a leaf for which we compute the probability distribution

over the set of classes.

• If not, we pick out the attribute that maximizes a chosen attribute

selection measure. The chosen one will be the root node of our

decision tree relative to the set T .

3. We create a branch for each value v of the attribute Ak chosen as a

root. This partitioning step leads to several subsets SAk
v where each

one contains as much as possible homogenous objects according to the

attribute value v.

4. We restart the same process from level 2 until all nodes are considered

as leaves.

5.2. Classification level

Concerning the classification step, we propose to classify objects described

by evidential attributes modeled with bbas. Let M ′ be the total number

of testing instances Oj (j = {1, . . . ,M ′}) and A = {A1, . . . , An} be the set

of n attributes characterizing our testing instances. The global frame of

discernment relative to all the attributes, denoted by ΘA, is equal to the

cross product of the different ΘAk :

ΘA = ×
k=1,...,n

ΘAk . (16)
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Since objects are described by a combination of values where each of them

corresponds to one attribute, we first have to compute for each object to be

classified the joint bba expressing beliefs on its attribute values. To reach

our ultimate goal, we proceed as follows:

• Firstly, we extend the different bbas mΘAk

j to the global frame of at-

tributes ΘA (see Equation 5). Thus, we get the different bbas mΘAk↑ΘA

j .

• Then, we combine the different extended bbas using the conjunctive

combination rule as follows:

mΘA

j = ∩©
k=1,...,n

m
ΘAk↑ΘA

j . (17)

If our joint bba mΘA

j is computed, we move on to evaluate the belief function

belΘj [x] of each focal element x relative to the object Oj. It will be noted

that the computation of this function depends mainly on the focal elements

of the bba mΘA

and on the subset x. This dependency is expressed in the

following:

• When x is a singleton, the belief function belΘj [x] will be equal to the

belief function corresponding to the leaf to which the focal element is

attached;

• If not, we explore all possible paths corresponding to this combination

of values. There are two possible cases:

– Case 1: All paths lead to the same leaf. In this case, the belΘj [x]

will be equal to the leaf’s belief function.
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– Case 2: Paths lead to distinct leaves. In this case, belΘj [x] will

correspond to the disjunctive combination [29] of each leaf’s belief

function through the disjunctive rule.

• The belief function of every query test Oj has to be computed by av-

eraging each focal element x using mΘA

when relied on the generalized

Bayesian theorem [30]:

belΘj [m
ΘA

](θ) =
∑

x⊆ΘA

mΘA

(x).belΘj [x](θ) for θ ⊆ Θ (18)

then

mΘ
j [m

ΘA

](θ) =
∑

B⊆θ

(−1)|θ|−|B|.belΘj [m
ΘA

](B) ∀ θ ⊆ Θ, θ 6= ∅ (19)

Note that mΘ
j [m

ΘA

](θ) reflects the degree of belief allocated to the class

θ of the query test Oj. In order to make the decision, the mass func-

tion will be transformed into probability measure through the pignistic

probability. The class with the highest pignistic probability will be con-

sidered as the predicted class of the object Oj.

6. Novel belief decision tree classifiers

In this paper, our aim consists of designing two decision tree classifiers for

addressing evidential data, namely GainRatio Belief Decision Tree (GR-

BDT) and DiffRatio Belief Decision Tree (DR-BDT).
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6.1. GainRatio Belief Decision Tree (GR-BDT)

This subsection is devoted to highlighting the main parameters enabling the

construction of the GR-BDT classifier which mainly includes the attribute

selection measure, the partitioning strategy, the stopping criteria and the

structure of leaves.

6.1.1. Attribute selection measure

The attribute selection measure is considered as one of the major parameters

ensuring decision tree construction. It consists of choosing, for each decision

node of the tree, the attribute test that will better separate the training

instances into homogenous subsets. For the Gain Ratio approach, we have

relied on the entropy measure that is calculated from the average probability

obtained from the set of objects in the node. To choose the most appropriate

attribute, we propose the following steps:

1. We compute the pignistic probability relative to each instance Oj be-

longing to the training set:

BetPΘ[Oj](θi) =
∑

θi⊆B;B⊆2Θ

1

|B|
.

mΘ
j (B)

1−mΘ
j (∅)

. (20)

2. We compute the average probability relative to each class by taking into

consideration the objects in the set S (the learning set for which we look

to identify the best attribute to split on). This function is set to:

BetPΘ[S](θi) =
1

∑

Oj∈S
P S
j

∑

Oj∈S

P S
j .BetPΘ[Oj](θi) (21)

where BetPΘ[Oj](θi) reflects the membership probability of the object

Oi to the class θi and P S
j corresponds to the probability that the object
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Oj belongs to the subset S. Assuming that the attributes are inde-

pendent and assuming that S 6= T , the probability P S
j will be equal

to the product of the different pignistic probabilities induced from the

attribute bba’s corresponding to the object Oj and enabling this lat-

ter to belong to the node S. Let AB = {A1, . . . , AO} ∈ A with values

VB = {v1, . . . , vO} be the set of attributes leading to the branch S, the

probability P S
j will be set to:

P S
j =

∏

Ao∈AB

BetPΘAo
[Oj](vo) (22)

3. Inspired by the Shannon measure of uncertainty [31], we compute the

entropy Info(S) of the average probabilities in S which is set to:

Info(S) = −

Q
∑

i=1

BetPΘ[S](θi).log2BetPΘ[S](θi). (23)

4. Assuming an attribute Ak, for each value v ∈ ΘAk , we define the subset

SAk
v which is composed with objects having v as their value. Since

the attribute Ak’s values may be uncertain, the subset SAk
v will contain

objects Oj such that BetPΘAk [Oj](v) 6= 0.

5. We compute, for objects in the subset SAk
v , the weighted average pig-

nistic probability BetPΘ[SAk
v ] where v ∈ ΘAk and Ak ∈ A. It will be

set to:

BetPΘ[SAk
v ](θi) =

1
∑

Oj∈S
Ak
v

P S
Ak
v

j

∑

Oj∈S
Ak
v

P S
Ak
v

j .BetPΘ[Oj](θi) (24)

where P S
Ak
v

j is the probability of the object Oj belongs to the subset SAk
v

having v as a value of the attribute Ak (its computation is done in the

same manner as the computation of P S
j ).
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6. We compute InfoAk
(S) as discussed by Quinlan [26], while using the

pignistic probability instead of the proportions. We get:

InfoAk
(S) =

∑

v∈ΘAk

∑

Oj∈S
Ak
v

P S
Ak
v

j
∑

Oj∈S
P S
j

.Info(SAk
v ) (25)

where Info(SAk
v ) is computed from Equation 23.

7. We compute the GainRatio relative to the attribute Ak:

GainRatio(S,Ak) =
Info(S)− InfoAk

(S)

SplitInfo(S,Ak)
(26)

where the SplitInfo value is defined as follows:

SplitInfo(S,Ak) = −
∑

v∈ΘAk

∑

Oj∈S
Ak
v

P S
Ak
v

j
∑

Oj∈S
P S
j

.log2

∑

Oj∈S
Ak
v

P S
Ak
v

j
∑

Oj∈S
P S
j

. (27)

8. We repeat the same process for each attribute Ak ∈ A (from step 3 to

step 7) and then we select the one that has the maximum GainRatio.

Example 2. Let us consider the training data given in Example 1. By

relying on the GainRatio measure, we try to illustrate the first attribute

selection process when S=T . Note that, in the case of S=T , P S
j equals 1 for

all j ∈ {1, . . . , 6}. The probability of belonging of an object Oj to a subset

S
Ak

k are given in Table 2.

• We start by computing the entropy Info(T ), using Equation 23. It is com-

puted using the average pignistic probability that reflect the membership of

objects to classes Good, Moderate or Bad (see Table 3). The entropy will

then be set to:

Info(T ) =− 0.41.log20.41− 0.22.log20.22− 0.37.log20.37

=1.5426
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Table 2: The probability of belonging of objects in terms of the attribute values.

Outlook

PSIncome
High PSIncome

Average PSIncome
Low PSIncome

No

O1 1 0 0 0

O2 0 1 0 0

O3 0 0 1 0

O4 0 0 0 1

O5 0 0 1 0

O6 1 0 0 0

Temperature

PS
Property
Greater PS

Property
Less

O1 0.65 0.35

O2 1 0

O3 0.25 0.75

O4 0 1

O5 0.9 0.1

O6 0.25 0.75

Humidity

PS
UnpaidCredit
Y es PS

UnpaidCredit
No

O1 1 0

O2 0 1

O3 1 0

O4 0 1

O5 0 1

O6 1 0
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Table 3: Pignistic probability computed from bba of Class column of Table 1

Good Moderate Bad

BetPΘ(T ) 0.41 0.22 0.37

• Subsequently, we move on to compute InfoIncome(T ), InfoProperty(T ) and

InfoUnpaidCredit(T ) through Equation 25. We get:

* InfoIncome(T ) = 0.9738

* InfoProperty(T ) = 1.3959

* InfoUnpaidCredit(T ) = 1.4644

• Then, we compute the Information Gain for each attribute:

* GainRatio(Income) = 0.2965

* GainRatio(Property) = 0.1467

* GainRatio(UnpaidCredit) = 0.0782

According to the yielded results, we can deduce that the attribute Income

is the one that maximizes the GainRatio. So, it will be chosen as the root

node of the tree.

6.1.2. Partitioning strategy

The splitting strategy consists of dividing the training set according to the

values of the chosen attribute Ak, meaning that a branch will be associated

to each value v of the chosen attribute and each edge will contain a subset
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SAk
v from S. Since we handle data with evidential attributes, each training

object may belong to more than one subset. Indeed, each training object

may belong to more than one branch with a membership probability com-

puted in terms of the pignistic probability. To put it simply, a given object

Oj has to be assigned to each branch having v as value and should satisfy

BetPΘAk [Oj](v) 6= 0.

6.1.3. Stopping criteria

The stopping criteria are similar to those used by the standard decision tree.

There exist mainly four stopping strategies:

1. Only one instance is part to the treated node.

2. Instances of the treated node belong to the same class.

3. There is no further attribute for checking.

4. The remaining attributes have GainRatio equal or less than zero.

6.1.4. Structure of leaves

It is important to underline that leaves for our constructed decision trees

include objects with different class labels. As a matter of fact, each leaf will

be represented by a belief function computed from the probability of objects

belonging to that leaf:

mΘ[Lf ](θ) =
1

∑

Oj∈Lf
PL
j

∑

Oj∈L

PL
j .m

Θ
j (θ) θ ⊆ Θ (28)

where P
Lf

j is the probability of the instance Oj to belong to the leaf Lf (i.e.

f ∈ [1, F ]). This latter is computed as the cross product of the pignistic

probabilities of the object Oj to belong to the nodes that link the root node

and the corresponding leaf node Lf .
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Example 3. Assuming Example 2, we try to generate our GR-BDT classi-

fier. As it is shown in the aforementioned example, we have deduced the per-

formance of the Income attribute over the Property and the UnpaidCredit

attributes. Accordingly, the Income attribute has been chosen as a root

node. The first generated tree is given in Figure 1.

Income

Property L1 = {O2}

Unpaid

Credit

L2 = {O4}

High
Average

Low
No

Figure 1: The first generated tree of the GR-BDT classifier

We notice that both subsets SIncome
Average and SIncome

No contain only one object

and accordingly they have fulfilled one of the stopping criteria and they have

declared as leaves having respectively as bbas mΘ[L1] and mΘ[L2]. Nonethe-

less, the subsets SIncome
High and SIncome

No have not satisfied the stopping criteria.

So, we apply the same process for the both subsets until the stopping criteria

hold. The final generated decision tree is depicted in Figure 2.

6.2. DiffRatio Belief Decision tree (DR-BDT)

We provide, in the following, the parameters enabling the construction of the

DR-BDT classifier.
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Income

Property

L3 = {O1, O6} L4 = {O1, O6}

L1 = {O2}

Unpaid

Credit

L5 = {O3} L6 = {O5}

L2 = {O4}

High

Greater Less

Average

Low

Y es No

No

Figure 2: The final generated tree of the GR-BDT classifier

6.2.1. Attribute selection measure

By analogy with [17], the DR-BDT classifier consists of computing the intra-

group distance that measures for each attribute value how much objects are

close to each other. We propose the following steps to pick out the best

decision attribute:

1. We compute the intra-group distance between objects of S in terms of

their classes:

SumD(S) =
∑

Oi∈S

∑

Oj≥i+1∈S

dist(mΘ
i ,m

Θ
j ) (29)

where dist represents the Jousselme distance between the two bbas mΘ
i

and mΘ
j that correspond respectively to the bbas relative to the class of
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objects Oi and Oj.

2. Then, for each attribute value v, we compute SumD(SAk
v ) as follows:

SumD(SAk
v ) =

∑

Oi∈S

∑

Oj≥i+1∈S

DS
Ak
v

i .DS
Ak
v

j .dist(mΘ
i ,m

Θ
j ) (30)

where DS
Ak
v

i reflects the belonging of the object Oi to the subset SAk
v

and it is set to:

DS
Ak
v

i = 1− dist(mΘAk
v
,mΘAk

i ) (31)

mΘAk
v is a certain bba where mΘAk

v (v) = 1.

3. For each attribute Ak ∈ A, we compute SumDAk
(S) as follows:

SumDAk
(S) =

∑

v∈ΘAk

SumD(SAk
v ). (32)

4. We compute the DiffRatio relative to the attribute Ak, where the

SplitInfo will be calculated such as in Equation 14.

DiffRatio(S,Ak) =
SumD(S)− SumDAk

(S)

SplitInfo(S,Ak)
. (33)

Drawing inspiration from the clustering approach, the idea underly-

ing the DiffRatio approach consists of minimizing the intra distance

between objects, while maximizing the inter distance. That is the

DiffRatio measure allows to band together similar objects as much

as possible.

5. We repeat this process for each attribute Ak ∈ A and then select the

one that maximize the DiffRatio.
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Example 4. Let us continue with the training data given in Example 1 and

try to illustrate the attribute selection process when S=T on the basis of the

DiffRatio criterion.

• We start by calculating the intra-group distance between objects in terms of

their classes using Equation 29. We get:

* SumD(T )= 9.0741.

• Then, we compute the total distance induced by each attribute. We obtain:

* SumDIncome(T ) = 0.7479,

* SumDProperty(T ) = 3.5076,

* SumDUnpaidCredit(T ) = 3.8291.

• Then, we compute the DiffRatio for each attribute:

* DiffRatio(Income) = 4.3404,

* DiffRatio(Property) = 5.5677,

* DiffRatio(UnpaidCredit) = 5.2450.

From this, we can deduce that the attribute Property is the one that max-

imises the DiffRatio criterion. Accordingly, it will be chosen as the root

node of the tree.
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6.2.2. Partitioning strategy

Each training object Oi, within the DR-BDT classifier, may be part of more

than one subset SAk
v with a degree of belonging DS

Ak
v

i :

• When DS
Ak
v

i = 1, the object Oi belongs to the branch having v as a

value.

• When DS
Ak
v

i = 0, the object Oi may not belong to the branch having v

as label. In contrast, it will be part of the remaining branches.

• else, the object Oi belongs to all the branch of the attribute Ak

6.2.3. Stopping criteria

The stopping criteria relative to the DR-BDT approach are similar to those

of the GR-BDT:

1. Only one instance is part of the treated node.

2. Instances of the treated node belong to the same class.

3. There is no further attribute for checking.

4. The remaining attributes have DiffRatio equal or less than zero.

6.2.4. Structure of leaves

Leaves Lf , within this approach, may contain objects Oi with different class

labels θ ∈ Θ. Thus, each leaf Lf has to be characterized by a belief function

mΘ[Lf ] that is calculated in terms of the used approach.

Let Lf= v1f × . . . × vJf ∈ A1
f × . . . × AJ

f be the set of attribute values that

correspond to the branch leading to Lf (f ∈ [1, F ]) (i.e J corresponds to the
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number of edges from the tree’s root node to the leaf node). The leaf mass

mΘ[Lf ] will then be computed as:

mΘ[Lf ] = ∩©Oi∈Lf
m̂i

Θ (34)

where m̂i
Θ reflects the discounted bba relative to mΘ

i and is set to:

m̂i
Θ(θ) = (1− αf ).m

Θ
i (θ) θ ⊂ Θ (35)

m̂i
Θ(Θ) = αf + (1− αf ).m

Θ
i (Θ) (36)

with

αf =
1

J
.

J
∑

t=1

(1−D
S
At
f

vt
f

i ). (37)

Example 5. We move on now to generate the DR-BDT classifier relative to

the training data given in Table 1. According to Example 4, we notice that

the attribute Property has outperformed both the UnpaidCredit and the

Income attributes. Consequently, it should be chosen as the decision tree

root. The first generated tree is given in Figure 3.

Both subsets SProperty
Greater = {O1, O2, O3, O5, O6} and S

Property
Less = {O1, O3, O4, O5, O6}

have not fulfilling the stopping criteria. Therefore, the same process has to

be applied for these subsets until a stopping criterion is satisfied. The final

generated decision tree is given in Figure 4.

7. Experimentation settings and results

In this section, we evaluate the performance of our proposed decision tree

approaches. In the following, we detail our experimentation settings and

results.
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Property

Unpaid

Credit

Unpaid

Credit

Greater Less

Figure 3: The first generated tree of the DR-BDT classifier

7.1. Experimentation settings

With the aim of evaluating the performance of our three evidential classifiers,

we made experiments on several real world databases acquired from the UCI

machine learning databases [32]. We have also picked out several databases

that have missing values. Table 4 provides the details of the used databases,

where #Instances, #Attributes, #Classes and #Missing denote, respectively,

the number of instances, the number of attributes, the number of classes and

the existence or not of missing values.

Table 4: Description of databases

Databases #Instances #Attributes #Classes #Missing

Breast Cancer 286 9 2 Yes

Primary Tumor 339 17 22 Yes

Voting Records 435 16 2 Yes

Soybean 638 36 2 Yes

Ecoli 336 8 8 No

Hepatitis 155 19 2 Yes

Auto MPG 398 8 3 Yes

Wine 178 13 3 No

Echo-cardiogram 132 12 2 Yes
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Property

Unpaid

Credit

Unpaid

Credit

Income Income Income Income

L1 = {O1, O6} L2 = {O3} L3 = {O2} L4 = {O5} L5 = {O1, O6} L6 = {O3} L7 = {O5} L8 = {O4}

Greater Less

Y es No Y es No

High Low Average Low High Low Low No

Figure 4: The final generated tree of the DR-BDT classifier

From a practical point of view, missing values have to be imputed and con-

tinuous variables have usually to be discretized into bins. However, the un-

certainty introduced by missing values imputation and continuous variables

discretization have to be addressed. In this paper, we propose to express data

uncertainty with the belief function theory. From this, we assign certain bbas

to categorical attribute values and we transform the continuous values into

beliefs using the Evidential c-Means approach (ECM) [33, 34]. Regarding
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the missing data, we propose to impute these data using the Nearest Neigh-

bors imputation approach [35]. As we handle evidential data, we used the

Jousselme distance measure instead of the standard distance metrics for com-

puting the distance between instances. That is to say, the distance between

the object with missing values and the objects with complete values should

be calculated. The k Nearest Neighbors objects is then used for the imputa-

tion process. So, we assign, for each object with a missing attribute value,

the mean bba of its k-Nearest Neighbors corresponding to that attribute.

Two kinds of experimentation have been considered. The first one aims

to evaluate the performance of our decision tree versions against standard

decision tree classifiers, particularly the C4.5 algorithm. Our second exper-

imentation concerns the evaluation and the comparison of our decision tree

approaches against existing evidential classifiers. For the comparison pro-

cess, we have run the 5-folds cross validation technique and we have relied

on the Percentage of Correctly Classification measure (PCC) as an evaluation

criterion.

7.2. Experimentation results

This Section is devoted to comparing our proposed decision tree approaches

over standard and evidential classifiers. Before tackling the comparison pro-

cess, we suggest to compare both the GR−BDT and the DR−BDT in the

way of selecting decision attributes. That is to say, we relied on the Spear-

man’s rank correlation coefficient [36] for measuring the rank correlation be-

tween both approaches achieved at the root node. This rank measure takes

values in the range between -1 and 1. A value of -1, 0 and 1 state respectively
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the case of negative correlation (different and dependent results), no corre-

lation (different and independent results) and positive correlation (similar

results) between the GR-BDT and the DR-BDT. Table 5 provides the rank

correlation results for the different databases, where ICM corresponds to the

Index Correlation Measure.

Table 5: Rank correlation approach between the GR-BDT and the DR-BDT

Databases ICM

Breast Cancer 0.11

Primary Tumor -0.67

Voting Records 0.32

Soybean 0

Ecoli -0.89

Hepatitis 0.09

Auto MPG -0.4

Wine -0.15

Echo-cardiogram -0.73

The results obtained in Table 5 indicate the high difference between the

GR-BDT and the DR-BDT when selecting attributes. In fact, almost all

databases have yielded index correlation measure in the range [0,-1]. Note

that, we compare both the GR-BDT and the DR-BDT against the standard

C4.5 algorithm and some evidential decision tree classifiers.

7.2.1. Experimentation1: Comparison against the C4.5 algorithm

In this section, we experiment our proposed approaches and we compare

them to the C4.5 algorithm using evidential databases. To do so, we trans-

form categorical datasets with missing data upon the use of the evidential

database transformation process. The comparison results in terms of the
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PCC criterion is given in Table 6. From this table, we can remark that the

mean PCC yielded by the GR-BDT (84.68%) and the DR-BDT (85.61 %)

has outperformed that obtained using the C4.5 algorithm (75.53%). From

this, we can deduce that both our approaches yield interesting results and we

can conclude that our proposed decision tree approaches have outperformed

the C4.5 algorithm.

Table 6: Comparison of percentage of correctly classification against the C4.5 algorithm

(%)

C4.5 GR-BDT DR-BDT

Breast Cancer 74.12 ± 0.44 78.14 ± 0.17 76.52 ± 0.23

Primary Tumor 40.70 ± 0.19 69.23 ± 0.40 72.43 ± 0.27

Voting Records 96.55 ± 0.17 97.01 ± 0.14 97.83 ± 0.36

Soybean 90.77 ± 0.09 94.35 ± 0.20 95.67 ± 0.15

Mean 75.53 84.68 85.61

7.2.2. Experimentation 2: Comparison with the naive and the E2M classi-

fiers

This experimentation concerns the comparison of our decision tree approaches

against the E2M DT and the naive approach presented in [37]. The exper-

imentation results are presented in Table 7, where we can remark that the

mean PCCs achieved by the GR-BDT and the DR-BDT are a little bit

greater then that obtained by the E2M DT and the Naive classifier. From

this, we can deduce the efficiency of our proposed decision tree algorithms

against the Naive and the E2M DT classifiers.
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Table 7: Comparison of percentage of correctly classification against the naive and the

E2M algorithms (%)

Naive E2M DT GR-BDT DR-BDT

Breast Cancer 74.63 ± 0.13 79.51 ± 0.27 78.14 ± 0.17 76.52 ± 0.23

Primary Tumor 63.17 ± 0.33 68.76 ± 0.05 69.23 ± 0.40 72.43 ± 0.27

Voting Records 81.89 ± 0.27 95.65 ± 0.14 97.01 ± 0.14 97.83 ± 0.36

Soybean 89.23 ± 0.24 93.86 ± 0.32 94.35 ± 0.20 95.67 ± 0.15

Ecoli 83.56 ± 0.02 85.11 ± 0.17 84.26 ± 0.09 84.92 ±0.21

Hepatitis 78.05 ± 0.36 83.55 ± 0.31 85.37 ± 0.19 84.79 ± 0.35

Auto MPG 80.60 ± 0.07 85.23 ± 0.29 93.18 ± 0.15 92.56 ± 0.26

Wine 72.33 ± 0.37 75.14 ± 0.11 78.32 ± 0.32 80.47 ± 0.08

Echo-cardiogram 94.56 ± 0.43 97.14 ± 0.15 96.26 ± 0.34 95.69 ± 0.16

Mean 79.78 84.88 86.23 86.76

8. Conclusion

In this paper, we have proposed two decision tree classifier techniques to cope

with imperfect knowledge expressed within the evidence theory. Precisely,

we have tackled data with uncertain attribute values as well as uncertain

class labels. Regarding the future research directions, we look forward to

investigating more robust techniques for uncertain data modeling within the

belief function framework. Notably, the case of incomplete data should be

well studied and an extension of the E2M algorithm in the context of eviden-

tial data may be quite sufficient. We intend also to apply a pruning strategy

with the aim of improving predictive accuracies. It would also be interesting

to develop ensemble of our GR-BDT and DR-BDT. More concretely, we look

forward to constructing GR-BDT and DR-BDT random forests.
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