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Abstract

This note addresses an issue faced by every proton computed tomography (CT) recon-
struction software: the modelling and the parametrisation of the multiple Coulomb scattering
power for the estimation of the most likely path of each proton. The conventional approach
uses a polynomial model parameterised as a function of depth for a given initial beam energy.
This makes it cumbersome to implement a software that works for proton CT data acquired
with an arbitrary beam energy or with energy modulation during acquisition.

We propose a simple way to parametrise the scattering power based on the measured
proton CT list-mode data only and derive a compact expression for the most likely path
(MLP) based on a conventional MLP model. Our MLP does not require any parameter.
The method assumes the imaged object to be homogeneous, as most conventional MLPs, but
requires no information about the material as opposed to most conventional MLP expressions
which often assume water to infer energy loss. Instead, our MLP automatically adapts itself
to the energy-loss which actually occurred in the object and which is one of the measurements
required for proton CT reconstruction. We validate our MLP method numerically and find
excellent agreement with conventional MLP methods.
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2 MATERIALS AND METHODS

1 Introduction

Image reconstruction in list-mode proton computed tomography (CT) is typically performed
along the most likely path (MLP) that a proton has taken through the imaged object (Schulte
et al., 2008; Rit et al., 2013; Johnson, 2018; Dedes et al., 2020). The reason for this is that
protons follow stochastic non-straight trajectories through the object, mainly because of multiple
Coulomb scattering (MCS) (Gottschalk, 2010). Most protons which have undergone nuclear
scattering are filtered out prior to image reconstruction and MLP algorithms generally assume
that only MCS bends the proton trajectory. The MLP attempts to account for MCS by providing
curved integration lines to the tomographic reconstruction algorithm. It is estimated based on
the position and angle measurement upstream and downstream of the object and considers the
likelihood of MCS in the medium. To calculate the latter, a kinematic term essentially equivalent
to the protons’ scattering power at a given depth needs to be calculated which depends on the
proton’s kinetic energy. In most MLP formalisms, this term is integrated along depth and
therefore has a significant impact on the computational speed of the reconstruction code. A
practical approach to speed up the computation is to approximate the kinematic term by a
polynomial as a function of depth and to perform the integration analytically (Williams, 2004;
Schulte et al., 2008). The result is again a polynomial which is computationally efficient to
calculate. The polynomial coefficients need to be determined a priori for a given beam energy,
e.g. based on a Monte Carlo simulation or suitable tabulated data such as NIST’s PSTAR
tables (Berger et al., 2005). While this approach is functional and has been successfully used
by several authors, it has a few technical downsides: The value of the coefficients depends on
the beam energy making it difficult for a reconstruction software to work with list-mode proton
CT data acquired with arbitrary beam energy. Either the code would need to include a large
database of such polynomial coefficients to cover an adequate range of beam energies, potentially
with interpolation between energies, or the user would need to determine the coefficients and
provide them as input to the reconstruction, which is arguably impractical. For image acquisition
scenarios where the beam energy varies from one proton to another, e.g. when using pencil beams
with varying beam energy, the approach is cumbersome because each proton requires a separate
set of coefficients.

In this note, we present a method to parametrise and evaluate the kinematic term in the MLP
estimation purely based on the measured data. No external parameters other than established
physical constants are required. The resulting MLP expression is compact and easy to implement.

2 Materials and Methods

2.1 Context

This note does not propose a new formalism to estimate the MLP, but a method to parametrise
existing MLP formalisms. For this purpose, we chose the MLP formalism in Krah et al. (2019)
because it yields a compact MLP expression.

Most MLP formalisms in proton CT use the following model for the multiple Coulomb scat-
tering power T (u) as a function of depth in the object:

T (u) =
1

X0

Ω2
0

β2(u)p2(u)
=

1

X0

Ω2
0(E(u) + Ep)

2c2

(E(u) + 2Ep)2E2(u)
≡ 1

X0
K(u), (1)

with Ω0 = 13.6MeV/c a constant, β = v/c the proton’s velocity relative to the speed of light,
p the proton’s momentum, Ep the proton’s rest mass energy, X0 the radiation length of the
material, and E(u) the protons’ kinetic energy at depth u. We defined the unit-less function
K(u) to contain the energy-dependent part of the scattering power. The radiation length X0

is depth-dependent in a heterogeneous medium, but most MLP formalisms treat objects as
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2.2 Conventional parametrisation of the scattering power 2 MATERIALS AND METHODS

homogeneous material and so do we. Schulte et al. (2008) also includes an empirical correction
factor which we omit.

Evaluating the MLP from Krah et al. (2019) involves four variants of integrals over K(u),

A(u) =
1

X0

∫ u

0
dv K(v); C(u) =

1

X0

∫ u

0
dv

∫ v

0
dwK(w);

B(u) =
1

X0

∫ u

0
dv K(v)v; D(u) =

1

X0

∫ u

0
dv

∫ v

0
dwK(w)w (2)

where u, v, w are variables indicating depth in the object.
The MLP, or more precisely the most likely transverse position tMLP at depth u, is calculated

as

tMLP(u) = tin + θinu+ c0C(u) + c1D(u), (3)

where tin and θin are the transverse position and angle of the proton entering the object. The
factors c0 and c1 are independent of depth and given by

c0 =
1

AoutDout −BoutCout
(−Bout (tout − tin − θinuout) +Dout (θout − θin))

c1 =
1

AoutDout −BoutCout
(Aout (tout − tin − θinuout)− Cout (θout − θin)) ,

(4)

with tout and θout the exit position and angle, respectively, and uout the exit depth. We used
the short-hand notation Aout = A(uout) for brevity. Determining uout requires knowledge of
the external contour of the object to be reconstructed – an assumption common to all MLP
formalisms. In a proton CT reconstruction algorithm, equation 3 is evaluated independently for
both perpendicular directions transverse to the beam, i.e. tMLP,x and tMLP,y (assuming the beam
along z). Throughout this work, we ignore this technicality and let “transverse direction” refer
to either of these two directions.

2.2 Conventional parametrisation of the scattering power

The term K(u) needs to be adequately parametrised in a proton CT reconstruction code to
evaluate the integrals in equation 2. The conventional way is to obtain E(u) from a Monte Carlo
simulation for a given proton beam energy and material and fit a polynomial P(u) =

∑N
n=0 anu

n

to the so-derived K(u) (Williams, 2004; Schulte et al., 2008; Krah et al., 2019), with N = 5
suggested in Schulte et al. (2008). The integration can then be performed analytically. As
explained in the introduction, one inconvenience of this approach is that P(u) depends on the
beam energy.

2.3 New parametrisation

The new parametrisation proposed in this work starts from an observation depicted in the
left panel of figure 1, namely that the reciprocal of the kinematic term in the scattering power
as a function of depth in a homogeneous material is approximately linear, i.e.

1/K(u) ≈ au+ b, so that K(u) ≈ 1

au+ b
(5)

where we choose u by convention so that protons enter the object at uin = 0. To generate
figure 1, we determined the proton energy as a function of depth and calculated the scattering
power as in equation 1. More specifically, we integrated u(E) =

∫ E
Ein

1/Sw(E) dE numerically,
using the stopping power Sw(E) of water from NIST’s PSTAR table (Berger et al., 2005) and
obtained E(u) by numerical inversion of the relation. The dots in figure 1 are examples of the
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Figure 1: Left: Inverse scattering power calculated according to equation 1 (solid). The linear
approximation (dashed line) was determined as the line connecting the two dots which represent
the scattering power at the object entry and exit. Centre: Reciprocal of the left plot. The dotted
line was obtained as a polynomial fit of order 5 to the solid line between the two dots. Right:
Relative difference of the fitted scattering powers to the reference.

proton’s entry and exit depths and, for this figure, we chose uout to be 2 cm less than the proton
range for the given beam energy.

In practice, the coefficients a and b can be determined via equation 1 from the proton’s
incoming and outgoing energy,

b =
1

K(uin)
a =

1

uout

(
1

K(uout)
− 1

K(uin)

)
. (6)

The right panel in figure 1 compares the scattering power approximated according to equa-
tion 5 (dashed) with the exact scattering power from which a and b were derived (solid), as well
as a polynomial fit P(u) of order N = 5 with the exact scattering power (dotted). Visually,
the approximation in equation 5 is at least as good as the polynomial fit. Quantitatively, the
right panel in figure 1 shows that equation 5 approximates the scattering power to within a few
percent, depending on the initial energy and depth.

Using equation 5, the integrals in equation 2 can be evaluated analytically, as outlined in the
Appendix, yielding:

A(u) =
1

a
log
(a
b
u+ 1

)
(7)

B(u) =
b

a2

(a
b
u− log

(a
b
u+ 1

))
(8)

C(u) =
b

a2

((a
b
u+ 1

)
log
(a
b
u+ 1

)
− a

b
u
)

(9)

D(u) =
b2

a3

(
1

2

(a
b
u
)2

+
a

b
u−

(a
b
u+ 1

)
log
(a
b
u+ 1

))
. (10)

Inserting A(u), B(u), C(u), and D(u) into equations 3 and 4 and grouping terms yields the new
expression for the MLP,

tMLP(u) = tin+

(
θin − c0

1

a
+ c1

b

a2

)
u+

1

2a
c1u

2+

(
c0
b

a2
− c1

b2

a3

)(a
b
u+ 1

)
log
(a
b
u+ 1

)
, (11)

i.e. a quadratic function plus an additional linear-logarithmic term. This expression for the MLP
does not depend on any external parametrisation of the scattering power T (u) (or the term K(u)
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therein) and can be fully determined via equations 1 and 6 based on measurements only, i.e. the
proton’s entry and exit coordinates as well as the entry and exit energy.

2.4 Implementation

The MLP in equation 11 can be implemented according to the following scheme: For each
proton, project the entry and exit coordinates (position and angle) onto the external contour
of the object to be reconstructed. This yields uin, uout, tin, tout, θin and θout. Next, determine
the parameters a and b via equation 6 based on the proton’s entry and exit energy. Calculate
and store the parameters c0 and c1 (equation 4). Finally, calculate the most likely transverse
position tMLP at all desired depths u using a, b, c0, c1. It can be shown that the case a = 0
(no energy loss) does not constitute a true singularity because in that case K(u) = 1/b and all
integrals simplify. This case must be handled separately to avoid numerical instability.

2.5 Validation and simulation

We validated the new MLP parametrisation by comparison with conventional MLP expres-
sions. In particular, we chose the methods from Schulte et al. (2008) and Krah et al. (2019).
The former is well-established and was one of the first to appear in the literature on proton CT
and the latter is the method to which the adaptive parametrisation in this work is applied.

To quantify how well the new MLP agrees with conventional MLP expressions, we performed
a GATE Monte Carlo simulation (Sarrut et al., 2014) of protons propagating through water
and traced their true trajectory in 1mm depth intervals. We chose water because this is the
underlying assumption of both reference MLPs. We used the emstandard_opt4 physics list to
ignore nuclear interactions as these are not considered by the MLP formalisms. In practice, most
nuclear events are filtered out from proton CT data, but that would have been an unnecessary
complication for the purpose of this validation.

For each proton, we calculated the MLP using the three different MLP methods. We com-
pared the MLPs among each other as well as with the true paths from Monte Carlo. Regarding
the latter, we generated the distribution of the difference between MLP estimate and true posi-
tion, tMLP − tMC, at a certain depth.

3 Results

The upper left panel in figure 2 shows a few example MLPs in a 20 cm thick box of water
for protons of 200MeV and calculated using the MLP method from this work as well as those
from Schulte et al. (2008) and Krah et al. (2019). The lower left panel illustrates how much
these MLPs vary among each other. The right panels depict the error of tMLP compared to the
transverse position from Monte Carlo for 200MeV (upper) and 150MeV (lower) protons. The
position was evaluated at the central depth and the water boxes were 20 cm and 12 cm thick,
respectively.

The differences among MLPs are no greater than a few tens of micrometers and much smaller
than the statistical uncertainty of the MLP estimate itself. The MLP uncertainty, which directly
influences the spatial resolution in the reconstructed image, is essentially identical for all MLPs.
We also verified these results at other beam energies and depths and came to the same conclusions.

4 Discussion and Conclusion

In this work, we have presented a new method to parametrise the energy dependence in the
scattering power which is part of the most likely path formalism in proton CT. The method
relies on the fact that the reciprocal of the scattering power as a function of depth in an object is
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Figure 2: Upper left: Example of most likely paths for 200MeV protons in water calculated with
different MLP methods. Lower left: Difference between the MLPs. Right: Distributions of the
difference between tMLP and true position (from Monte Carlo) at the centre of a 20 cm (upper)
and 12 cm (lower) thick water box. Beam energies are indicated in the graphics. The vertical
lines indicate ± one root mean square error of the distributions, with specific numbers provided
in the legend.

approximately linear, which we have verified for the range of beam energies relevant for proton
CT. Our new MLP parametrisation automatically adapts to the energy-loss of a proton in a
given object because it uses the actually measured exit energy.

From the practical point of view, the new MLP parametrisation presented in this work
greatly simplifies the implementation of a proton CT reconstruction software. Indeed, with
a conventional MLP, either the software or the user need to provide the coefficients of the
polynomial which approximates the scattering power as a function of depth. The new method
can calculate the MLP for protons of any initial energy only relying on the proton CT list-mode
data, i.e. proton coordinates and energies. This also makes reconstruction of images acquired
with energy-modulated proton beams (Dickmann et al., 2021) technically easier than it would
be with the conventional MLP methods.

It is worth remarking that the scattering power term K(u) (equation 1) in a homogeneous
object is also well approximated by a power law of the form K(u) = ε(R − u)δ, where R is the
proton range in the given material and ε and δ are model parameters, similar to the model used
in Bortfeld et al. (1996). In a known material, ε and δ could be determined using K(uin) and
K(uout) (which can be calculated from Ein and Eout). For the example data in water shown in
figure 1, we find δ ≈ −1.05, which is coherent with our inverse linear model. In practice, however,
the material of an imaged object and the proton range R therein is not known. One could use
the range in water as an approximation, but that would incorrectly represent the relation K(u)
in materials which are on average denser or less dense than water. In mathematical terms, the
power law model in an unknown material has three free parameters (ε, δ, R), but only two data
points (Ein, Eout) are available, so the model remains underdetermined.

Interestingly, the new MLP expression in equation 11 does not make any assumption about
the material of the imaged object, contrary to the conventional MLP parametrisation. For ex-
ample, in an object which is less dense than water such as the lungs, protons loose less energy
and K(u) does not increase as much as it would in water. Consequently, the slope parameter
a in equation 6 is smaller than it would be in the same object filled with water. The conven-
tional parameterisation, which uses a polynomial P(u) fitted to data simulated in water, would
overestimate the energy loss in the less dense material. In this context, we also note that the
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4 DISCUSSION AND CONCLUSION

radiation length X0 (and other constant factors) which appear in the scattering power actually
cancel out in the MLP expression, specifically in the terms c0C(u) and c1D(u) in equation 3.
In other words, in a homogeneous medium, the MLP depends only on K(u) and not on the
radiation length.

We point out that our MLP expression does not account for heterogeneous material composi-
tion along the particle path, and neither do the conventional MLP from Schulte et al. (2008) and
similar variants. There are MLP methods available in the literature which use a priori knowl-
edge about the object to account for inhomogeneous tissue composition (Collins-Fekete et al.,
2017; Brooke et al., 2020). A comparison of such methods, both in terms of image quality and
computation speed, was beyond the scope of this work.

The purpose of this work was to find a convenient way of parametrising the scattering power
in proton CT reconstruction. We concentrated on a specific MLP formalism, namely the one in
Krah et al. (2019), because it leads to a compact expression for the MLP. We point out, however,
that other MLP formalisms could also use equations 5 and 6 when evaluating scattering integrals,
e.g. equations 7-9 in Schulte et al. (2008).
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Appendix

Evaluating the integral terms A(u), B(u), C(u), and D(u) in equation 2 with the new
parametrisation of the scattering power involves two similar types of integral expressions which
can be found in common mathematical handbooks, namely

∫ u

0

1

av + b
dv =

1

a
log(au+ b)− 1

a
log(b) =

1

a
log
(a
b
u+ 1

)
(12)∫ u

0

v

av + b
dv =

u

a
− b

a2
log(au+ b) +

b

a2
log(b) =

u

a
− b

a2
log
(a
b
u+ 1

)
, (13)

where we have assumed uin = 0 for simplicity and without loss of generality. A(u) is directly
equivalent to equation 12. C(u) is obtained by integrating equation 12 and using the substitution
v′ ≡ av/b+ 1, so that ∫ u

0

∫ v

0

1

aw + b
dw =

b

a2

∫ a/bu+1

1
log(v′) dv′, (14)

which is solved recalling that∫
log(x) dx = x log(x)− x = x (log(x)− 1) . (15)

B(u) is directly given by equation 13 and D(u) follows from it by integration and substitution
v′ ≡ av/b+ 1, in analogy to C(u).
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