

Design of mechanical structure of Th Vi PiEHs and electronic interface of hybrid energy harvesters

Neetu Kumari, Micky Rakotondrabe

▶ To cite this version:

Neetu Kumari, Micky Rakotondrabe. Design of mechanical structure of Th Vi PiEHs and electronic interface of hybrid energy harvesters. COMSOL Conference 2020 Europe, Oct 2020, Online, France. Proceedings of COMSOL Conference 2020 Europe, pp.1-1, 2020. hal-03354060

HAL Id: hal-03354060 https://hal.science/hal-03354060

Submitted on 1 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible

This is an author's version published in: http://oatao.univ-toulouse.fr/28129

To cite this version:

Kumari, Neetu and Rakotondrabe, Micky Design of mechanical structure of Th Vi PiEHs and electronic interface of hybrid energy harvesters. (2020) In: COMSOL Conference 2020 Europe, 14 October 2020 - 15 October 2020 (Online, Unknown).

Any correspondence concerning this service should be sent to the repository administrator: <u>tech-oatao@listes-diff.inp-toulouse.fr</u>

Design of Mechanical Structure of Th-Vi PiEHs and Electronic Interface of **Hybrid Energy Harvesters**

NEETU KUMARI, MICKY RAKOTONDRABE

Motivation and Concept

Target

The aim is to harvest energy from ambient vibration and ambient temperature in order to power sensors in an extreme environment such as nearby thermal engines in cars. Piezoelectric, pyroelectric and thermal expansion effects are the principle of energy conversion. The energy harvested from ambient temperature is considered in our work as additional to the energy harvested from ambient vibration, and not as the principal source

Challenges

While vibrational energy harvesting through piezoelectric materials raised numerous works in the literature, harvesting thermal energy poses great challenges when the ambient temperature is constant or is varying slowly. To deal when in this case, we are exploring the combination of gas expansion and the above effects, with a harvester structure that is composed of the piezoelectric transducers themselves placed in closed-structure with ideal gas

Approach "Closed system"

Thermodynamic cycle consists of a linked sequence of a thermodynamic process that involves

transfer of heat and work into and out of the system while varying temperature, pressure and other state variables within the system, and that eventually return the system to its initial state.

During a closed cycle, the system returns to its original thermodynamic state of temperature and pressure

For the hybrid transducer, the thermodynamic cycle is converting mechanical work to increase the temperature and vice versa (decrease in temperature will get converted into mechanical work). The system has 2 isotherms (T_h and T_l), which will help pyroelectric material to harvest Energy

LiNbO

Imperial College

frecinisys

With the help of this new closed system concept we will always be able to harvest energy even at constant temperature, as the gas inside give rise to temerature fluctuation because of joules thompson effect therefore the pyroelectric part will be able to harvest energy with the combination of piezoelectric part and this will lead to better electrical ouput.

References 1.B. Gusarov, E. Gusarova, B. Viala, L. Gimeno, O. Cugat, PVDF piezoelectric voltage coefficient in-situ measurements as a function of applied stress, Journal of

Applied Polymer Science (2015). 2.B. Gusarov, E. Gusarova, B. Viala, L. Gimeno, S. Boisseau, O. Cugat, E. Vandelle, B. Louison, Thermal energy harvesting by piezoelectric PVDF polymer coupled with shape memory alloy, Sensors & Actuators: A. Physical, submitted (2015). for energy harvesting applications, in Proc. PowerMEMS London, Journal of Physics

Contact

Neetu kumari AS2M Department, FEMTO-ST Institute Neetu.kumari@femto-st.fr

