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Highly accurate on-line decomposition of single
channel intramuscular EMG

Tianyi Yu, Konstantin Akhmadeev, Eric Le Carpentier, Yannick Aoustin, Dario Farina, Fellow, IEEE

Abstract—Objective: Real-time intramuscular electromyogra-
phy (iEMG) decomposition, as an identification procedure of in-
dividual motor neuron (MN) discharge timings from a streaming
iEMG recording, has the potential to be used in human-machine
interfacing. However, for these applications, the decomposition
accuracy and speed of current approaches need to be improved.
Methods: In our previous work, a real-time decomposition algo-
rithm based on a Hidden Markov Model of EMG, using GPU-
implemented Bayesian filter to estimate the spike trains of motor
units (MU) and their action potentials (MUAPs), was proposed.
In this paper, a substantially extended version of this algorithm
that boosts the accuracy while maintaining real-time implemen-
tation, is introduced. Specifically, multiple heuristics that aim
at resolving the problems leading to performance degradation,
are applied to the original model. In addition, the recursive
maximum likelihood (RML) estimator previously used to estimate
the statistical parameters of the spike trains, is replaced by a
linear regression (LR) estimator, which is computationally more
efficient, in order to ensure real-time decomposition with the new
heuristics. Results: The algorithm was validated using twenty-one
experimental iEMG signals acquired from the tibialis anterior
muscle of five subjects by fine wire electrodes. All signals were
decomposed in real time. The decomposition accuracy depended
on the level of muscle activation and was >90% when less than 10
MUs were identified, substantially exceeding previous real-time
results. Conclusion: Single channel iEMG signals can be very
accurately decomposed in real time with the proposed algorithm.
Significance: The proposed highly accurate algorithm for single-
channel iEMG decomposition has the potential of providing
neural information on motor tasks for human interfacing.

Index Terms—Hidden Markov models, Bayes methods, Recur-
sive estimation, Deconvolution, Electromyography decomposition,
real-time decomposition, penalization.

I. INTRODUCTION

THE electromyogram (EMG) is the electrical expression
of skeletal muscle fibers during a muscle contraction.

This activity originates from the neural excitation of the
motor neurons (MNs) in the spinal cord. The identification
of individual MN discharge timings from EMG is termed
EMG decomposition [1]. The information obtained by EMG
decomposition has been classically used for the diagnosis of
neuromuscular disorders [2], analysis of muscle architecture
[3], investigation of central strategies for motor control [4], [5]
as well as, more recently, for creating human-machine inter-
faces [6], [7], [8]. A highly accurate real-time decomposition
can broaden the range of applicability of EMG processing, as
well as support effectively its subsequent applications.

In the last few decades, several EMG decomposition algo-
rithms [9], [10], [11], [12], [13], [14], [15], [16], [17], [18]
have been proposed. However, most of them [9], [10], [11],
[12], [13], [14], [15], either based on MUAP clustering and

TABLE I: Main notations of Hidden Markov Model (HMM)
and Bayes filter

Y iEMG signal
H Vector of MU action potentials shapes
Ω Set of indexes of all MUs
A Set of indexes of active MUs
T Sawtooth sequences
S Activation scenario
W White noise
`IR Maximum MUAP length
Θ = [t0, β] Vector containing the discrete Weibull distri-

bution parameters: the location parameter and
the concentration parameter

tR Shifting parameter of discrete Weibull distri-
bution, that is the refractory period

Pr Probability
w.p. ”with probability”
Y [n] iEMG signal at time index n
Y

n Vector containing the signal from time index
1 to n

|n ”. . . given Y n”
Pr(T [n] = t[n]) Probability of the sawtooth sequences at time

index n being equal to a value t[n]. For all
elements of the state vector, the uppercase
symbols (T , A, S) denote random variables,
while the lowercase ones (t, a, s) stand for
their realizations

npath Number of decomposition paths (scenarios) in
algorithm

template matching or blind source separation, work in an off-
line manner. The algorithm proposed by Glaser et al. [16]
is one of the few on-line decomposition algorithms and is
applied to multichannel surface EMG signals. Another on-
line decomposition method was proposed by Karimimehr et al.
[18] for iEMG processing and was based on MUAP clustering
and template matching. Nonetheless, this method lacked the
resolution of temporal overlaps between action potentials.

In our recent work, a Bayesian filtering approach for
single channel iEMG decomposition [19], following a strict
time sequential approach (processing sample by sample), was
firstly proposed. Moreover, a recruitment model for MUs
was added [20] so that the algorithm could be adapted to
a varying number of active MUs. Recently, this algorithm
was implemented into a parallel computation framework [21]
and achieved real time decomposition. However, the real-
time constraints led to a decrease in accuracy with respect
to the offline implementation. In this paper, this method is
substantially extended to reach accuracy comparable to an
offline implementation but maintaining online performance.

In the following, our previous method, including the Hidden
Markov Model (HMM) of iEMG, a Bayesian filtering proce-
dure estimating the parameters of MUs, and the acceleration
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of the algorithm, will be briefly reviewed in Section II.
The limitations of this approach that impact the accuracy
when real-time constraints are posed, will also be analyzed
in Section II. Then, in Section III, substantial changes are
proposed in the algorithm with the aim to boost the accuracy.
Further, experimental iEMG signals and an evaluation protocol
will be described in Section IV. The decomposition results of
experimental signals will be illustrated and analyzed in Section
V.

II. REVIEW AND ANALYSIS

In this section, a short overview of the previous proposed
GPU-implemented on-line single channel iEMG decompo-
sition algorithm, including the HMM of iEMG, the Bayes
filtering, and the acceleration methods, will be provided.
This description is necessary for the development of the
new algorithm (Section III). Furthermore, the decomposition
performance of the previous method will also be analyzed in
order to point out its limitations.

A. Hidden Markov Model

1) Generation of the EMG signal: The motor unit (MU), as
the smallest functional unit of muscle contraction, comprises
a MN and the muscle fibers innervated by its axon (muscle
unit). When receiving input from spinal and supraspinal cir-
cuits, the MN generates trains of action potentials (spikes)
that propagate along the MN axon and reach the muscle
fibres through the neuromuscular junction, causing the fiber
depolarisation. The excited muscle fibers generate a compound
potential: the motor unit action potential (MUAP). Multiple
MUs located nearby the electrodes contribute their MUAP
trains to the overall interference EMG signal. Generally, the
inter-spike intervals (ISI) reveal a certain regularity and have
a physiological lower bound, called refractory period.

2) Observation model of HMM: Based on the EMG gener-
ation principles, a HMM of EMG was proposed in [19], [20].
The observation equation of HMM was derived from the linear
model of EMG [22], [23]:

Y [n] =
∑
i∈Ω

ϕi(S[n])Hi[n] +W [n] (1)

• n is the discrete time index;
• i is the index of MU;
• Ω is the set of indexes of MUs, including both active and

inactive ones;
• Y denotes the observed iEMG signal;
• S represents the activation scenario, comprising two

elements: S[n] = (A[n], (Tj [n])j∈A[n]). A[n] is the set of
indexes of active MUs at time n; (Tj [n])j∈A[n] describes
the time passed since its previous spike, for the active
MU j;

• ϕi(s), for each realization s = (a, (ti)i∈a), is a row
vector of size `IR with all components equal to zero;
except, if i ∈ a and ti < `IR, the component in position
ti + 1 is equal to 1.

• H represents the MUAP waveform with finite length `IR;
• W represents the independent identically distributed

white noise sequence with unknown variance v;

3) State vectors of HMM: The statistics of the ISI for each
MU are modelled by the discrete Weibull distribution [19].
This distribution is defined by the vector Θi[n] containing two
parameters: a location parameter t0i[n] and a shape parameter
βi[n]. Thus, the state vectors of HMM are as follows:
• S[n] = (A[n], (Ti[n])i∈A[n]) the activation scenario,
• H[n] = (Hi[n])i∈Ω the MUAP waveforms,
• Θ[n] = (Θi[n])i∈Ω the inter-spike law parameters.
4) Transition laws of HMM: Hi[n] and Θi[n] are firstly

assumed to be constant in time. Their transition laws are as
follows:

Hi[n+ 1] = Hi[n] (2)
Θi[n+ 1] = Θi[n] (3)

In practice, the steady changes of Hi[n] and Θi[n] are con-
sidered in the Bayes filter (see II-B2).

The transition laws for S[n] = (A[n], (Ti[n])i∈A[n]) follows
two transition models: the renewal model and the recruitment
model, respectively for the two components Ti[n] and A[n].

In the renewal model, for each i ∈ A[n+ 1] ∩ A[n], given
Θi[n], we have the transition distribution of Ti[n]:

Ti[n+ 1] =

{
0 w.p. r(Ti[n] + 1,Θi[n])

Ti[n] + 1 w.p. 1− r(Ti[n] + 1,Θi[n])
(4)

where r(·) is the hazard rate function of the Discrete
Weibull distribution [24]. Moreover, we should notice that
r(t,Θi[n]) = 0, if t is lower than the refractory period tR,
due to the physiological restriction.

In the recruitment model, the recruitment mechanism is
interpreted as the variation of A[n], the set of indexes of active
MUs at time n. Given S[n], we have:

A[n+ 1] =


A[n] \ i w.p. 1, if Ti[n] = tI

A[n] ∪ i w.p. λ
card(Ā[n])

, if i /∈ A[n]

A[n] w.p. 1− λ
(5)

where card(Ā[n]) is the number of inactive MUs. An i-th
active MU is derecruited when Ti[n] reaches a predefined limit
tI; a random inactive MU is recruited with predefined constant
probability λ and initialized with T [n] = 0. Thus, 1−λ is the
probability if the active MUs keep the same as before.

B. Bayes filter

1) Principles and estimations: With increasing time, the
Bayes filter recursively estimates the state vector of the HMM
defined in II-A3. The posterior probability functions of the
state vectors are known:
• The probability density function (PDF) of Θ[n] given
Sn, H and Y n. The regularity of ISI only depends on
the state vector Sn. Furthermore, with the assumption of
independence in MU activity in [19], this PDF can be
written as the product of Θi[n] given Sn. The expected
value of Θi given Sn, noted θ̂i,Sn , is estimated by a re-
cursive maximum likelihood (RML) estimation proposed
in [20].
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• The PDF of H[n] given Sn and Y n. The expected
value of this PDF, noted Ĥ

|n
S

n , is estimated by a least-
mean-square (LMS) filter. And the observation prediction
denoted as Ŷ |n−1

S
n and its variance denoted as vSn are

also provided by the LMS filter. Details and mathematical
derivation of this procedure can be found in [21].

• The probability mass function (PMF) of Sn given Y n. As
presented in [20], the PMF of scenario is derived from
an update-prediction scheme. For all possible realizations
sn of Sn, the update step is:

Pr|n(Sn = sn) ∝ Pr|n−1(Sn = sn) g(Y [n]− Ŷ |n−1

s
n , vsn)

(6)
where g(. , v) is a zero-mean and variance v Gaussian
PDF. And the prediction step is defined as:

Pr|n(Sn+1 = sn+1) = Pr|n(Sn = sn)×
Pr(A[n+ 1] = a[n+ 1] | S[n] = s[n])×∏
i∈A[n+1]

Pr(Ti[n+ 1] = ti[n+ 1] | Sn = sn)
(7)

where Pr(A[n+1] = a[n+1] | S[n]) and Pr(Ti[n+1] =
ti[n + 1] | Sn) depends respectively on the recruitment
model and the renewal model presented in section II-A4.

2) Adaptivity: In order to adapt to the two non-stationary
state vectors: inter-spike laws parameters Θ and impulse
responses H , a sliding window method [25] was involved in
the estimation of the two state vectors. The estimation are
mainly based on the last `∞ observations (Y [n− `∞+ 1 : n])
and scenarios (S[n− `∞+ 1 : n]), where `∞ is the maximum
window length. More details about the adaptive estimation
formulas can be found in [21].

3) Initialisation: As presented in [21], no MUs are assumed
to be active at the beginning of the decomposition. Thus, the
set of active MUs indexes A[1] and the sawtooth sequence T [1]
are initialized as empty vector. Initial rough MUAP waveforms
Ĥ
|0
S

1 , that can be manually or automatically extracted based on
[10], [26], [27], are supposed to be known as prior knowledge.
And the two inter-spike law parameters of active MUs θ̂

i,S
0 :

t0 is typically initialized as 3tR ∼ 4tR; β is normally set to 2
∼ 4. Finally, npath initial S1 are weighted with the same initial
probability Pr|0(S1 = s1).

C. Acceleration

Theoretically, the state vectors of the HMM can be es-
timated recursively by the Bayes filter. However, this ap-
proach has a very high computational cost in practice. As
described in the renewal model of section II-A4, for each
i ∈ A[n+ 1]∩A[n], the sawtooth sequence Ti[n] bifurcates at
each time index, if Ti[n] > tR. This implies that the number
of possible scenarios for Sn grows exponentially with time.
Thus, an exhaustive estimation for all scenarios is impossible.
Several approaches for path pruning were proposed in [21] to
reduce the number of bifurcated scenarios:
• Limiting the number of kept paths is a conventional way

to deal with the large number of scenarios. The npath most
probable scenarios are kept at every time index, where

npath is chosen as a trade-off between the computational
cost and the decomposition performance.

• An iEMG signal is composed of multiple prominent
action potentials and many time intervals only containing
background noise. A function Z[n] was introduced to
distinguish the two cases, in order to avoid bifurcations
of Ti[n] in the segmentation of noise. For the segments
containing action potentials, the on-line decomposition
algorithm bifurcates active scenarios into multiple new
ones and keeps the npath most probable scenarios, while in
the segments of background noise, only the state vectors
of the kept scenarios are updated at each time index.

• The simultaneous occurrence of two or more spikes
at exactly the same time instant was considered as
extremely low probability and thus excluded from the
possible scenarios. This reduces the maximal number of
possible bifurcation from npath × 2card(A[n+1]) to npath ×
(card(A[n+ 1]) + 1).

Furthermore, in order to achieve an on-line decomposition,
the algorithm was implemented into Graphics Processing Unit
(GPU) parallel computing.

D. Problems with online decomposition

The previously proposed GPU-implemented on-line single
channel iEMG decomposition algorithm [21] showed high de-
composition accuracy (> 90%) for experimental signals with
less than 7 active MUs, and large decrease in performance for
a greater number of active units. The performance degradation
was mainly caused by limiting the number of kept paths, which
was needed for online implementation.

Limiting the number of kept paths implies retaining the npath
most probable scenarios at each time index and assuming that
one of them is the correct decomposition result. However,
this assumption is not always valid mainly because of the
high similarity in MUAP waveforms, high similarity in kept
scenarios, and over explanation of strong interference, such as
noise and variation of MUAP waveforms.

1) High similarity in MUAP waveforms: Due to the lack of
supplementary information from other channels, single chan-
nel decomposition algorithm switches occasionally between
two similar MUAP waveforms.

2) High similarity in scenarios: We define highly similar
scenarios, two scenarios that have the same active part in the
last `∞ time instants (Si[n−`∞+1 : n] = Sj [n−`∞+1 : n],
where i and j are the indices of kept scenarios).

Based on the adaptivity of Bayes filter discussed in section
II-B2, for any two highly similar scenarios i and j, we have:

Ĥ
|n
S

n
i
≈ Ĥ |n

S
n
j

(8)

θ̂i,Sn
i
≈ θ̂i,Sn

j
(9)

which means that the two scenarios have almost the same
estimated state vectors. Thus, they have great probability
to provide the same results in the following decomposition,
which will reduces the diversity of kept scenarios and the
robustness of the decomposition algorithm.
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Fig. 1: Example of over explanation of noise. A signal was
decomposed with two possible scenarios. Scenario 1 corre-
sponds to the correct decomposition result, while Scenario
2 over explains the noise from time sample n − 2 to n by
introducing a firing for MU2.

3) Over explanation of noise and variation of MUAP
waveforms: Since the on-line decomposition algorithm in
[21] follows a strict time sequential manner, when acting
on sampling points with high noise and variations in MUAP
waveforms, it tends to find local optimal solutions, without
considering the subsequent time samples. This phenomenon
is termed over explanation.

In the example shown in Figure 1, a signal was decomposed
with two possible scenarios. In the first one, only one MU
fires at the beginning of the interval, while the second scenario
represents the superposition of two MUs firing at close instants
of time. The firing of the second MU at the time index n −
2 in the second scenario is only introduced to over explain
the noise from the time sample n − 2 to n. However, when
the signal is decomposed at time index n, without knowing
the following observed signal, the second scenario could have
bigger posterior probability than the first one, if they have the
same prior probability.

In the decomposition of experimental signals with multiple
MUs, this type of over explanation in form of superposition
occurs frequently, which may result in the correct scenarios not
being included in the npath kept ones. The worst case occurs
with multi-layers over explanation, where one MU firing over
explains the noise, a second MU firing is used to correct the
difference between the first MUAP waveform and the observed
signal, and so on. This process can increase the number of
errors substantially.

III. HIGHLY ACCURATE ONLINE DECOMPOSITION

As shown in subsection II-D, there are substantial limita-
tions in keeping scenarios only based on their posterior proba-
bility. In this section, we propose original approaches aimed at
solving this problem and at keeping the decomposition speed
within online limits.

Fig. 2: Example of elimination of highly similar scenarios:
in the segment AC, the high similar scenarios are eliminated
at time index B, instead of checking and eliminating them at
every time index. Example of the time instant for discarding
scenarios with firing at the end of action potential segmenta-
tion: the scenario with a new firing at the end of segment AB
will be discarded at time index E.

A. Limiting the inter-spike law parameters for highly similar
MUs

Decomposition of the signal with highly similar MUAP
waveforms is a common difficulty in single channel iEMG
decomposition [28]. This can be partly counteracted by taking
into account the regularity of firings in addition to MUAP
waveform matching [21]. Here, we propose to limit one of
the inter-spike law parameters β for MUs with similar MUAP
shapes, in order to enhance the regularity in firing when
MUAPs are very similar. β is typically limited to be more
than 4.

B. Highly similar scenarios elimination
As described in subsection II-D2, highly similar kept sce-

narios reduce the diversity of the scenarios, leading to the
decomposition being over susceptible to noise and variations
in MUAP waveforms. Therefore, we propose to eliminate
the highly similar kept scenarios with relative low posterior
probability, and to only keep the one with highest probability.

However, an exhaustive elimination of similar scenarios at
each time index is time consuming and inefficient for an
on-line decomposition. According to the definition of high
similarity of scenarios, we only need to make this elimination
every `∞ time sampling. More practically, we discard the
similar scenarios at the last time index of each action potentials
segment, whose length is much smaller than `∞.

Based on the measurement presented in subsection II-C, the
iEMG signal can be divided into sequential action potentials
and noise segments with a detection function Z[n]. The on-
line decomposition algorithm in [21] only bifurcates scenarios
and keeps the npath most probable ones in action potentials
segments. Thus, the elimination at the last time index of each
action potentials segment does not only ensure the diversity
of kept scenarios, but also avoids the unnecessary calculation
of similar scenarios in the next noise segment.

As Figure 2 shows, an iEMG signal comprises several short
prominent action potentials waveforms, such as segments AB



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 5

and CD, separated by segments of background noise, such as
segment BC. In the segment AC, we only eliminate highly
similar scenarios at time index B, instead of checking them
at each time instant. In the noise segment BC, due to the
elimination of similar scenarios, less kept scenarios need to
be updated.

C. Interdiction of spike firing in the end of action potential
segmentation

Sometimes, the kept scenarios may over explain the noise
at the end of action potential segmentation by introducing
new firings. However, a spike firing at the end of an active
segment is highly improbable since the corresponding MUAP
waveform cannot match the following noise segment. Thus,
this type of scenarios could be discarded at the beginning of
the following noise segment.

For example, in Figure 2, in the action potential segment
AB, a kept scenario fires a spike near to the instant B. From
time instant B to E, due to the gradually increasing difference
between the estimated signal and the observed noise, the
posterior probability of this scenario will show an obvious
decline. Thus, the low probable scenarios are discarded at time
index E. Generally, the length of BE is set to `IR

5 ∼
`IR

4 .

D. Penalisation term of posterior probability

As presented in subsection II-D3, scenarios that over explain
the observed sampling point containing strong interference
by superimposing multiple MUAPs, always correspond to a
locally high posterior probability, causing the possible exclu-
sion of the correct decomposition result from the npath kept
scenarios. In order to resolve this issue, a penalisation term
aiming at reducing local increase in posterior probability due
to over explanation was added into the posterior probability
formulation (6):

Pr|n(Sn = sn) ∝Pr|n−1(Sn = sn) g(Y [n]− Ŷ |n−1

s
n , vsn)

Prpl
|n(Sn, Ĥ

|n−1

S
n−1 , θ̂Sn)

(10)
where Prpl

|n(Sn, Ĥ
|n−1

S
n−1 , θ̂Sn) is the penalisation term, calcu-

lated by the observed signal Y [n], the new bifurcated scenario
s[n], the estimated MUAP waveforms, and estimated inter-
spike law parameters.

The over explanation is normally in form of superposition
composed of multiple layers of MUAP waveforms. For each
layer of superposition, we penalize its gain of probability. The
penalisation term can be written as the product of each layer
penalisation:

Prpl
|n(Sn, Ĥ

|n−1

S
n−1 , θ̂Sn) =

∏
i∈Υ[n]

Prpl,i
|n(Sn, Ĥ

|n−1

S
n−1 , θ̂i,Sn)

(11)
where Prpl,i

|n(Sn, Ĥ
|n−1

S
n−1 , θ̂i,Sn) is the penalisation term of

each superposition layer; Υ[n] is the set of MUs superposition
indexes.

An example of three layers of superposition is provided
in Figure 3. Three MUs fire action potentials at the time
indexes A, B, and C. Since the online decomposition algorithm

Fig. 3: Example of multiple layers superposition

respects a strict time sequential operation, the number of layers
in the decomposition varies over time. if time n ∈ AB, Index
MU1 ∈ Υ[n]; if n ∈ BC, Indexes MU1 and MU2 ∈ Υ[n]; if
n ∈ CD, Indexes MU1, MU2, and MU3 ∈ Υ[n]. We define
the order of MU indexes in Υ[n] according to its spike firing
time. Thus, if n ∈ CD, Υ[n] = {1, 2, 3}

Theoretically, the penalisation term should restrain MUAP
waveforms from over-explaining the interference, and, at the
same time, does not influence the regular decomposition of
superimposed action potentials. In order to reach this objective,
for all i ∈ Υ[n], the formula of Prpl,i

|n(Sn, Ĥ
|n−1

S
n−1 , θ̂i,Sn−1)

is defined as:

Prpl,i
|n(Sn, Ĥ

|n−1

S
n−1 , θ̂i,Sn) =

1√
2πvsn

exp(U
|n
pl,i(S

n, Ĥ
|n−1

S
n−1)

Npl,i Rpl,i(S
n, θ̂

i,S
n−1) ζpl,i(S

n))
(12)

Where U |npl,i(S
n, Ĥ

|n−1

S
n−1) is the function of penalisation unit;

Npl,i represents the layer coefficient; Rpl,i(S
n, θ̂

i,S
n−1) de-

notes the regularity function of penalisation term; and ζpl,i(S
n)

is the attenuation function. In the following, the four terms will
be described.

1) Function of penalisation unit: According to the poste-
rior probability formula (6), the local increase in posterior
probability could be originated from the prior probability,
or the likelihood of observation, or both of them. However,
based on the prior probability function (7), the inter-spike
law distribution, and the formula (4), the prior probability of
the scenario firing a new spike will be smaller than scenarios
without the firing of a new spike. Thus, the likelihood of the
observation g(Y [n] − Ŷ

|n−1

s
n , vsn) contributes to the overall

temporary gain of the posterior probability. The likelihood
function is expressed as:

g(Y [n]− Ŷ |n−1

s
n , vsn) =

1√
2πvsn

exp(−
(Y [n]− Ŷ |n−1

s
n )2

2vsn
)

Ŷ
|n−1

S
n = ψ(S[n]) Ĥ

|n−1

S
n−1

(13)
where ψ(s) = [ϕ1(s), ..., ϕcard(Ω)(s)], card(Ω) denotes the
number of MUs. The definition of ϕ1(s) is given in subsection
II-A2. The estimated observation of the signal can be also
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written in form of multi-layers superposition:

Ŷ
|n−1

S
n =

∑
i∈C[n]

ϕi(Si[n]) Ĥ
|n−1

i,S
n−1 (14)

With the formula (13) and (14), the contribution of each
superposition layer for the posterior probability is clear. Thus,
we have the penalisation unit of the i-th layer:

U
|n
pl,i(S

n
, Ĥ
|n−1

S
n−1) =− ‖

(Y [n]−
k=i∑

k∈C[n],k=1

ϕk(Sk[n]) Ĥ
|n−1

k,S
n−1)

2

2vsn

−
(Y [n]−

k=i−1∑
k∈C[n],k=1

ϕk(Sk[n]) Ĥ
|n−1

k,S
n−1)

2

2vsn
‖

(15)
where ‖.‖ is the operator of norm.

2) Layer coefficient: Generally, multi-layers superposition
scenarios better explain the signal Y [n]. This is because the
large number of layers in the superposition easily reduces
the difference between the estimated and the observed signal.
However, with the growing number of layers, the generated
superpositions are less and less probable. Thus, we introduce
a penalization term on the number of layers. The coefficient
of layer is defined as:

Npl,i = Υi,order − 1 (16)

where Υi,order is the order of the i-th MU in the Υ[n]. Since
the first layer of superposition is not considered as the cause
of over explanation, its coefficient is supposed to be zero.

3) Regularity function: We penalize the posterior proba-
bility of superposition to prevent them from over explaining
the interference in the signal, under the condition of not
influencing the normal decomposition of superimposed MUAP
waveforms. Therefore, the regularity parameters of spike trains
are involved into regulating the penalization terms for different
cases. We have the regularity function of penalization term:

Rpl,i(S
n, θ̂

i,S
n−1) = 1−

Pr(∆i | θ̂i,Sn−1)

η Pr(t̂
0,i,S

n−1 | θ̂
i,S

n−1)
(17)

where Pr(∆|Θ) is the probability mass function of the ISIs
distribution, which is the discrete Weibull distribution in our
algorithm; ∆i is the length of last inter-spike of the i-th
MU; t̂

0,i,S
n−1 is the estimated location parameter of discrete

Weibull distribution, representing the location of most of
ISIs in the distribution; and η is the coefficient of regularity
function. The coefficient η should be more than one, typically
set to two in our decomposition.

The value of Rpl,i(S
n, θ̂

i,S
n−1) ranges from 1− 1

η to 1. If ∆i

is far from t̂
0,i,S

n−1 , meaning that the superposition is prob-
ably the over explanation, Rpl,i(S

n, θ̂
i,S

n−1) approaches to 1;
On the contrary, if ∆i is close to t̂

0,i,S
n−1 , Rpl,i(S

n, θ̂
i,S

n−1)

tends to 1− 1
η .

4) Attenuation function: The local increase in posterior
probability of scenarios that over explain the signal mainly
occurs at the beginning of new layer of superposition, named
penalized section. The attenuation function is to ensure the
penalisation term keep working in the penalized section and

Fig. 4: Estimation of Weibull parameters with LR and RML
estimator

reduce rapidly to one at the end of the section. We have the
attenuation function:

ζpl,i(S
n)) =

{
1− (Ti[n]

ρi,pl
)3 if Ti[n] ≤ ρi,pl

0 otherwise
(18)

where Ti[n] is the time passed since its previous spike of
the i-th MU, defined in subsection II-A2; ρi,pl is the length
of penalized section, defined as the round value of the ratio
between the maximum absolute value of Ĥ |n−1

S
n−1 and Ĥ |n−1

i,S
n−1 ,

where Ĥ |n−1

S
n−1 is the estimated MUAP waveforms of all MUs

and Ĥ |n−1

i,S
n−1 is the estimated MUAP of the i-th MU. Based on

the decomposition results of previous algorithm, for each MU,
the maximum absolute value of MUAP shapes is negatively
correlated to the number of over explanation spikes. Therefore,
the length of the penalized section is in an inverse ratio to the
maximum absolute value of MUAP shapes.

E. Estimation of inter-spike law parameters

As presented in subsection II-B1, the inter-spike law param-
eters were estimated by the RML estimator proposed in [20].
In the on-line estimator RML, the inter-spike law parameters
were estimated at each time index with censored data, in
order to provide accurate estimation for the calculation of
prior probability in formula (7). However, compared to other
estimation methods based on complete data, this method is
time consuming due to the recursive estimation at each time
index.

A number of algorithms have been proposed to estimate
the discrete Weibull parameters with complete samples. Two
methods proposed in [29], estimate parameters respectively
based on the moments of samples and the proportion of
samples. However, they present poor performance for a small
number of samples. A maximum likelihood method proposed
in [30] estimates recursively the parameters. When this method
is implemented in the GPU parallel computation environment,
it calls frequently the exponent function “double pow(double
base, double exponent)” which requires high computational
time. After comparing several estimation methods with inter-
spikes of simulated iEMG signal (these results are not shown
here), we selected a linear regression (LR) method proposed
in [31]. This method models the relation of the logarithm
of samples proportion and a function related to cumulative
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density function, as well as weighing the regression residual
based on Heteroscedastic Unreliability Weibull Estimation
(HUWE). Compared to the maximum likelihood estimator, this
LR method is more robust, and computationally more efficient.
Details and mathematical derivation of this algorithm can be
found in [31].

We compared the performance of RML and the selected LR
estimator as follows. An active scenario Sn was generated
with predefined inter-spike law parameters t0 and β, based
on the renewal model and recruitment model in subsection
II-A3. Given Sn, the two estimators were used to identify the
parameters. Figure 4 shows the estimation results of the two
estimators, which indicate that the LR estimator with complete
data provides almost the same estimates as the RML estimator.
The maximum sliding window length in RML was set to 0.6
s.

In the decomposition, instead of estimating inter-spike law
parameters with RML estimator, the LR estimator was im-
plemented at the end of every action potential segmentation
decomposition.

IV. EXPERIMENTAL PROTOCOLS

A. Signals

Since the decomposition of simulated signals showed high
performance in our previous work [21], we validated the new
algorithm proposed in this paper only on experimental signals,
which were more challenging.

Two sets of experimental iEMG were acquired from the
tibialis anterior (TA) muscle. The first set, which is the one
we used in [21], was recorded from a 26 years-old healthy
man. In the recording, the subject performed five trials of
an isometric force tracking task of 24 s duration. The force
profile was trapezoidal with target force set to 20% or 30% of
the maximal voluntary contraction (MVC). In this study, we
extended the validation to a greater number of experimental
signals. A second set of signals were acquired from four
subjects (age range 20-25 years-old). Each subject was asked
to perform four constant isometric force trials with target force
respectively set to 5%, 10%, 15%, and 20% of MVC. The
duration of each trail was 24 s. All signals in the two sets were
recorded with wire electrodes made of Teflon coated stainless
steel (50 um diameter; A-M Systems, Carlsborg, WA, USA)
and 25G needles. Then, the signals were amplified, band-pass
filtered between 100 Hz and 4 kHz, sampled at a frequency of
10kHz (OTBioelettronica MEBA amplifier), and subsequently
down-sampled to 5 kHz.

The new proposed on-line iEMG decomposition algorithm
was used to decode the two sets of experimental signals and
the results were compared with those obtained in [21]. The
activation probability λ and the maximum inactive time tI of
the recruitment model were respectively set to 0.03 and 7tR;
The maximum window length `∞ was 1.4 s. The number of
selected paths was set to 384.

B. Indexes of task and performance complexity

1) Index of task complexity: As presented in [20], the su-
perposition percentage was used to characterise the complexity

of the decomposition task:

Sup =
NbSUP

NbSPIKES

(19)

where NbSPIKES is the number of spikes in the signal and NbSUP

is the number of spikes involved in the superposition of MUAP
waveforms. We considered a MUAP superimposed if there was
at least one other MUAP within a margin of 3 ms (less than
half of the average MUAP duration) around it.

2) Indexes of performance complexity: Results of automatic
decomposition were evaluated with the reference spike trains
identified by manual decomposition. The manual decompo-
sition was provided off-line by an expert operator using the
publicly available decomposition software EMGLAB [32].

The global sensitivity and global positive predictivity were
used to quantitatively evaluate the decomposition results. They
were defined as follows: A MUAP was considered correctly
identified (true positive) if the reference train contained a
spike from the same MU within a margin of 1 ms around
it. Consequently, the global sensitivity was defined as the
overall number of correctly identified MUAPs from all MUs,
divided by the overall number of spikes in the reference
decomposition. Global positive predictivity was the number
of correctly identified spikes divided by the overall number of
spikes in the decomposition under evaluation.

Furthermore, an individual analysis of each MUAP train was
also performed with ”classification phase” indexes, including
sensitivity, specificity and accuracy, as they are proposed in
[33].

V. RESULTS

All experimental signals were decomposed by using the
proposed algorithm programmed in C++ CUDA. All decom-
positions were performed on a Nvidia Tesla K80 GPU card
with CUDA 9.0 and GCC 5.4.0 using single-precision floating-
point format.

A. Decomposition performance

As shown in Table II, five experimental signals, including
three recorded at 20% MVC and two recorded at 30% MVC,
were decomposed respectively with the parallel decomposition
algorithm (P.D.) proposed in [21] and the new algorithm
(P.D.A.) proposed in this paper. For different experimental
signals, the number of spikes ranged from 873 to 1295 and the
percentage of superposition ranged from 18.10% to 28.96%.
Compared to the decomposition results of the previous P.D.
algorithm, the results of the new P.D.A. algorithm showed
substantial increase in global predictivity (10% ∼ 15%) and
a smaller but relevant increase in global sensitivity (3% ∼
4%). Both the global sensitivity and predictivity of the five
signals decomposed with the P.D.A. algorithm were above
90%. Furthermore, we noticed that the global sensitivity and
predictivity decreased for signals with greater number of active
MUs, due to the increase of decomposition task complexity,
quantified by the superposition percentage.

It has to be noted that the results reported in Table II for
the previous algorithm slightly differ from those reported in
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TABLE II: Decomposition performance for the first set of experimental signals: ’Nb MUs’ is the maximal number of MUs
concurrently active in the signal; ’Nb sup-spikes’ represents the number of spikes involved in superpositions; ’Nb spikes’
denotes the overall number of spikes in the signal; ’Sup.’ is the percentage of superposition; ’Algorithm: P.D.’ represents using
the parallel decomposition algorithm proposed in [21]; ’Algorithm: P.D.A.’ denotes using the ameliorated parallel decomposition
algorithm presented in this paper; ’Sens.’ denotes the global sensitivity; ’Pred.’ is the global predictivity.

Index Duration (s) Force (MVC%) Nb MUs Nb spikes Sup.(%) Algorithm: P.D. Algorithm: P.D.A.
Sens. (%) Pred.(%) Sens. (%) Pred.(%)

1.1 24 20 5 873 18.10 90.84 82.60 94.27 92.78
1.2 24 20 5 936 18.38 94.87 88.01 97.65 97.65
1.3 24 20 6 933 17.15 92.82 82.35 95.15 92.50
1.4 24 30 8 1282 28.39 86.04 76.70 90.48 91.41
1.5 24 30 8 1295 28.96 87.03 77.04 91.97 90.05

TABLE III: Decomposition performance for the second set of experimental signals. The meaning of indexes are the same as
table II

Index Duration (s) Force (MVC%) Nb MUs Nb spikes Sup.(%) Algorithm: P.D. Algorithm: P.D.A.
Sens. (%) Pred.(%) Sens. (%) Pred.(%)

2.1 24 20 8 1269 17.89 85.50 79.14 93.30 91.29
2.2 24 15 7 903 24.58 83.50 86.77 98.12 98.23
2.3 24 10 7 746 10.86 95.31 87.24 98.93 98.40
2.4 24 5 3 354 4.24 96.33 90.69 98.87 97.77
3.1 24 20 7 890 13.03 89.21 81.44 94.27 93.85
3.2 24 15 5 664 10.39 84.04 73.91 91.11 88.71
3.3 24 10 5 503 9.47 91.65 83.06 91.65 91.11
3.4 24 5 3 229 4.35 97.32 88.45 97.66 94.50
4.1 24 20 11 1194 27.55 53.18 43.61 83.95 84.60
4.2 24 15 11 1040 24.04 51.44 37.18 88.19 88.12
4.3 24 10 9 1010 24.95 84.75 73.67 90.10 91.83
4.4 24 5 5 481 14.35 94.39 85.34 96.88 95.69
5.1 24 20 10 1510 23.31 78.35 66.69 82.05 84.75
5.2 24 15 8 993 13.49 89.53 75.53 94.66 91.89
5.3 24 10 5 617 8.75 95.53 82.35 98.87 99.35
5.4 24 5 3 353 3.12 99.44 76.70 100 100

Fig. 5: Comparison of P.D.A. automatic (crosses, ’x’) and reference (points, ’.’) decompositions (upper panel) and the
experimental signal corresponding to index 4.3 in Table II (lower panel).

[21], since in the current paper we did not fine tune the lower
limit for the inter-spike law parameters β (the same limits are
set for the previous and the new algorithm).

Besides five experimental signals in Table II, 16 experi-
mental signals were also automatically decomposed in order
to validate the new P.D.A. algorithm. As shown in Table
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Fig. 6: An extract of the experimental signal decomposition shown in figure 5; circles ’◦’ and crosses ’x’ represent respectively
the spikes from the reference and automatic decompositions; ’P.D.’ represents “using the parallel decomposition algorithm”
proposed in [21]; ’P.D.A.’ denotes “using the advanced parallel decomposition algorithm” presented in this paper.

III, the 16 signals were divided in four groups. Each group
contained four signals recorded from the same subject at 5%,
10%, 15%, and 20% MVC. For signals in the same group, the
number of active MUs, number of spikes, and the percentage
of superposition increased with increasing force level. An
exception is the percentage of superposition of signal 2.2.
Based on the manual decomposition results of this signal, we
found that the high correlation between its 1st MU and 2nd MU
led to the abnormal high superposition percentage. For the 16
experimental signals, the number of MUs ranged from 3 to
11 and the percentage of superposition ranged from 3.12%
to 27.55%. Since the force profile was constant, some of the
signals showed a higher complexity compared to the ones in
Table II.

For the decomposition performance of the 16 experimental
signals in Table III, both the global sensitivity and predictivity
of 13 of them with number of active MUs less than 10 were
above 90%, while the global sensitivity and predictivity of
the other three with ten or eleven active MUs were above
80%. Consistent with the decomposition performance shown
in Table II, the performances of the new P.D.A. algorithm
in Table III is much superior than for the previous P.D.
algorithm. Moreover, we note that the relative increase in
global sensitivity and predictivity becomes larger for signals
at higher forces.

In the following, we analyse in detail the results of the de-
composition for the signal 4.3 with 9 MUs, as a representative
case.

A global view of the decomposition results is given in
Figure 5. In the upper panel, nine decomposed spike trains

TABLE IV: Decomposition performance for the experimental
signal decomposition shown in figure 5: for each MU, ’Sens.’
denotes the sensitivity; ’Pred.’ is the predictivity; ’Acc.’ rep-
resents the accuracy.

MU Sens. Spec. Acc.
MU1 99.07 99.75 99.67
MU2 92.93 99.39 98.70
MU3 92.96 98.98 98.06
MU4 94.34 99.14 98.59
MU5 91.38 99.38 98.38
MU6 89.83 99.14 97.95
MU7 82.35 97.98 96.30
MU8 80.21 97.54 95.79
MU9 86.29 98.89 97.22

Fig. 7: Nine MUAP shapes (manually-extracted dictionary) for
the signal presented in Figure 5, and a comparison between
the 7th one and the 8th one.

(crosses) of each MU of P.D.A. are correlated with the
reference results (points); in the lower panel, the decomposed
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Fig. 8: Firing rates for the iEMG presented in figure 5: the red line (empirical) represents the firing rates estimated using
reference decomposition; black line (estimated P.D.) represents the firing rates calculated via parameters of discrete Weibull
distribution estimated with RML estimator [19], [20]; blue line (estimated P.D.A.) denotes the firing rates calculated via
parameters of discrete Weibull distribution estimated with LR estimator (see section III-E).

iEMG signal is shown.
Figure 6 provides a detailed view of the decomposition

results containing for approximately two seconds of recorded
signal. The first panel shows the comparison between the
identified spike timings (crosses) by P.D.A. and the reference
results (circles); in the second panel, the identified spike
timings by the P.D. algorithm correlate to the reference; the
last panel shows the corresponding two seconds interval of
recorded signal and the location of spikes in the reference
result. Although two mistakes occured at 5.3 s and 6.83 s,
the P.D.A. algorithm performed generally well, successfully
processing several complex superpositions (see first panel of
Figure 6). However, the P.D. algorithm failed to process several
superpositions containing small amplitude MUAP waveforms,
where MUAP waveforms are illustrated in Figure 7. In addi-
tion, we note multiple problems in the decomposition with the
P.D. algorithm, such as: over explanations at 5.05 s, 5.55 s,
5.95 s , 6.13 s, 6.36 s, and 6.60 s, and switches between the
7th MU and the 8th MU at 5.57 s, 5.60 s, and 5.74 s, were
all corrected in the decomposition by the P.D.A. algorithm.

For the classification phase of P.D.A., Table IV shows the
individual (per MU) performance indexes. Figure 7 shows the
MUAP waveforms of nine MUs with a detailed comparison
between MU 7 and 8. Based on Table IV and the Figure 7, we
notice that the first four MUs were well classified, due to their
larger MUAP waveforms, while the relative lower sensitivity
for the 7th and 8th MU was caused by their smaller and similar
MUAP waveforms, which may lead to the over explanation
problem and switches with each other. Compared to the
P.D. algorithm, the P.D.A. algorithm substantially improves

the decomposition performance, but still cannot eliminate all
classification mistakes.

The algorithm estimates the parameters of the inter-spike
intervals distribution, used to calculate the firing rates. The
corresponding firing rates are illustrated in Figure 8. Empirical
ones were estimated as the inverse of the moving average of
subsequent inter-spike intervals in the reference decomposi-
tion. The estimated ones of P.D.A. were calculated with the
parameters t0 and β estimated by the LR estimator. Based on
the decomposed spike trains of P.D.A., we also estimated the
parameters t0 and β with RML estimator used in P.D. and
calculated its firing rates. The three highly coincident firing
rates lines demonstrate that the replacement of inter-spike law
parameters estimator has little influence on the decomposition
performance.

B. Decomposition time
Table V provides the execution time for all experimental

signals for P.D.A. and P.D.. We notice that all signals, except
the signal 5.1 with 10 MUs, could be decomposed in real time
using 384 paths. The long decomposition time of signal 5.1
was due to the large maximum length of MUAP waveforms
(around 10 ms), compared to others (6 ms ∼ 8 ms). However,
this signal could still be decomposed in real time with the
P.D.A. algorithm using 256 paths. The execution time was
23.82 s. Moreover, we notice that the execution time of P.D.A.
is almost the same as the one of P.D. for all signals. This is
because in the P.D.A., time saved from the inter-spike law
parameters estimation was used to regulate the diversity of
scenarios and penalize the posterior probabilities.
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TABLE V: Execution time for decomposition of experimental signals. The meaning of indexes are the same as table II

Index Duration (s) Force (MVC%) Nb MUs Nb spikes Sup.(%) Time(s)
Algorithm: P.D. Algorithm: P.D.A.

1.1 24 20 5 873 18.10 18.04 17.80
1.2 24 20 5 936 18.38 18.31 17.85
1.3 24 20 6 933 17.15 17.36 16.16
1.4 24 30 8 1282 28.39 18.46 18.16
1.5 24 30 8 1295 28.96 19.53 18.81
2.1 24 20 8 1269 17.89 18.44 18.52
2.2 24 15 7 903 24.58 16.84 16.60
2.3 24 10 7 746 10.86 18.40 16.98
2.4 24 5 3 354 4.24 14.32 15.43
3.1 24 20 7 890 13.03 20.33 18.50
3.2 24 15 5 664 10.39 18.47 18.38
3.3 24 10 5 503 9.47 17.18 17.24
3.4 24 5 3 229 4.35 13.49 14.86
4.1 24 20 11 1194 27.55 22.50 22.84
4.2 24 15 11 1040 24.04 20.58 20.71
4.3 24 10 9 1010 24.95 19.27 17.97
4.4 24 5 5 481 14.35 18.26 17.33
5.1 24 20 10 1510 23.31 26.50 26.96
5.2 24 15 8 993 13.49 20.82 19.93
5.3 24 10 5 617 97.08 18.16 19.32
5.4 24 5 3 353 99.72 13.46 16.13

VI. CONCLUSION AND PERSPECTIVES

In our previous works [19], [20], [21], a real-time decompo-
sition algorithm based on a HMM of the EMG, using Bayesian
filtering to estimate the unknown parameters of discharge
series of MUs, and accelerated in the parallel computation en-
vironment, was proposed. Several iEMG signals with number
of MUs up to ten were successfully decomposed; however, the
decomposition should be under delicate parameter tuning and
it showed relative low performance for experimental signals
with number of active MUs greater than six.

In this paper we presented several methods to solve the main
issues of the previous algorithm, including the replacement of
time-consuming RML estimator by a more computationally
efficient LR estimator for the inter-spike law parameters, and
four heuristics. The proposed approach was validated with 21
experimental signals acquired from five subjects, thus sub-
stantially enlarging the validation dataset with respect to our
previous work. The results showed that the new algorithm can
provide much higher accuracy in decomposition in real time,
compared to our previous work [21]. Moreover, the proposed
algorithm could decompose experimental signals with a larger
numbers of MUs than the real-time decomposition method
proposed in [16]. For comparison, the real-time decomposi-
tion method proposed in [18] does not process superposed
waveforms and thus provides much lower performance than
the proposed one.

As indicated in the analysis of decomposition results,
although this approach is able to improve greatly the de-
composition performance, some mistakes still remain in the
classification. The main reason is due to the limited in-
formation of single channel signals. Thus, a multi-channel
version of the presented algorithm, which may further boost
the decomposition accuracy, is our planned future objective.
Another limitation is the relatively low decomposition speed
for signals with a large number of active MUs, which restricts

the approach to relatively low contraction forces. Tracking
large numbers of MUs requires a greater number of scenarios
to ensure high accuracy, leading to a large computational
complexity, which currently cannot be achieved in real time.
This difficulty may be overcome by further simplification of
our model or implementation in multi-GPUs.
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