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Abstract. Designing software architectures for Big Data is a complex
task that has to take into consideration multiple parameters, such as
the expected functionalities, the properties that are untradeable, or the
suitable technologies. Patterns are abstractions that guide the design of
architectures to reach the requirements. One of the famous patterns is the
Lambda Architecture, which proposes real-time computations with cor-
rectness and fault-tolerance guarantees. But the Lambda has also been
highly criticized, mostly because of its complexity and because the real-
time and correctness properties are each effective in a different layer
but not in the overall architecture. Furthermore, its use cases are lim-
ited, whereas Big Data need an adaptive and flexible environment to
fully reveal the value of data. Nevertheless, it proposes some interest-
ing mechanisms. We present a renewal of the Lambda Architecture: the
Lambda+ Architecture, supporting both exploratory and real-time an-
alyzes on data. We propose to study the conservation of properties in
composition of components in an architecture using the category theory.
We relate a real implementation of our approach to architecture a social
network observatory platform.

Keywords: Architecture pattern, Category theory, Lambda Architec-
ture

1 Introduction and motivations

All information systems have a common point: they need an architectural de-
sign before being developed and deployed. The architecture must guarantee some
properties and guide the consistency of the overall structure of the information
system. In this context, architectural styles and patterns are used to build a
system having the expected characteristics for each of its part as well as for
its entirety, and to state the requirements of the technologies and programming
techniques needed to achieve the goal sought. Thus, global requirements such as
scalability, performance, reliability must be clearly identified to select the style of
architecture, the different components and the interactions among them [23], and
then choose technologies with properties (such as ACID for databases or micro
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batch capabilities for stream processing) that fit all of the previous choices. The
absence of coherence in a definition of an architecture can lead to the dreaded
Big Ball of Mud [15], that reduces greatly the maintenance and evolutivity ca-
pabilities of the system. To help avoiding this situation, there are two major
elements among architectural design artifacts: styles and patterns.

Styles are coarse grained specifications of the organisation of the architecture,
that guide the interactions among components [1]. Each style brings naturally
some architectural characteristics, while also imposing trade-offs on others. So,
there is not a better style than the others, but solely situations where a style
would be more suited to fulfill the expected characteristics. Some examples of
architecture styles are the layered architecture [28], the microservices architec-
ture [32] and the event-driven architecture [9].

An architecture pattern is a specific abstraction of a fixed architecture style
for a particular set of essential characteristics [17]. It helps to identify within a
style which combination of components will be more suited for a given context,
but still provides enough freedom to adapt the implementation of the pattern
to specificities of each situation. The level of detail can vary, as well as the
restrictions of the application of the pattern. The Blackboard pattern [11], the
Model-View-Controller [12] and the Lambda Architecture [29] are examples of
architecture patterns. The Lambda Architecture is well-known in a Big Data
context. It was introduced at the beginning of stream processing systems, and
thus is oriented to compensate for the flaws of an emerging technology rather
that taking advantage of the capabilities of such a technology.

Recent researches in software architecture try to formally define styles and
patterns, to anticipate effects of the composition of components, and thus know-
ing beforehand the result of the evolution of a part of the architecture [6, 20].
When architectures evolve and grow, they can combine several smaller parts of
architectures developed separately. When building a large scale, complex and
distributed architecture, its parts can embed architecture styles on their own.
These different cases can result in compositions of smaller architecture parts
with their proper styles and patterns, so formalization should be able to express
and control these compositions. Category theory [13] is a promising approach for
formalization, due to its ease to represent compositions as it considers morphims
and functors as first class citizens, and to its already existing proximity to the en-
gineering software world, particularly with functional programming. Moreover,
its graphical representation is a visual help to understand the formalization, and
leads to a better comprehension of the system [35].

In this article we propose the Lambda+ Architecture pattern, an update
of the Lambda Architecture, and a formalization to study the conservation of
properties in compositions of components using the category theory. The rest
of the article is organized as follows: section 2 describes the original Lambda
Architecture pattern, as well as its uses and its flaws ; Section 3 uses the category
theory to prove the loss of properties in the Lambda Architecture ; Section 4
shows our improved Lambda+ Architecture pattern ; Section 5 describes a real
applied example of our pattern and ; Section 6 concludes this article.
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2 Lambda Architecture and related work

The properties of correctness, low latency and fault-tolerance have always been
a major concern when designing architectures. In [23], Lampson sketches some
suggestions that are still relevant today, and that can be found, among others, in
the Lambda Architecture, introduced by Marz in 2011 [29, 30]. The objective is
simple: to compute predetermined queries with a very low latency and to ensure
the correctness of the processing (figure 1). To do so, the Lambda is composed
of three layers: the batch layer, the serving layer, and the speed layer.

New data

Batch layer

Speed layer

Master
dataset

Batch
processing

Incremental
processing

Speed view

Speed view

Batch view

Batch view

Serving layer

Fig. 1: Overview of the Lambda Architecture

The batch layer takes care of storing raw data in the master dataset and
of executing the computations on the batch of data. The correctness of the re-
sults is the main concern of this layer. With the master dataset, it is possible
to recompute the whole set of data if the batch processing appears to be erro-
neous, or if the needs have evolved. As the batch processing is only computed
once in a while, the speed layer has to compensate this downside by a low
latency capability. The computations are the same as in the batch layer, but
the processing has to be incremental. However, this layer lacks the correctness
property. The batch processing puts to disposal its results in the serving layer,
to facilitate their access by users. The serving layer has often a role of indexing
and presenting data, to enable a fast access to the views created by the batch
layer. To keep results up-to-date, the serving also appends the speed views to
the batch views.

With these specifications, the advantages of the Lambda Architecture are a
strong fault-tolerance for machine and human faults, a guarantee of a correct
result with the batch layer and a low latency with the speed layer. It has inspired
many Big Data architectures, such as RADStack [38], which is an open-source
plateform used to produce interactive analyzes. They developed Druid to use
it as the serving layer, that supports real-time and batch data ingestion. It is
also used to allow guided exploratory analyzes concerning pre-determined in-
sights. In [31], the authors apply the Lambda Architecture to process data of
smart grids. They add a querying and an analytics layers, in order to propose
more flexibility in the querying capabilities that overcomes the fixed precom-
puted views of the Lambda. The system developed in [25] uses the Lambda
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Architecture to develop a recommendation system for restaurants. It alters the
original pattern of the Lambda, by having different computations in the batch
and in the speed layers. The batch layer is responsible for executing heavy ma-
chine learning algorithms, while the speed layer exploits those results to propose
recommendations to users. LinkedIn develops Pinot [18], a real-time distributed
datastore designed for processing OLAP queries with low latency. They use the
Lambda Architecture pattern to provide LinkedIn users with near real-time an-
alytics functionalities, such as who viewed their profile. They compute the speed
views in real-time, and when the views are complete (i.e., when they represent a
day or a hour depending on the granularity) they become the batch views. The
incoming data are then computed in a new speed view.

However, the Lambda has also been criticized a lot, due to its complexity
to maintain and to evolve both the speed and the batch layers, that have to
perform the same computation, but with different paradigms. It also lacks in
flexibility, as its goal is to answer only predetermined queries. Thus, as saw in
the examples of implementation of the Lambda Architecture, alternative use
cases such as exploratory analyzes require to modify the pattern. Furthermore,
by delegating the correctness property only to the batch layer and not to the
speed layer, the low latency and the correctness properties cannot be obtained
simultaneously. To clarify this statement, the Lambda has to be replaced in the
context of its creation. At this time, streaming systems were only at their early
stages, and thus did not have all the capabilities that they have today.

2.1 The evolution of stream processing systems

Streaming systems [4] had begun to emerge approximately at the same time as
the conception of the Lambda Architecture. Marz had proposed Apache Storm in
2011 [36], the first stream processing system to encounter success in the industry
field. It was born from the ascertainment that to produce a system with a real-
time component, it took more time to create workers and queues and to ensure
that their interactions are as expected than to develop domain logic. In 2015,
Twitter had proposed Apache Heron [22]. They used previously Apache Storm,
but needed a system more suited to their needs, with better performance, scaling
capabilities and easier to manage. Spark Streaming [39] in 2012 took a different
approach and proposes a micro-batch streaming system, relying on the Spark
engine dedicated to the batch processing. MillWheel [3] and Apache Flink [8]
also joined the world of streaming systems during those years.

The efficiency of streaming systems, on top of the low latency, comes with
the guarantee of the processing [4]. There are three main levels of guarantee:
1) at-most-once, where elements are never processed more than once, but can be
never processed, 2) at-least-once, where elements are never processed less than
once, but can be processed multiple times, and 3) exactly-once, that surpasses the
at-most-once and at-least-once guarantees, and thus each element is processed
once and only once, allowing to compute correct results. However, the exactly-
once guarantee is utopian, and in practice it is closer to effectively-once, where
elements can be processed several times, but the effect on the state of the stream
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is only counted once. This adds a strong constraint: the processing must not have
side effects that are not idempotent. It means that in case of the reprocessing of
a message, the global result must not be altered. When the Lambda Architecture
came out, stream processing systems had mostly only the at-most-once or at-
least-once guarantee, and could not offer more. So, the Lambda can be seen as
a mean to compensate flaws of an emerging technology, rather than a pattern
that fully exploits it.

2.2 Toward the end of the Lambda Architecture

The Kappa Architecture [21] proposes to get rid of the complexity, by keeping
only the speed layer, arguing that it is enough to reach the goal of the Lambda.
While this is a correct statement regarding the evolution of stream processing
systems, it also discards the master dataset and the fault-tolerance property,
one of the strengths of the Lambda. Another flaw in the Lambda Architecture
is that it is loosely defined. Several interpretations of the serving layer can be
found, that include or not the speed views. The aggregation of the speed and the
batch views is not clearly defined, especially for unordered streams of data. The
lack of precise definition extends to the style of the architecture. Each part is
called layer, whereas layered architectures are a stacking of multiple components,
where each component can interact with the components directly above or below
it [33]. The event-driven architecture would be a more suited style. This leads
to a need of a stricter definition of the architecture, as well as an adaptation of
the role of its components, updated following the gain in maturity of the stream
processing systems.

3 Using the category theory to study conservation of
properties

In the research field of software engineering for architecture design, the need for
proper theory and formalization has raised importance in the last decade [6,
20]. Designing, specifying and implementing software architectures are com-
plex tasks, that require careful specifications to link and preserve characteristics
through all the steps of creation. The development of theory in this field requests
both practical and theoretical skills, in order to propose a model suited to the
expectations, that takes into consideration the imperfections of the real-world of
engineering.

ADLs [10] (Architectural Description Language) have an important role to
formalize architectures. Boxes and lines ADL as well as ADL based on UML [7]
cannot easily verify properties, due to their weak formalization. We focus on
those ADL having well-established theoretical foundations. In [1], Abowd et al.
provide a formal framework in Z to achieve a description of architectural styles.
They argue that diagrams are not sufficient to impose only one meaning to rep-
resent an architecture, and that they can lead to misunderstanding. Malkis and
Marmsoler in [27, 28] work on a formalization of architecture styles. They use
the theory of sets and first order logic to build a model with ports and services
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to represent interactions among components. They apply their proposal on two
styles: the layered and the service-oriented architecture. In [24], Le Métayer uses
the graph theory to propose a formalization of architectures. Nodes are entities
of an architecture (client, server, or object entity depending on the level of ab-
straction), and links are communications between those entities. Mabrok in [26]
tries a different approach, and uses the category theory to formalize the require-
ments and the attributes of an architecture. Ologs, a particular application of
category theory thought to represent the study of the ontology of a subject, is
used to organize the architecture.

Existing ADLs are based on set theory, graph theory and use first or high
order logic to check properties or consistency of architectures. However, they do
not study the conservation of those properties in compositions of components.
To fill this need, category theory [13] is a promising approach: it allows to switch
from a model to another or to navigate among abstraction levels, and thus to ex-
press various problems from different science fields, such as mathematics, physics
or computer science [35]. By focusing on relations (the morphisms) and compo-
sitions, it proposes powerful mechanisms that can be applied to architectures.
In this paper, we focus on studying the conservation or the discarding
of properties in compositions of components, by relying on the be-
haviour of functors combined to preorders. This section only introduces
some notions of category theory useful to understand this formalization, and can-
not relate all the subtleties and the depth of it. We refer the reader to [35] for
a more complete explanation of the category theory, and to the supplementary
material available1.

A category C is composed of four basic elements: 1) Ob(C), a collection
of objects ; 2) for each pair x, y ∈ Ob(C), a set HomC(x, y) representing mor-
phisms from x to y, namely a mean to get an object y (the codomain) from an
object x (the domain). A morphism f from x to y is noted f : x→ y ; 3) for each
x ∈ Ob(C), a particular morphism idx known as the identity morphism on x ; 4)
for each triplet x, y, z ∈ Ob(C), a composition ◦ : HomC(y, z) × HomC(x, y)→
HomC(x, z). For two morphisms f : x → y and g : y → z, the composition is
noted g ◦ f : x → z. And of two laws: 1) for a morphism f : x → y with
x, y ∈Ob(C), we have f◦ idx = f and idy◦f = f ; 2) for f : w → x, g : x→ y and
h : y → z with w, x, y, z ∈ Ob(C), we have (h◦g)◦f = h◦ (g ◦f) ∈ HomC(w, z).

A product of two categories C1 and C2 produces a new category which
objects are all the possible pairs (x, y) with x ∈ Ob(C1) and y ∈ Ob(C2) and
morphisms (x, y) → (x′, y′) are pairs (f, g) where f : x → x′ ∈ HomC1(x, x′)
and g : y → y′ ∈ HomC2(y, y′).

Two particular cases of categories are of special interest to formalize archi-
tectures. The preorders, in which between each pair x, y ∈ Ob(C), there exists
a unique morphism f : x→ y. If there exist f : x→ y and g : x→ y, then f = g.
The power sets, that are sets which contain all the subsets of a given set. In
a category, power sets can be organized as preorder, where morphisms link two
subsets if the first subset is integrally included in the second.

1 https://github.com/AnnabelleGillet/CategoryTheoryForArchitectures
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To formalize architectures, we define three core categories: 1) the Components-
category, in which objects are all the components of the architecture, without
any morphisms ; 2) the Architecture-category which contains all the compo-
nents and with morphisms representing the interactions between components,
f : x → y means that the component x sends data to the component y ; 3)
the ComponentsPS-category containing all the objects of the power set of the
components, that will be used to connect the components to properties. To link
those categories, we use functors.

A functor F maps a category C to a category C ′. It is noted F : C → C ′,
and affects both objects (F : Ob(C) → Ob(C ′)) and morphisms (for each pair
x, y ∈ Ob(C), we have F : HomC(x, y) → HomC′(F (x), F (y))). To be valid, a
functor must observe two laws: 1) the preservation of identities: ∀x ∈ Ob(C),
F (idx) = idF (x) ; 2) the preservation of composition: for any triplet x, y, z ∈Ob(C)
with morphisms g : x→ y, h : y → z, we have F (h ◦ g) = F (h) ◦ F (g).

To link the categories we have previously defined, we use functors: 1) CA :
Components→ Architecture to integrate components in the architecture ; and
2) CCPS : Components → ComponentsPS to study the behaviour of compo-
nents in a set of different components.

Properties are represented with preorders, and each value of a property is an
object. Morphisms go from the most satisfying value of the property to the least
satisfying value. The symbol > is used as the top value to neutralize a component
when it is not concerned by the property. Properties can be simple (only with
true and false objects), multivalued, or more complex, and resulting of the
composition of several other properties: in this case, properties are associated
with a product of categories, and this product is linked to the next property
with a functor that maps each combination to its signification in the next level
property. The category ComponentsPS is connected to every property of level
one (those than are not the result of a product of categories).

This formalization is applied on the Lambda Architecture, to formally prove
its weaknesses. A composition exists with the batch, the serving and the speed
layers because the serving layer merges the batch and the speed views to provide
users with results. Using the category theory, we can extract some high-level
knowledge from the known facts, given below (figure 2). The morphisms inside
categories ComponentsPS and Correctness are defined as follows (with the
notation B = Batch, Se = Serving and Sp = Speed):

CPS morphisms with ∅ as domain are omitted C >− t : > → True
(ComponentsPS) B − BSe : B → BSe (Correctness) t− f : True→ False

Se− BSe : Se→ BSe id> : > → >
BSe− BSeSp : BSe→ BSeSp idt : True→ True
Sp− BSeSp : Sp→ BSeSp idf : False→ False

The morphisms inside the category Real − time are the same as those of
the Correctness-category. The effect on the objects of functors that link the
ComponentsPS-category to the categories of the properties are given below:

CPS − C B → True
(Correctness) Se→ >

Sp→ False

CPS − RT B → False
(Real− time) Se→ >

Sp→ True
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From these given facts, we want to deduce the value taken by the first com-
position of components {Batch, Serving} for the correctness property. For this,
we have to resolve the effect of the functor CPS − C on the morphisms:

CPS − C : HomCPS(B,BSe)→ HomC(CPS − C(B), CPS − C(BSe))

CPS − C : HomCPS(Se,BSe)→ HomC(CPS − C(Se), CPS − C(BSe))

where the underlined elements are known. To establish the value of CPS −
C(BSe), we have to find two morphisms in the category C that would have the
same codomain: one with the domain True (CPS − C(B)), the other with the
domain > (CPS−C(Se)). Only the pair (>−t, idt) satisfies the requirements. As
the codomain is True, it allows us to deduce that CPS−C : BSe→ True. Thus,
the composition {Batch, Serving} yields True for the correctness property.

We use the same mechanism to deduce the value taken by the overall archi-
tecture for the same property:

CPS − C : HomCPS(Sp,BSeSp)→ HomC(CPS − C(Sp), CPS − C(BSeSp))

CPS − C : HomCPS(BSe,BSeSp)→ HomC(CPS − C(BSe), CPS − C(BSeSp))

This time, the pair of morphisms that meets the requirements is (t − f ,
idf ). As the common codomain is False, it allows us to deduce that the overall
architecture yields False for the correctness property.

Batch SpeedServing

Batch
Speed Serving

Components

Architecture

{Batch} {Speed}{Serving}

ComponentsPS

∅

{Batch,Serving}

Batch,Serving,Speed}

Correctness

False True ⊤

Real-time

False True ⊤

Fig. 2: Study of the preservation of properties in the Lambda Architecture2

The same reasoning can be applied for the real-time property, that yields
False for the overall architecture. With the category theory, we proved that
the real-time and correctness properties are effective in a different layer, but
that they do not hold in the whole Lambda Architecture. We can conclude with
a fact about compositions of components in architectures: if an individual
component does not support a property, it will cause its loss in a
composition of components.

2 To simplify the schema, the ComponentsPS-category has only individual compo-
nents, as well as possible compositions of the architecture, and only the links from
components to properties that does not lead to > are represented.
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4 The Lambda+ Architecture pattern

To improve the Lambda Architecture, the correctness property should hold for
all the components. Furthermore, the fault-tolerance should be kept, but as the
reprocessing of data in a batch fashion is often incompatible with the real-time
property, it should be integrated as an alternative running composition, activated
only in case of a technical failure or to satisfy new needs. Use cases should also
gain in flexibility, and the complexity induced by the development of the same
process with different paradigms in the speed and in the batch layers should be
avoided.

The Lambda+ Architecture is meant to be a renewal of the Lambda Archi-
tecture, by improving the support of the correctness property and by leveraging
two main functionalities: 1) storing data for allowing flexible and exploratory
data analyzes, and 2) computing in real-time predefined queries on data streams
in order to have insights on well-known and identified needs. The duality be-
tween exploratory analyzes and predefined queries is of primary importance in
a Big Data context, where the combination of volume and variety of data over-
comes the capability of finding all the insights hidden in data. The fault-tolerance
mechanism of the Lambda is kept, but is only activated when needed.

The adopted layer model of the Lambda Architecture, as stated in section 2,
does not match the style of the architecture. Instead, the Lambda+ is composed
of a set of components interacting together asynchronously with messages. This
pattern borrows its principles from the Event-Driven Architecture style, which is
well-suited for achieving performance, scalability and evolutivity. The trade-offs
of this architecture style is a lack of simplicity and the difficulty of testing the
whole architecture, due to the dynamic nature of the messaging workflow and
the chaining of various processing components. Figure 3 shows an overview of
the Lambda+ Architecture which includes five main components.

Master Dataset

Real-time insights

Storage component

Streaming ETLData traffic
controller

New data

New data

New data

Fig. 3: Overview of the Lambda+ Architecture

The data traffic controller component is the entry point of the Lambda+
pattern. Data sources can have very different natures, such as an extraction from
an existing store or a connection to an endpoint API that provides data. This



10 A. Gillet et al.

diversity requires a structuring of the stream of data, that can be achieved in
different ways depending of the functional needs behind the architecture. The
data traffic controller organizes data into streams. The filter and pipe archi-
tecture style is a suitable fit for this component: only lightweight processing
are applied, such as removing duplicates or adding a timestamp, before sending
data in a communication system that allows other components to have access
to them. This mechanism yields a great independence among components, and
is the basement for the fault-tolerance characteristic.

The batch layer has no reason to be anymore, and it can be replaced by a
component more suited to the situation: the streaming ETL component. ETL
processes have been part of analytics since a long time, mainly used to populate
a data warehouse. However, these last years the need for more freshness in data
has become a major preoccupation, and the batch behaviour of ETL — often
run once per day at night — cannot fulfill this need. So, several works focus
on executing ETL in real-time in order to perform low latency analysis [37, 14].
Streaming ETL transforms data continuously, rather than periodically as it is
the case in classic batch ETLs. Stream processing systems are often used to
achieve this goal. The role of the streaming ETL component is to populate the
storage component, and to transform data if needed for doing so. It works in
real-time when data arrive from the data traffic controller, and also in deferred
time when data arrive from the master dataset. Data are extracted from the
master dataset for example when a schema modification occurs in the storage
component.

The aim of the master dataset component is the same as in the Lambda
Architecture. It stores all the raw data, in case of an evolution of the streaming
ETL component or of a failure that requires the re-processing of the data. This
component contributes to the fault-tolerance property. To avoid the complexity
blamed on the Lambda Architecture with the duplication of processing in the
batch and speed layers, data are not directly processed in this component, but
rather only extracted from the master dataset, to then be sent to the streaming
ETL component. Thus, to maintain or evolve the architecture, only processes in
the streaming ETL component have to be modified, avoiding at the same time
one of the most criticized pitfall of the Lambda Architecture.

The real-time insights component is dedicated to compute predetermined
queries or algorithms directly on the stream of data, in real-time, essentially us-
ing stream processing systems. The latency and the correctness are critical, but
the technical advances of stream processing systems can handle these require-
ments. Computations can be simple, such as an aggregation (count or sum), or
more complex, such as anomaly detection in time series [2]. Operations in this
component are well identified and defined, and procure useful insights about
data being processed. The storage component can be used to explore data and
to find the value they can offer. This knowledge can then be exploited to au-
tomate the extraction of value in the real-time insights component. The result
of these processing can be stored in the storage component, but due to the be-
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haviour of stream processing systems detailed in section 2, this storage step has
to be idempotent.

The storage component can be of different nature following the needs. It
can be a standard data warehouse, a polystore or a data lake. This storage system
is fed with data from the streaming ETL component and eventually by the real-
time insights component. It puts to disposal processed data in a more suitable
format, used for offline and exploratory analyzes. Data warehouses are a mature
technology, that have been around before the era of Big Data [19]. They often
gather data from different sources among an organisation with the help of ETL
processes, in order to format and clean data for a business intelligence use. Data
warehouses are built to help business analysts by structuring data according to
a static schema for a given subject. By doing so, the analyst must only know
the schema of his subject to extract value from data. However, this structuring
induces a lack of flexibility. A polystore refers to a system that integrates het-
erogeneous database engines, storage systems and multiple data manipulation
or programming languages using different paradigms [16]. The use of polystore
brings several advantages: it allows to organize data according to particular use
cases (e.g. graph DBMS well support linked data and graph traversal or path
queries) and it enables parallel processing among several datastores according
to the specificities of each kind of system in the polystore [5]. Data lakes are less
well-defined than data warehouses or polystores [34]. They are often a solution
when all data available are harvested, but their use from an analytical point of
view is not yet defined. They have emerged to compensate the lack of flexibil-
ity of data warehouses. In these lakes, all data are gathered without a common
schema, often in a unstructured or semi-structured form. Yet, with this freedom
comes a high heterogeneity among data of the lake (in their source, their for-
mat, their content, their veracity, etc.), which can turn the data lake into a data
swamp if it is not correctly organized.

Data traffic
controller

Master
dataset

Streaming
ETL

Real-time
insights Storage

Data traffic
controller

Master
dataset

Streaming
ETL

Real-time
insights

Storage

Components

Architecture

{DTC} {MD} {SE} {RTI} {S}

ComponentsPS

∅

{DTC,MD,SE,RTI,S}

{DTC,SE,RTI,S}

No guarantee

At least once

At most once

Effectively once ⊤

Processing
guarantee

Streaming
Correctness

False True

Side effect not
idempotent

Side effect
idempotent ⊤

Streaming
Side effect

X
⊤

Real-time

False True ⊤

Fault tolerance

False True ⊤

Batch
Correctness

False True ⊤

Fig. 4: The formalization of the Lambda+ Architecture pattern

The application of the formalization on the Lambda+ Architecture pattern
(figure 4) is straightforward and follows the same mechanism that the one ex-
plained in section 3. A more detailed proof is given in the supplementary mate-
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rial, including the one for products of categories. Two running compositions of
components are possible: with or without the master dataset, as it is only linked
to the streaming ETL when data have to be reprocessed. There is no compo-
nent that invalidates the correctness property, so it cannot be lost in
a composition, and, contrary to the Lambda Architecture, this prop-
erty holds for the overall architecture. Concerning the real-time property,
only the master dataset induces its loss, but in exchange the Lambda+ activates
the fault-tolerance property. It is an acceptable trade-off, as the master dataset
is only used in emergency cases, to reprocess data after a failure or when the
needs change.

5 An example: Hydre
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Master dataset Streaming ETL

Visualization

Data analysis

Analytics

Fig. 5: The Hydre architecture

We have applied the Lambda+ pattern in an interdisciplinary research project
(Cocktail) which aims at studying the discourses in the domains of health and
food, as well as identifying weak signals in real time using social network data.
We needed an architecture able of supporting a continuous gathering of data,
while allowing real-time and flexible off-line analytics. It should also have a
strong fault-tolerance property, as the use of data could change depending on
the results of our researches. It resulted in the Hydre architecture (figure 5),
that has been in production since April 2019, to harvest data from Twitter,
compute real-time insights and store data for exploratory analyzes. It uses a
20 nodes Hadoop cluster, a 5 nodes Kafka cluster and 4 other servers to host a
polystore and applications for exploratory analyzes, including Jupyter notebooks
and Spark/Scala analytics processes. The major components of the Lambda+
Architecture are implemented as follows.

The data traffic controller is composed of harvesting sub-components,
that use Twitter Search and Stream API with specific criteria (hashtags, ac-
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counts, etc.) in order to gather tweets in JSON format about a chosen subject.
We have only one datasource in this case. The harvesting sub-components add
only lightweight information such as the timestamp of the harvesting. They are
developed following the actor model with Akka, and send data to Kafka topics,
the backbone of the architecture, that allows loosely coupled communications
with the other components. The master dataset is implemented with Hadoop
HDFS. Raw tweets are stored as lines of files, and the re-proccessing of data
can be done by reading these files and sending each line as is, in another Kafka
topic. The streaming ETL uses Kafka consumers to insert data in micro batch.
The streaming ETL applies some transformations, and then stores tweets in the
storage component, a polystore in our case. The polystore includes a relational,
a graph, and a time series DBMSs. These databases are used for exploratory
analyzes, mainly performed with Jupyter notebooks. Alongside, the real-time
insights component extracts and aggregates several information about the har-
vesting, such as popular hashtags or users, using Kafka Streams. It stores the
results in the time series database of the polystore. Although this insertion is
a side-effect of the stream processing, it is an idempotent action, because the
count of the elements will always yield the same result with an effectively once
guarantee, and this result is stored for each element, replacing the old value if it
already exists.

We have three main harvests continuously running, two global on food and
health, and one more specific on COVID-19 vaccines. With the architecture
active for 20 months in production, we have gathered 8.3To of raw data. We
have already leveraged the fault-tolerance property of the master dataset sev-
eral times, to apply a new processing as the needs had changed. It was done
without impacting the real-time insertions of the streaming ETL. We have also
realized some maintenance operations on the streaming ETL without having to
stop the harvesting thanks to the message retention of Kafka, and by resuming
the processing where it was paused once the maintenance was over. From a user
point of view, the polystore is used to cover different needs: 1) to help social
science researchers to find new keywords by displaying some query results and
macroscopique indicators computed by the real-time insights component on an
application server and on Jupyter notebooks ; 2) during research meetings, ex-
ploratory analyzes are done in live to guide the formulation of a social hypothesis
based on available data ; and 3) once the hypothesis is well-defined, to extract
a specific corpus fixed in time to perform more deeper analyzes.

6 Conclusion

We showed the obsolescence of the Lambda Architecture, mainly due to its
limited use cases and to the evolution of stream processing systems. We proposed
the Lambda+ Architecture pattern, the successor of the Lambda Architecture,
that gets rid of its flaws. The Lambda+ defines a more flexible architecture,
capable of handling both exploratory and real-time analyzes, and that fits more
various use cases than the Lambda Architecture. We uses the category theory to
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study the conservation of properties in compositions of components, and applied
it on the Lambda and on the Lambda+ Architecture.

For future work, we plan to develop our formalization to study more various
aspects of architectures: 1) to navigate among abstraction levels (i.e., the level
of detail of the representation of the architecture) ; 2) to verify if an architecture
follows a given style or pattern by using full functors (i.e., surjective functors) ;
and 3) to extend the property description, including numerical values (e.g., to
measure the execution time and deduce if it can be considered as real-time).
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