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An optimal control problem for the continuity equation arising in smart

charging

Adrien Seguret ∗

Abstract

This paper is focused on the mathematical modeling and solution of the optimal charging of a large population
of identical plug-in electric vehicles (PEVs) with mixed state variables (continuous and discrete). A mean field
assumption is formulated to describe the evolution interaction of the PEVs population. The optimal control
of the resulting continuity equation of the mixed system under state constraints is investigated. We prove the
existence of a minimizer. We then characterize the solution as the weak solution of a system of two coupled
PDEs: a continuity equation and of a Hamilton-Jacobi equation. We provide regularity results of the optimal
feedback control.

Keywords: Optimal control, optimality conditions, mean field control.

1 Introduction

This article studies the optimal control of a first order continuity equation with a reaction term under state con-
straints. Let us consider a finite time interval [0, T ] and a mixed state space equal to the product [0, 1]× I, where
I is a finite space, the cardinality of which is denoted by |I|. The continuity equation is given by:

∂tmi(t, s) + ∂s(mi(t, s)bi(s)) = −
∑

j 6=i

(αi,j(t, s)mi(t, s)− αj,i(t, s)mj(t, s)) (i, t, s) ∈ I × (0, T )× (0, 1),

mi(0, s) = m0
i (s) (i, s) ∈ I × [0, 1],

(1.1)

where m : [0, T ] → P([0, 1] × I) is a curve of probability distribution, m0 ∈ P([0, 1] × I) is the given initial
distribution, b : I × [0, 1] → R is a velocity field, and the control α : I × I × [0, T ] × [0, 1] → R+ is a jump
intensity. The notion of weak solution of (1.1) is specified in Definition 3.1. We further assume that b vanishes at
the boundary of [0, 1] so that the mass conservation in I× [0, 1] is guaranteed without forcing a boundary condition.
The distribution m is subject to the following congestion constraints:

mi(t, [0, 1]) ≤ Di(t) ∀(i, t) ∈ I × [0, T ], (1.2)

where D : [0, T ] → R
∗
+ is given. The objective function J is defined as follows:

J(m,α) :=
∑

i∈I

∫ T

0

∫ 1

0

(

ci(t, s) +
∑

j∈I,j 6=i

L(αij(t, s))
)

mi(t, ds)dt+
∑

i∈I

∫ 1

0

gi(s)mi(T, ds). (1.3)

Our purpose is to study the optimization problem:

inf
m,α

J(m,α), where (m,α) is a weak solution of (1.1) and satisfies (1.2). (1.4)

Our work is initially motivated by the optimal charging of a population of PEVs controlled by a central planner.
The continuous variable s ∈ [0, 1] in (1.1) represents the level of battery of a PEV. The discrete variable i ∈ I
represents the mode of charging (e.g. idling, charging, discharging, etc...). For any (t, s, i) ∈ [0, T ]× [0, 1]× I, the
value mi(t, s) represents the proportion of PEVs at time t at state (s, i). The given velocity field bi(s) denotes the
power of charge or discharge of a PEV in mode i and with battery level s. For any (t, s, i, j) ∈ [0, T ]× [0, 1]× I × I,
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the value αi,j(t, s) denotes the jump intensity of PEVs from the state (s, i) to the state (s, j) at time t. The control
α is required to be a non-negative measurable function. The congestion constraint (1.2) avoids high demand of
energy at each moment over the period. The cost function L penalizes high values of α. It aims at avoiding the
synchronization of jumps of the PEVs and the consequent instability of the electrical network. The value ci(t, s)
corresponds to the cost per PEV to pay at time t ∈ [0, T ) at state (s, i); gi(s) is the final cost per PEV to pay at
state (s, i). Numerical results of Problem (1.4) applied to smart charging can be found in [48]. Problem (1.4) can be
interpreted heuristically as an approximation of the limit case N → ∞ of an optimal switching problem of N PEVs.
Combinatorial techniques as well as optimal control tools may fail to solve problems with large population of PEVs,
due to the curse of dimensionality [5]. To overcome these difficulties, a continuum of PEVs can be considered,
leading to the techniques of the optimal control of PDE. The connection between the finite population problem and
the mean field problem is addressed in a companion paper [47] by the author.

1.1 Contributions, methodology and literature

Contributions This paper makes three main contributions.
First we prove the existence of solutions of Problem (1.4).
Second, we derive optimality conditions of Problem (1.4). More precisely, let H denote the Fenchel conjugate

of L and H ′ denote the derivative of H , we show that, if (m,α) is a solution of (1.4), then there exists a pair (ϕ, λ)
such that, for any i, j ∈ I, αi,j = H ′(ϕi − ϕj), and (ϕ, λ,m) is a weak solution of the following system:































































−∂tϕi − bi∂sϕi − ci − λi +
∑

j∈I,j 6=i

H(ϕi − ϕj) = 0 on (0, T )× (0, 1)× I

∂tmi + ∂s(mibi) +
∑

j 6=i

H ′(ϕi − ϕj)mi −H ′(ϕj − ϕi)mj = 0 on (0, T )× (0, 1)× I

mi(0, s) = m0
i (s), ϕi(T, s) = gi(s) on (0, 1)× I

∫ 1

0

mi(t, ds)−Di(t) ≤ 0, λ ≥ 0 on [0, T ]× I

∑

i∈I

∫ T

0

(∫ 1

0

mi(t, ds)−Di(t)

)

λi(dt) = 0.

(1.5)

The function ϕ is the Lagrange multiplier associated to the dynamic constraint (1.1), and the measure λ is associated
to the congestion constraint (1.2). The first equation in (1.5) is a backward Hamilton-Jacobi equation. The existence,
uniqueness and characterization of weak solutions of the backward Hamilton-Jacobi equation are investigated in
the paper. The second equation in (1.5) is a forward continuity equation, where the control α, defined by αi,j =
H ′(ϕi − ϕj), is optimal. The measure λ is non-negative and finite. The last equality in (1.5) ensures that the
congestion constraint (1.2) is satisfied.

Third, we obtain regularity property for any weak solution (λ, ϕ,m) of (1.5). We prove that, under suitable
assumptions on the data b, g and c, the multiplier ϕ is in Lip([0, T ] × [0, 1] × I) + BV ([0, T ] × I). As a result,
the optimal control α is bounded and Lipschitz continuous in space uniformly w.r.t. the time variable and the
measure m is in Lip([0, 1],P([0, 1]× I)). We show that if the initial distribution m0 is absolutely continuous w.r.t.
the Lebesgue measure and has a smooth density, then the measure m is absolutely continuous w.r.t. the Lebesgue
measure and has Lipschitz continuous density.

Methodology The existence of an optimal solution is established by compactness arguments (see for e.g. [6]).
We adopt a duality approach to obtain (1.5). More explicitly, we relax the dynamics (1.1) and the congestion
constraint (1.2). The resulting relaxed problem is then expressed as the dual of another convex problem. We show
that the system (1.5) is the optimality condition of Problem (1.4).

Literature Solving the optimal control of a Fokker-Planck equation by means of the duality theory has been
well known since decades [26, 50]. Our work follows the method developed in the seminal work by Benamou
and Brenier [6] for optimal transport problems. In [6], a continuity equation is controlled with initial and final
constraints; optimality conditions are obtained as a system of PDEs close to (1.5). Similar method and results
also in optimal transport are derived in [15]. More recently, this approach was applied to solve on optimal control
problem of a Fokker-Planck equation under state constraints in the Wasserstein space [20, 21], where Lipschitz
regularity results of the optimal control are proved.

The optimality conditions (1.5) typically arises in the Mean Field Game (MFG for short) Theory. This class
of problems, introduced by Lasry and Lions [34, 35, 36] and Huang, Malhamé and Caines [32, 33], describes the
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interaction among a large population of identical and rational agents in competition. Mean Field Control (MFC
for short) and MFG theories have been extensively used over the last few years as a mathematical tool in electrical
engineering. More specifically, the optimal control of PDEs applied to smart charging can be found in [38, 49], and
to the management of a population of thermostatically controlled loads in [27, 42].

Conversely, the duality approach is close to the so-called variational approach used in MFG theory in [16], where
the weak solution of the MFG system is characterized as the minimizer of some optimal control of Hamilton-Jacobi
and Fokker-Planck equations. This approach allows to use optimization techniques to prove the existence and
uniqueness of the solution of MFG and MFC problems. We refer to [1, 8, 13, 17, 43] and the references therein.
Besides, the variational approach allows to apply optimization algorithms to numerically solve MFG problems
[7, 12, 13].

Note that different optimality conditions for control problems in the space of probability measures can be derived
by using a kind of Pontryagin Maximum Principle [10, 11].

A particularity of this paper is to deal with a congestion constraint (1.2) on the measure. Two kinds of congestion
effects are explored in the MFG and MFC frameworks. On the one hand, “soft congestion” increases the cost of
velocity of the agents in areas with high density. On the other hand, “hard congestion” constraints impose density
constraints, e.g. m ≤ m̄ at any point (t, s). The variational approach yields good results when applied to MFC [1]
and MFG with “soft congestion” in a stationary framework [23], as well as to MFG problems dealing with “hard
congestion” constraints. This was first investigated in [44] where the density of the population did not exceed a
given threshold, then in [40] where stationary second order MFGs were considered. In [18], a price which is imposed
on the saturated zone to make the density satisfy the constraints is obtained. In the same vein as the work of
Benamou and Brenier [6], “hard congestion” constraints were examined in optimal transport [14]. We highlight
that our paper deals with aggregate “hard congestion” constraints on the measure m (1.2), i.e., our constraint is
less restrictive than a constraint of the type m ≤ m̄ a.e..

Besides, we consider a mixed state space with continuous and discrete state variable. This setting has seldomly
been investigated in the MFG literature. Indeed, the articles cited in the paragraphs above looked only at continuous
state variables. The resulting continuity equation (1.1) contains a term of reaction, indicating mass transfers between
states in I. Such PDEs also arised in [3] to model the mean field limit of Piecewise Deterministic Markov Proccesses
(PDMP for short). The velocity was controlled in [3]. Here, we control the intensity of the jump α, but the velocity
b is given. A MFG problem with discrete time and state space was explored in [29] and applied to socio-economic
sciences in [28]. The uniqueness of the solution of a finite state MFG was discussed in [4] and the convergence of the
N -player game to the mean field model as N → ∞ was obtained in [30]. Mixed state spaces in a MFG framework
were studied in [24, 25], where a major player can switch his state on a finite state space and minor players decide
their stopping time. A MFG problem in a finite state space and discrete time settings with “hard congestion” was
studied in [9], also by variational methods.

Some of our regularity results, namely that α is Lipschitz continuous w.r.t. s, and the density of m w.r.t.
the Lebesgue measure is Lipschitz continuous when m0 is absolutely continuous w.r.t. the Lebesgue measure, are
unusual. We believe that it is mainly due to the linearity of the Hamilton-Jacobi equation w.r.t. ∂sϕ. These results
will be used in a companion work [47] to quantify the mean field limit of the model. The time regularity of ϕ may
not be improved as far as we have no more regularity results on λ. The function ϕ is discontinuous at each atom
of the measure λ. Regularity results about the multiplier of the density constraint can be found in the literature:
in [18], the authors showed some BV estimates on the pressure, whereas L∞ estimates for the price were proved
in [21] and [37] in the special case of a quadratic Hamiltonian in a MFG problem. The Sobolev regularity of the
solution of a first order MFG was established in [39] and improved in [46]; also see [31].

Organization of the paper The paper is organized as follows. In Section 2, we present our assumptions
and main results. The existence of a solution of Problem (1.4) is established in Section 3. In Section 4, which
is independent of the other sections, we show the existence, uniqueness and regularity of weak solution of the
Hamilton-Jacobi equation in (1.5). In Section 5, we return to Problem (1.4) and develop the duality approach. We
formulate its Lagrangian relaxation and show it is the dual problem of another convex problem. We obtain the
optimality conditions (1.5) of Problem (1.4) in Section 6. The Lipschitz continuity of the value of Problem (1.4)
w.r.t. the data (m0, D) is proved in Section 7. We recall basic statements about weak solutions of (1.1) in Appendix
8.

2 Assumptions and main results
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2.1 Notations and Assumptions

Notations The space of Borel, positive and bounded measures on a space A is denoted by M+(A) and the
space of Borel probability measures on a space A is denoted by P(A). For any measure µ ∈ M([0, T ]) and

0 ≤ t1 < t2 ≤ T , we set
∫ t2

t1
µ(dt) := µ([t1, t2]). Given a set S, for any function f defined on I × S and any

measure µ ∈ M(S × I), we use the notations fi(x) := f(i, x) for any (i, x) ∈ I × S and µi(S) := µ({i} × S) for
any (i, S) ∈ I × B(S), where B(S) denotes the Borel algebra. Similarly, for any function g defined on I × I × S
and any measure ν ∈ M(S × I × I), we use the notations gi,j(x) := g(i, j, x) for any (i, j, x) ∈ I × I × S and
νi,j(S) := µ({i} × {j} × S) for any (i, j, S) ∈ I2 × B(S). If S is a metric space, let Lip(S) denote the vector space
of bounded and Lipschitz continuous maps f : S → R. For any µ ∈ C0([0, T ],P([0, 1])), let L2

µ([0, T ] × R) :=

{f : [0, T ]× R 7→ R,
∫ T

0

∫ 1

0 f(t, s)
2µ(t, ds)dt < +∞}. We denote by W the Wasserstein distance on P([0, 1] × I),

defined by W(µ, ρ) := sup {
∑

i∈I

∫ 1

0
ϕ(µ − ρ) |ϕ is 1 − Lipschitz from [0, 1]× I to R}. We recall that if a function

ϕ is 1-Lipschitz continuous from [0, 1]× I to R, then |ϕ(x, i) − ϕ(x, j)| ≤ 1 for any i, j ∈ I. The dual of a normed
space X is denoted by X∗. We consider the space Ω := P([0, 1]× I)×C0(I × [0, T ],R∗

+). For any ε > 0, we define
the subspace Ωε of Ω, by

Ωε :=
{

(µ, f) ∈ Ω | ε < inf
t∈[0,T ],i∈I

fi(t)− µi([0, 1])
}

. (2.1)

We consider the following spaces for any δ > 0:

M+
δ ([0, T ]× I) :=

{

µ ∈ M+([0, T ]× I) |µ([0, T ]× I) ≤ δ
}

,

C0
δ ([0, T ]× I,R+) :=

{

f ∈ C0([0, T ]× I,R+) |

∫ T

0

∑

i∈I

fi(t)dt ≤ δ
}

.

For any δ > 0, the space C0
δ ([0, T ]× I,R+) can be considered as a subspace of M+

δ ([0, T ]× I) in the sense that, for
any f ∈ C0

δ ([0, T ]× I,R+), we have fL ∈ M+
δ ([0, T ]× I), where L is the Lebesgue measure on [0, T ].

Assumptions The following assumptions are in force throughout the paper.

1. For any i ∈ I, bi ∈ C1(R) with bi(s) = 0 for any s 6∈ (0, 1).

2. The initial distribution of (1.1) m0 ∈ P(R× I) is such that supp(m0
i ) ⊂ [0, 1] for any i ∈ I .

3. There exists ε0 > 0 such that the parameter D of (1.2) and m0 satisfy (m0, D) ∈ Ωε0 .

4. For any i ∈ I, it is assumed that ci ∈ C1([0, T ]× [0, 1]) and gi ∈ C1([0, 1]).

5. L : R → R̄ is a convex function, defined by:

L(x) :=







l(x) if x > 0,
0 if x = 0,
+∞ otherwise,

where l ∈ C1(R+,R+) is an increasing strongly convex function bounded from above by a quadratic function.
More explicitly, there exists C > 0 such that for any x ∈ R+:

x2

C
− C ≤ l(x) ≤ C(x2 + 1),

where the first inequality is due to the strong convexity of l.

The function H being the Fenchel conjugate of L, by Assumption 5, H is non-decreasing, non-negative, and H ′ is
Lipschitz continuous on R. For any λ ∈ M+([0, T ]× I), ψ ∈ L2([0, T ]× [0, 1]× I), (t, τ, s, i, j) ∈ [0, T ]2 × [0, 1]× I2,
we define Hλ by:

Hλ(i, j, t, τ, s, ψ) := H
(

(ψi − ψj)(τ, S
t,s
i (τ)) +

∫ T

τ

(λi − λj)(dr)
)

. (2.2)

By Assumption 1, for any s ∈ [0, 1], i ∈ I and t ∈ [0, T ], there exists a unique St,s
i satisfying the ODE below











dSt,s
i (τ)

dτ
= bi(S

t,s
i (τ)), τ ∈ [0, T ],

St,s
i (t) = s.

(2.3)
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Since b ∈ C1([0, 1] × I), we recall that the flow Si satisfies the following equation for any (i, τ, t, s) ∈ I × (0, T )×
(0, T )× (0, 1):

∂xS
τ,x
i (t) = exp(

∫ t

τ

b′i(S
τ,x
i (r))dr). (2.4)

Remark 2.1. The main role of Assumptions 1 and 2 is to ensure that the support of the weak solution of (1.1)
is contained in [0, 1] over the period [0, T ] (cf. Lemma 8.1 in Appendix 8). Assumption 3 provides an estimate on
λ([0, T ] × I) for any weak solution (ϕ, λ,m) of (1.5) and ensures that the control α = 0 is an admissible control.
Correspondingly, the feasible set of Problem (1.4) is not empty. Regularity results of the weak solutions of the system
(1.5) are derived thanks to the assumptions formulated on c and g in Assumption 4.

2.2 Main results

We introduce, for a given λ ∈ M+([0, T ]× I), the Hamilton-Jacobi equation on (0, T )× (0, 1)× I:

−∂tϕi(t, s)− bi(s)∂sϕi(t, s)− ci(t, s)− λi(t) +
∑

j∈I,j 6=i

H((ϕj − ϕi)(t, s)) = 0 (t, s, i) ∈ (0, T )× (0, 1)× I,

ϕi(T, s) = gi(s) (s, i) ∈ [0, 1]× I.
(2.5)

We define the function Ã for any (ϕ, λ) ∈
(

Lip([0, T ]× [0, 1]× I) + BV ([0, T ]× I)
)

×M+([0, T ]× I) by:

Ã(ϕ, λ) :=
∑

i∈I

∫ 1

0

−ϕi(0
+, s)m0

i (ds) +

∫ T

0

Di(t)λi(dt). (2.6)

The following Theorem summarizes the main results of the paper.

Theorem 2.1. Problem (1.4) has a solution. Furthermore, the minimizers have the following properties:

1. If (m,α) is a minimizer of Problem (1.4) and (ϕ, λ) ∈ (Lip([0, T ]× [0, 1]×I)+BV ([0, T ]×I))×M+([0, T ]×I)
is such that Ã(ϕ, λ) = −J(m,α), then (ϕ, λ,m) is a weak solution of (1.5) in the sense of Definition 6.1, and
αi,j = H ′(ϕi − ϕj) on {mi > 0} for any i, j ∈ I.

2. Conversely, if (ϕ, λ,m) is a weak solution of (1.5) in the sense of Definition 6.1, then there exists α, defined
for any i, j ∈ I by: αi,j := H ′(ϕi − ϕj) on {mi > 0}, such that (m,α) is a minimizer of (1.4) and Ã(ϕ, λ) =
−J(m,α).

3. If (m,α) is a minimizer of Problem (1.4), then for any i, j ∈ I αi,j and ∂sαi,j are both in L∞([0, T ]× [0, 1]),
and m ∈ Lip([0, T ],P([0, 1]× I)).

The existence of a solution of Problem (1.4) is stated in Lemma 3.3. The characterization of a solution, i.e.,
Theorem 2.1.1-2, is given by Theorem 6.1. For this, we adopt a duality approach which is developed in Section 5.
In particular, we introduce a convex problem, the dual of which is Problem (1.4) up to a change of variable (cf.
Theorem 5.1). The Lipschitz continuity of m stated in Theorem 2.1.3 is deduced from the regularity of ϕ, which is
derived in Section 4, and Proposition 8.1. The proof of Theorem 2.1 is finally given in Section 6.2.

Further regularity results on the solution of Problem (1.4) are obtained with additional conditions on the initial
distribution m0.

Proposition 2.1. If the initial distribution m0 is absolutely continuous w.r.t. the Lebesgue measure with a density
in C1([0, 1] × I), then any solution (m,α) of Problem (1.4) is such that m is absolutely continuous w.r.t. the
Lebesgue measure on [0, T ]× [0, 1], and has a density in Lip([0, T ]× [0, 1]× I).

The proof of Proposition 2.1 is given in Section 6.2.

3 Existence of an optimal solution

We introduce in this section a convex problem that is equivalent to (1.4). Standard compactness arguments are
used to show the existence of an optimal solution (see for e.g. [6]). The definition of a weak solution of (1.1) is
specified below.
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Definition 3.1. A pair (m,α) satisfies (1.1) in the weak sense if t ∈ [0, T ] 7→ m(t, ·) ∈ P(R× I) is continuous, for
any i, j ∈ I with i 6= j, it holds that αi,j ∈ L2

mi
([0, T ]× R) and for any test function φ ∈ C∞

c ([0, T ] × R × I), we
have:

∑

i∈I

∫

R

φi(T, s)mi(T, ds)− φi(0, s)m
0
i (ds)

=

∫ T

0

∫

R

∑

i∈I

(∂tφi(t, s) + bi(s)∂sφi(t, s))mi(t, ds) +
∑

j∈I,j 6=i

(φj(t, s)− φi(t, s))αi,j(t, s)mi(t, ds)dt.

Remark 3.1. Using Assumptions 1 and 2, Lemma 8.1 in Appendix 8 states that, for any weak solution (m,α) of
(1.1) in the sense of Definition 3.1, the measure mi(t, ·) has its support contained in [0, 1] for any (t, i) ∈ [0, T ]× I.
Thus, we will consider throughout the paper only weak solutions (m,α) of (1.1) satisfying m(t, ·) ∈ P([0, 1]× I) for
any t ∈ [0, T ].

Problem (1.4) being not convex w.r.t. the variables (m,α), for any i, j ∈ I with i 6= j, we make a change of
variables Ei,j := αi,jmi. We now rewrite the continuity equation (1.1):

∂tmi(t, s) + ∂s(mi(t, s)bi(s)) = −
∑

j∈I,j 6=i

(Ei,j(t, s)− Ej,i(t, s)) (i, t, s) ∈ I × (0, T )× (0, 1)

mi(0, s) = m0
i (s) (i, s) ∈ I × [0, 1],

(3.1)

where Ei,j ∈ M+([0, T ]× [0, 1]) is such that Ei,j ≪ mi, with
dEi,j

dmi

= αi,j and
dEi,j

dmi

∈ L2
mi

([0, T ]× [0, 1]). For any

(m0, D) ∈ Ω satisfying Assumption 3, we introduce the set:

S(m0, D) :=

{

(m,E) such that Ei,j ≪ mi ∀i, j ∈ I, (m,α) satisfies (3.1) in the weak sense, where αi,j :=
dEi,j

dmi

,

with additional constraints:

∫ 1

0

mi(t, ds) ≤ Di(t) ∀(i, t) ∈ I × [0, T ], and
dEi,j

dmi

≥ 0

}

.

(3.2)
From Assumption 3, the set S(m0, D) is not empty. Indeed, denoting by (m, 0) a weak solution of (1.1) with
control α ≡ 0, the distribution m satisfies that, for any (t, i) ∈ [0, T ]× I, mi(t, [0, 1]) = m0

i ([0, 1]) < Di(t). Thus,
(m, 0) ∈ S(m0, D). We define the function J̃ on S(m0, D) by:

J̃(m,E) :=
∑

i∈I

∫ T

0

∫ 1

0

ci(t, s)mi(t, ds)dt+

∫ T

0

∫ 1

0

∑

i,j∈I,j 6=i

L

(

dEi,j

dmi

(t, s)

)

mi(t, ds)dt+
∑

i∈I

∫ 1

0

gi(s)mi(T, ds),

(3.3)
where the function L is defined in Assumption 5. Since m(t) is a probability measure for any t ∈ [0, T ], by

Assumption 4, the first and last integrals in (3.3) are well defined. Since
dEi,j

dmi

∈ L2
mi

([0, T ] × [0, 1]) and l is

bounded by a quadratic function according to Assumption 5, the second integral in (3.3) is also well defined. Thus,
for any (m,E) ∈ S(m0, D), the quantity J̃(m,E) is finite. The following optimization problem is considered:

inf
(m,E)∈S(m0,D)

J̃(E,m). (3.4)

For any γ > 0, we define the subset Sγ(m
0, D) of S(m0, D) by:

Sγ(m
0, D) :=







(m,E) ∈ S(m0, D)
∣

∣

∣

∑

(i,j)∈I,i6=j

∫ T

0

∫ 1

0

L

(

dEi,j

dmi

(t, s)

)

mi(t, ds)dt ≤ γ







. (3.5)

For any (m,E) ∈ Sγ(m
0, D), the next lemma provides a Hölder regularity property on m.

Lemma 3.1. For any γ > 0, there exists a positive constant Cγ such that, for any (m,E) ∈ Sγ(m
0, D), m is

1

2
-Hölder continuous with constant Cγ from [0, T ] to P([0, 1]× I) (endowed with the Wasserstein distance W).
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Proof. The proof relies on classical arguments for the time regularity of weak solutions of the continuity equation
(see [2]) and on the estimate, for any t, τ ∈ [0, T ] with t ≤ τ ,

(∫ τ

t

∫ 1

0

Ei,j(t, ds)dt

)2

≤ (τ − t)

∫ τ

t

∫ 1

0

∑

i,j∈I,j 6=i

(

dEi,j

dmi

(t, s)

)2

mi(τ, ds)dτ

≤ C

∫ T

0

∫ 1

0

L

(

dEi,j

dmi

(t, s)

)

mi(t, ds)dt+ C

≤ Cγ ,

where the first inequality is obtained by Cauchy-Schwarz inequality, Cγ := C(γ + 1) and C > 0 is the constant
defined in Assumption 5.

The next lemma is useful to show that any minimizing sequence of (3.4) is relatively compact.

Lemma 3.2. For any γ > 0, the subset Sγ(m
0, D) is relatively compact in C([0, T ],P([0, 1]× I)) ×M+([0, T ]×

[0, 1]× I2)), where M+([0, T ]× [0, 1]× I2)) is endowed with the weak∗-convergence.

Proof. The compactness is derived from Lemma 3.1 and standard arguments in Optimal Transport [45].

Lemma 3.3. Problem (3.4) admits a solution. Consequently, Problem (1.4) has a solution.

Proof. Existence of a solution of (3.4) is a consequence of Lemma 3.2 and of the l.s.c. of J̃ w.r.t. the topology
induced by C([0, T ],P([0, 1]× I))×M([0, T ]× [0, 1]× I2) (where M([0, T ]× [0, 1]× I2) is endowed with the weak∗-
convergence). Since Problem (1.4) is equivalent to Problem (3.4) up to a change of variable, the existence of a
solution is straightforward.

4 Analysis of the Hamilton-Jacobi equation

The purpose of this section is to study weak solutions of the Hamilton-Jacobi equation (2.5) when λ is inM+([0, T ]×
I). It is divided into three subsections. Section 4.1 is devoted to the analysis of the following equation

−∂tψi(t, s)− bi(s)∂sψi(t, s)− ci(t, s) +
∑

j∈I,j 6=i

H

(

(ψi − ψj)(t, s) +

∫ T

t

(λi − λj)(dr)

)

= 0 on (0, T )× (0, 1)× I,

ψi(T, ·) = gi on [0, 1]× I.
(4.1)

for a given λ ∈ C0
δ ([0, T ]× I,R+). Then, equation (4.1) is studied for a given λ ∈ M+

δ ([0, T ]× I) in Section 4.2.
Finally, we obtain in Section 4.3 the existence and the uniqueness of the solution to (2.5) by using the solution of
(4.1).

4.1 The Hamilton-Jacobi equation for continuous valued data

The main result of this subsection is the following.

Proposition 4.1. For any λ ∈ C0
δ ([0, T ]× I,R+), there exists a unique ψλ ∈ C1([0, T ]× [0, 1]× I) satisfying, for

any (t, s, i) ∈ [0, T ]× [0, 1]× I,

ψλ
i (t, s) =

∫ T

t

∑

j∈I,j 6=i

−Hλ(i, j, t, τ, s, ψλ) + ci(τ, S
t,s
i (τ))dτ + gi(S

t,s
i (T )). (4.2)

In addition, ψλ is the unique classical solution of (4.1) on [0, T ]× [0, 1]× I.

We recall that the definition of Hλ is given in (2.2). The next lemma states that a function ψ satisfies (4.2) if
and only if it is a classical solution of (4.1).

Lemma 4.1. For any λ ∈ C0([0, T ]×I,R+) and t0 ∈ [0, T ), a function ψ ∈ C1((t0, T ]× [0, 1]×I) satisfies equation
(4.2) on [t0, T ]× [0, 1]× I if and only if it is a solution of (4.1) on (t0, T ]× [0, 1]× I.
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Proof. If ψ ∈ C1((t0, T ] × [0, 1] × I) satisfies (4.2), then ψ(T, ·) = g and by computing the partial derivatives in
space and time of ψ, one obtains that ψ is a solution of (4.1) on (t0, T ]× (0, 1)× I.

Conversely, if ψ ∈ C1((t0, T ]× [0, 1]× I) is a solution of (4.1) then, by the method of characteristics one deduces
that ψ is a solution of (4.2) on [t0, T ]× [0, 1]× I.

Before proving Proposition (4.1), we need the following estimate on solutions of the Hamilton-Jacobi equation.

Lemma 4.2 (A priori estimate). For any δ > 0, there exists M > 0 such that, for any λ ∈ C0
δ ([0, T ]× I,R+) and

any t0 ∈ [0, T ), if ψ ∈ C1((t0, T ]× [0, 1]× I) satisfies (4.1) on (t0, T ]× (0, 1)× I, then ‖ψ‖∞ < M .

Proof. Let us define M := ‖g‖∞ + T (‖c‖∞ + |I|H(δ)) + 1 and, for any (t, s, i) ∈ [t0, T ]× [0, 1]× I,

ui(t, s) := −‖g‖∞ − (T − t)(‖c‖∞ + |I|H(δ)),
ūi(t, s) := ‖g‖∞ + (T − t)(‖c‖∞ + |I|H(δ)).

We note that ‖u‖∞ < M and ‖ū‖∞ < M . One has, for any (t, s, i) ∈ (t0, T ]× [0, 1]× I,

−∂tui(t, s) ≤ −
∑

j∈I,j 6=i

H

(

∫ T

τ

(λi − λj)(r)dr

)

+ ci(t, s)

−∂tūi(t, s) ≥ −
∑

j∈I,j 6=i

H

(

∫ T

τ

(λi − λj)(r)dr

)

+ ci(t, s).

(4.3)

We will show that ψ is bounded by u and ū. For any t ∈ (t0, T ], we define:

γ(t) = max
(x,i)∈[0,1]×I

(ui − ψi)(t, x) and (xt, it) ∈ argmax
(x,i)∈[0,1]×I

(ui − ψi)(t, x).

Since u is independent of x and i, we have (xt, it) ∈ argmin(x,i)∈[0,1]×I ψi(t, x). On the one hand, if xt ∈ {0, 1},
then bit(xt) = 0. On the other hand, if xt ∈ (0, 1), then ∂sψit(t, xt) = 0. Therefore, one has bit(xt)∂s(uit(t, xt) −
ψit(t, xt)) = 0. Since u and ψ are Lipschitz continuous in time uniformly in (s, i), γ is also Lipschitz continuous
and thus differentiable a.e. on (t0, T ]. Using the Envelop Theorem [41, Theorem 1], γ is absolutely continuous on
(t0, T ] and, for a.e. t ∈ (t0, T ], inequality (4.3) and equality (4.1) give:

γ′(t) = ∂t(uit(t, xt)−ψit(t, xt)) ≥
∑

j∈I,j 6=it

H

(

∫ T

τ

(λi − λj)(r)dr

)

−H

(

(ψi − ψj)(τ, S
t,s
i (τ)) +

∫ T

τ

(λi − λj)(r)dr

)

.

Since for any j ∈ I we have ψit(t, xt) ≤ ψj(t, xt) and uit(t, xt) = uj(t, xt), the fact that H is non decreasing implies:

H

(

ψit(t, xt)− ψj(t, xt) +

∫ T

τ

(λit − λj)(r)dr

)

≤ H

(

∫ T

τ

(λit − λj)(r)dr

)

,

and thus, γ′(t) ≥ 0. Since γ(T ) < 0, we deduce that ψ > u on (t0, T ] × [0, 1] × I. With similar arguments,
one obtains ū > ψ on (t0, T ] × [0, 1] × I. Therefore, according to the definition of u and ū, we have, for any
(t, s, i) ∈ (t0, T ]× [0, 1]× I :

−M < ψi(t, s) < M. (4.4)

Proposition 4.1 will be proved by a fixed point argument. For this, we need several lemmas. We fix the constant
M > 0 associated to δ > 0 from Lemma 4.2. The constant κ > 0 is defined below and depends only on M, ‖b′‖∞, T
and |I|. We consider the space

C0,1([0, T ]× [0, 1]× I) := {f ∈ C0([0, T ]× [0, 1]× I) | ∂sfi ∈ C0([0, T ]× [0, 1]× I)},

endowed with the norm ‖ · ‖κ0,1 defined by:

‖f‖κ0,1 := ‖f‖κ∞ + ‖∂sf‖
κ
∞,
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where, for any h ∈ C0([0, T ]× [0, 1]× I),

‖h‖κ∞ := sup
(t,s,i)∈[0,T ]×[0,1]×I

|hi(t, s)e
−κ(T−t)|.

The space (C0,1([0, T ]× [0, 1]× I), ‖ · ‖κ0,1) is a Banach space. We fix C0 > 0 and C1 > 0 to be chosen below, where
C0 depends on ‖∂sc‖∞, ‖g

′‖∞, ‖b
′‖∞ and C1 depends on M, δ, T and |I|. We look for a solution in the space Σ

defined by:

Σ :=
{

f ∈ C0,1([0, T ]× [0, 1]× I)
∣

∣ ‖f‖∞ ≤M + 1 and ‖∂sf(t, ·)‖∞ ≤ C0e
C1(T−t) ∀t ∈ [0, T ]

}

.

Remark 4.1. The set Σ is bounded and closed and therefore complete w.r.t. the topology induced by the norm
‖ · ‖κ0,1.

In this subsection, we are looking for a solution of (4.1) as a fixed point of the map Γλ := (Γλ
i )i∈I , which is

defined on C0,1([0, T ]× [0, 1]× I) by

Γλ
i (φ)(t, s) :=

∫ T

t

∑

j∈I,j 6=i

−Hλ(i, j, t, τ, s, φ) + ci(τ, S
t,s
i (τ))dτ + gi(S

t,s
i (T )). (4.5)

Since the function H is not necessarily bounded on R, we need to introduce a smooth truncation F ∈ C1(R, [−M −
1, M + 1]) to obtain a fixed point in Σ. The function F is defined on R such that F ′ ≥ 0, ‖F ′‖∞ ≤ 1 and:

F (x) :=







−M − 1 if x ≤ −(M + 2),
x if −M − 1/2 ≤ x ≤M + 1/2,
M + 1 if M + 2 ≤ x.

(4.6)

Finally, we define the function Πλ by:

∀φ ∈ Σ, Πλ(φ) := (Πλ
1 (φ), . . . ,Π

λ
|I|(φ)) where Πλ

i (φ) := (F ◦ Γλ
i )(φ) ∀i ∈ I.

The following lemma states that Πλ maps Σ into itself.

Lemma 4.3. For a suitable choice of the constants C0 and C1, one has Πλ(φ) ∈ Σ for any φ ∈ Σ.

Proof. Let φ ∈ Σ and, for any i ∈ I, σi := Γλ
i (φ). We have σ ∈ C0,1([0, T ]× [0, 1]× I). We need to show that, for

any t ∈ [0, T ], ‖∂sσ(t, ·)‖∞ ≤ C0e
C1(T−t). According to the definition of Γλ

i , we have, for any (i, t) ∈ I × [0, T ],

‖∂sσi(t, ·)‖∞ ≤ ‖∂sS‖∞K

∫ T

t

∑

i,j∈I

‖∂s(φj − φi)(t, ·)‖∞dt+ T ‖∂sS‖∞‖∂sc‖∞ + ‖∂sS‖∞‖g′‖∞

≤
C0C

C1
eC1(T−t) + C,

where K := sup
x∈[−2M−δ,2M+δ]

|H ′(x)| and C > 0 is a positive constant which depends on ‖∂sS‖∞, ‖∂sc‖∞, ‖g′‖∞,

|I|, T and K. Choosing carefully C0 and C1 depending on C, one obtains that, for any (i, t) ∈ I × [0, T ],

‖∂sσi(t, ·)‖∞ ≤ C0e
C1(T−t).

Finally, from the definition of F in (4.6), the function Π(φ) = (F (σ1), . . . , F (σ|I|)) is in Σ.

The existence of a fixed point of Πλ in Σ is established in the following lemma.

Lemma 4.4. For a suitable choice of the constant κ, the function Πλ admits a unique fixed point ψλ ∈ Σ. In
addition, we have ψλ ∈ C1([0, T ]× [0, 1]× I).

Proof. Let φ1, φ2 ∈ Σ. Since φ1 and φ2 are bounded by M + 1, one has, for any (t, s, i) ∈ [0, T ]× [0, 1]× I,

|Γλ
i (φ

1)(t, s)− Γλ
i (φ

2)(t, s)| ≤
∑

j∈I,j 6=i

∫ T

t

|Hλ(i, j, t, τ, s, φ1)−Hλ(i, j, t, τ, s, φ2)| dτ

≤ C
∑

j∈I

∫ T

t

|φ1j (τ, S
t,s
i (τ)) − φ2j (τ, S

t,s
i (τ))| dτ

≤ ‖φ1 − φ2‖κ∞
Ceκ(T−t)

κ
,

(4.7)
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where C > 0 is a constant depending on δ, |I| and sup
x∈[−2(M+1)−δ,2(M+1)+δ]

|H ′(x)|. Since H ′ is Lipschitz continuous

on [−2(M + 1), 2(M + 1)], one has, for any (t, s, i) ∈ [0, T ]× [0, 1]× I,

|∂s(Γ
λ
i (φ

1)(t, s)− Γλ
i (φ

2)(t, s))| ≤
∑

j∈I,j 6=i

∫ T

t

|∂sH
λ(i, j, t, τ, s, φ1)− ∂sH

λ(i, j, t, τ, s, φ2)| dτ

≤ ‖φ1 − φ2‖κ0,1
Keκ(T−t)

κ
,

(4.8)

where K > 0 is a constant that depends on |I|, T, ‖b′‖∞,M,C0, C1 and on the bound and the Lipschitz constant of
H ′ on [−2(M + 1)− δ, 2(M + 1) + δ]. From (4.7) and (4.8), one obtains that:

‖Γλ(φ1)− Γλ(φ2)‖κ0,1 ≤ max(C0/κ,K/κ)‖φ
1 − φ2‖κ0,1.

Choosing κ > max(C0,K) and the function F being non expensive, one deduces that the function Πλ is a contraction
on Σ and that it admits a unique fixed point ψλ ∈ Σ. By the definitions of Πλ and Σ, it is straightforward that
ψλ ∈ C1([0, T ]× [0, 1]× I).

We now turn to the proof of Proposition 4.1.

Proof of Proposition 4.1. Let t0 ∈ [0, T ] be the minimum time such that ‖ψλ(t, ·)‖∞ ≤M + 1/2 for any t ∈ [t0, T ].
Since ‖ψλ

i (T, ·)‖∞ = ‖gi‖∞ < M for any i ∈ I and ψλ is continuous, the time t0 is smaller than T . The function ψλ

is a fixed point of Γλ on [t0, T ] and thus, ψλ is a solution of (4.2) on [t0, T ]×[0, 1]×I. By Lemma 4.1, we deduce that
ψλ satisfies (4.1) on (t0, T ]× [0, 1]×I. If t0 = 0, then the conclusion follows. If t0 > 0, then ‖ψλ(t0, ·)‖∞ =M+1/2.
By Lemma 4.2, one also has ‖ψλ(t0, ·)‖∞ ≤M . Hence, there is a contradiction. Therefore, ψλ is a solution of (4.2)
and a classical solution of (4.1) on [0, T ]× [0, 1]× I.

Remark 4.2. One can show that ‖∂tψ
λ‖∞ + ‖∂sψ

λ‖∞ is bounded by a function that is non-decreasing w.r.t. the
variable δ. Indeed, by Lemma 4.3 and its proof, ‖∂sψ

λ‖∞ is bounded by C0e
C1T where C0 and C1 depend on M

and on δ by the definition of M in Lemma 4.2. By Lemma 4.1, ψλ is a classical solution of (4.1). Therefore,

‖∂tψ
λ‖∞ ≤ ‖b‖∞‖∂sψ

λ‖∞ + ‖c‖∞ + sup
x∈[−2M−δ,2M+δ]

|H(x)|.

Thus, ‖∂tψ
λ‖∞ is bounded by a non-decreasing function of δ.

4.2 The Hamilton-Jacobi equation for measure valued data

In this subsection, we prove

Proposition 4.2. For any λ ∈ M+([0, T ]× I), there exists a unique ψλ ∈ Lip([0, T ] × [0, 1] × I) satisfying that,
for any (t, s, i) ∈ [0, T ]× [0, 1]× I,

ψλ
i (t, s) =

∫ T

t

∑

j∈I,j 6=i

−Hλ(i, j, t, τ, s, ψλ) + ci(τ, S
t,s
i (τ))dτ + gi(S

t,s
i (T )). (4.9)

In addition, the map λ 7→ ψλ is continuous from M+([0, T ] × I), endowed with the weak topology, to C0([0, T ] ×
[0, 1]× I), endowed with the norm ‖ · ‖∞.

We recall that the definition of Hλ, with λ ∈ M+([0, T ] × I), is given in (2.2). The proof of Proposition 4.2
relies on the results of the previous subsection. We define the map Θ : C0

δ ([0, T ]× I,R+) → C1([0, T ]× [0, 1]× I)
by:

Θ : λ 7→ ψλ, (4.10)

where ψλ is given by Proposition 4.1. We know from Proposition 4.1 that Θ is well defined on C0([0, T ]× I,R+).
We want to show that Θ can be continuously extended to a function defined on M+

δ ([0, T ] × I) with values in
Lip([0, T ]× [0, 1]× I). We define the distance D on M+([0, T ]× I) by

D(λ, µ) :=

∫ T

0

∑

i∈I

∣

∣

∣

∣

∣

∫ T

t

(λi − µi)(dτ)

∣

∣

∣

∣

∣

dt+
∑

i∈I

∣

∣

∣

∣

∣

∫ T

0

(λi − µi)(dt)

∣

∣

∣

∣

∣

. (4.11)
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Remark 4.3. If a sequence {λn}n in M+
δ ([0, T ]× I) converges w.r.t. the weak topology in M+([0, T ]× I) to λ ∈

M+
δ ([0, T ]× I), then lim

n→∞
D(λn, λ) = 0. Indeed, since {λn}n weakly converges to λ, then lim

n→∞
(λni − λi)([t, T ]) = 0

for any i ∈ I, a.e. t ∈ [0, T ] and t = 0. Applying the dominated convergence theorem, the conclusion follows.

The next remark will be useful to extend the domain of Θ.

Remark 4.4. The space C0
δ ([0, T ] × I,R+) is dense in M+

δ ([0, T ] × I) w.r.t. the topology induced by D. More
precisely, for any λ ∈ M+

δ ([0, T ]×I), there exists a sequence {λn}n in C0
δ ([0, T ]×I,R+), such that lim

n→∞
D(λ, λnL) =

0 (where L is the Lebesgue measure on [0, T ]).

Lemma 4.5. The map Θ can be extended to a Lipschitz continuous map from M+
δ ([0, T ]×I), endowed with distance

D, to C0([0, T ]× [0, 1]× I), endowed with the norm ‖ · ‖∞. In addition we have Θ(λ) ∈ Lip([0, T ]× [0, 1]× I) for
any λ ∈ M+

δ ([0, T ]× I).

Proof. We need to show that there exists a constant C > 0 such that, for any λ1, λ2 ∈ C0
δ ([0, T ]× I,R+), we have:

‖Θ(λ1) − Θ(λ2)‖∞ ≤ CD(λ1, λ2). Since H is locally Lipschitz, there exists a constant K > 0 such that, for any
(t, s, i) ∈ [0, T ]× [0, 1]× I,

|Θ(λ1)i(t, s)−Θ(λ2)i(t, s)| = |ψλ1

i (t, s)− ψλ2

i (t, s)|

=

∣

∣

∣

∣

∣

∣

∑

j∈I,j 6=i

∫ T

t

Hλ1

(i, j, t, τ, s, ψλ1

)−Hλ2

(i, j, t, τ, s, ψλ2

)dτ

∣

∣

∣

∣

∣

∣

≤ |I|
∑

j∈I

K

∫ T

t

(

|ψλ1

j (τ, St,s
i (τ)) − ψλ2

j (τ, St,s
i (τ))| + |

∫ T

τ

λ1j (r)dr −

∫ T

τ

λ2j (r)dr|

)

dτ.

Taking the supremum over I × [0, 1] yields:

‖ψλ1

(t, ·)− ψλ2

(t, ·)‖∞

≤ |I|2
∫ T

t

K‖ψλ1

(τ, ·)− ψλ2

(τ, ·)‖∞dτ + |I|2Ksup
i∈I

∫ T

t

|

∫ T

τ

λ1i (r)dr −

∫ T

τ

λ2i (r)dr|dτ

≤ |I|2
∫ T

t

K‖ψλ1

(τ, ·)− ψλ2

(τ, ·)‖∞dτ + |I|2KD(λ1, λ2).

Then, by applying Gronwall Lemma to t 7→ ‖ψλ1

(t, ·)− ψλ2

(t, ·)‖∞, one has, for any t ∈ [0, T ],

‖ψλ1

(t, ·)− ψλ2

(t, ·)‖∞ ≤ CD(λ1, λ2), (4.12)

where the constant C > 0 depends on δ,K, T and |I|. Therefore,

‖Θ(λ1)−Θ(λ2)‖∞ = ‖ψλ1

− ψλ2

‖∞ ≤ CD(λ1, λ2).

From the previous inequality and Remark 4.4, the map Θ can be continuously extended to a Lipschitz continuous
map from M+

δ ([0, T ]× I) to C0([0, T ]× [0, 1]× I).
Finally, we approximate λ ∈ M+

δ ([0, T ]× I) by a sequence in {λn}n in C0
δ ([0, T ]× I,R+) w.r.t. the distance D.

One has that {Θ(λn)}n is uniformly Lipschitz continuous on [0, T ]× [0, 1]× I according to Remark 4.2. Thus, Θ(λ)
is in Lip([0, T ]× [0, 1]× I).

Proof of Proposition 4.2. The proposition is a direct consequence of Lemma 4.5.

Remark 4.5. By Remark 4.2 and Lemma 4.5, one can show that for any λ ∈ M+([0, T ]× I), the solution ψλ of
(4.9) is such that, max(‖ψλ‖∞, ‖∂sψ

λ‖∞) depends only on H, b, c, g and λ([0, T ]× I).

4.3 Analysis of weak solution of the Hamilton-Jacobi equation (2.5)

For any λ ∈ M+([0, T ]× I), we consider the function Lλ ∈ BV ([0, T ]× I) defined for any i ∈ I and any t ∈ [0, T ]
by:

Lλ
i (t) := λi([t, T ]). (4.13)

We introduce the notion of weak solution for equation (2.5).
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Definition 4.1. For a given λ ∈ M+([0, T ]× I), a function ϕ defined from [0, T ]× [0, 1]× I to R is a weak solution
of equation (2.5) if ϕ− Lλ is in Lip([0, T ]× [0, 1]× I) and if, for any test function f ∈ C1([0, T ]× [0, 1]× I),

∫ 1

0

ϕi(0, s)fi(0, s)ds−

∫ 1

0

gi(s)fi(T, s)ds+

∫ T

0

∫ 1

0

(∂tfi(t, s) + ∂s(fi(t, s)bi(s)))ϕi(t, s)dsdt

+

∫ T

0

∫ 1

0





∑

j∈I,j 6=i

H(ϕi(t, s)− ϕj(t, s)) − ci(t, s)



 fi(t, s)dtds−
∑

i∈I

∫ T

0

∫ 1

0

fi(t, s)dsλi(dt)

= 0,

(4.14)

where ϕi(0, ·) is understood in the sense of trace.

Remark 4.6. 1. There is no boundary condition in (4.14). This is due to the fact that b(0) = b(1) = 0, involving
a null incoming flow in the domain [0, 1].

2. Since ϕ is in BV ([0, T ] × I) + Lip([0, T ] × [0, 1] × I), ϕ(0, ·) exists in the sense of trace. In addition, ϕ is
bounded and thus, it belongs to L2([0, T ]× [0, 1]× I) so that the integrals in (4.14) exist.

3. The final condition in (2.5) is misleading. Indeed, any weak solution ϕ of (2.5) in the sense of Definition 4.1
satisfies ϕi(T, ·) = gi(·) + Lλ

i (T ), where ϕi(T, ·) and L
λ
i (T ) are in the sense of trace. Thus, ϕi(T, ·) ≥ gi(·).

The main result of this subsection is the following.

Theorem 4.1. Let λ ∈ M+([0, T ]× I). A function ϕ ∈ Lip([0, T ]× [0, 1]× I) +BV ([0, T ]× I) is the unique weak
solution of (2.5) in the sense of Definition 4.1, if and only if it satisfies that, for any (t, s, i) ∈ [0, T ]× [0, 1]× I,

ϕi(t, s) =

∫ T

t

∑

j∈I,j 6=i

−H((ϕi − ϕj)(τ, S
t,s
i (τ))) + ci(τ, S

t,s
i (τ))dτ + Lλ

i (t) + gi(S
t,s
i (T )). (4.15)

Theorem 4.1 is a consequence of Lemmas 4.7 and 4.8. Lemma 4.7 shows that a function satisfying (4.15) is a
weak solution of (2.5). Lemma 4.8 shows the converse. In what follows, for any λ ∈ M+([0, T ]× I), we define ψλ

as in Proposition 4.2 and define ϕλ ∈ Lip([0, T ]× [0, 1]× I) +BV ([0, T ]× I) by:

ϕλ := ψλ + Lλ. (4.16)

Remark 4.7. For any λ ∈ M+([0, T ]× I), ϕλ is a solution of (4.15) on [0, T ]× [0, 1] × I if and only if ψλ is a
solution of (4.9) on [0, T ] × [0, 1] × I. According to Remark 4.5, the quantity max(‖ϕλ‖∞, ‖∂sϕ

λ‖∞) depends on
λ([0, T ]× I).

Lemma 4.6. For any λ ∈ M+([0, T ]× I), there exists a sequence {(λn, ϕn)}n such that

(i) {λn}n is in C0([0, T ]× I,R+) and converges to λ w.r.t. the weak topology in M+([0, T ]× I),

(ii) for any n ∈ N, ϕn is a classical solution of (2.5) associated to λn on (0, T )× (0, 1)× I

(iii) we have lim
n→∞

‖ϕλ(t, ·)− ϕn(t, ·)‖∞ = 0 for a.e. t ∈ [0, T ] and lim
n→∞

‖ϕλ(0, ·)− ϕn(0, ·)‖∞ = 0.

Proof. We consider a sequence {λn}n in C0([0, T ]× I,R+) that weakly converges to λ. We set ψn := ψλn

, where
ψλn

is defined by Proposition 4.2, and ϕn := ψn + Lλn

. By Lemma 4.1, for any n ∈ N, ψn is a classical solution
of (4.1). Then, for any n ∈ N, ϕn is a classical solution of (2.5) associated to λn on (0, T )× (0, 1)× I. The weak
convergence of {λn}n implies:

lim
n→∞

Lλn

(t) = Lλ(t) for a.e. t ∈ [0, T ] and lim
n→∞

Lλn

(0) = Lλ(0).

By Proposition 4.2, {ψn}n converges to ψλ w.r.t. the norm ‖ · ‖∞. Then, the two previous equalities imply that:

lim
n→∞

‖ϕλ(t, ·)− ϕn(t, ·)‖∞ = 0 for a.e. t ∈ [0, T ] and lim
n→∞

‖ϕλ(0, ·)− ϕn(0, ·)‖∞ = 0.

Lemma 4.7. For any λ ∈ M+([0, T ]× I), ϕλ is a weak solution of (2.5) in the sense of Definition 4.1.
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Proof. We consider a sequence {λn, ϕn}n defined as in Lemma 4.6. For any n ∈ N, ϕn is a classical solution of
(2.5). Thus, for any test function f ∈ C1([0, T ]× [0, T ]× I):

∫ 1

0

ϕn
i (0, s)fi(0, s)ds−

∫ 1

0

gi(s)fi(T, s)ds+

∫ T

0

∫ 1

0

(∂tfi(t, s) + ∂s(fi(t, s)bi(s)))ϕ
n
i (t, s)dsdt

+

∫ T

0

∫ 1

0





∑

j∈I,j 6=i

H(ϕn
i (t, s)− ϕn

j (t, s))− ci(t, s)



 fi(t, s)dtds−
∑

i∈I

∫ T

0

∫ 1

0

fi(t, s)dsλ
n
i (t)dt

= 0.

(4.17)

The conclusion follows by using Lemma 4.6, the continuity of H , the limit of (4.17) when n tends to infinity and
by applying the dominated convergence theorem.

The next lemma states the converse of Lemma 4.7.

Lemma 4.8. For any (λ, ϕ) ∈ M+([0, T ]× I) × (Lip([0, T ]× [0, 1]× I) +BV ([0, T ]× I)), if ϕ is a weak solution
of (2.5) associated to λ in the sense of Definition 4.1, then ϕ satisfies (4.15) for any (t, s, i) ∈ [0, T ]× [0, 1]× I.

Proof. Let ϕ be a weak solution of (2.5) associated to λ. Let β ∈ C1([0, T ]× [0, 1]× I,R) be a test function. Then,

∫ 1

0

ϕi(0, s)βi(0, s)ds−

∫ 1

0

gi(s)βi(T, s)ds+

∫ T

0

∫ 1

0

(∂tβi(t, s) + ∂s(βi(t, s)bi(s)))ϕi(t, s)dsdt

+

∫ T

0

∫ 1

0





∑

j∈I,j 6=i

H(ϕi(t, s)− ϕj(t, s))− ci(t, s)



 βi(t, s)dtds−
∑

i∈I

∫ T

0

∫ 1

0

βi(t, s)dsλi(dt)

= 0.

(4.18)

We choose the function β such that there exist θ ∈ C∞([0, T ]× [0, 1]× I) and ξ ∈ C∞([0, 1]× I) satisfying:

∂tβi(t, s) + ∂s(βi(t, s)bi(s)) = θi(t, s) for any (t, s, i) ∈ (0, T )× (0, 1)× I,
βi(0, ·) = ξi(·) for any (s, i) ∈ [0, 1]× I.

(4.19)

The function β is given by for any (t, s, i) ∈ [0, T ]× [0, 1]× I,

βi(t, s) =

∫ t

0

θi(τ, S
t,s
i (τ)) exp

(

−

∫ t

τ

b′i(S
t,s
i (r))dr

)

dτ + ξi(S
t,s
i (0)) exp

(

−

∫ t

0

b′i(S
t,s
i (τ))dτ

)

.

To simplify (4.18), we introduce, for any i ∈ I the following functions νi and πi, satisfying βi = νi + πi: for any
(t, s) ∈ [0, T ]× [0, 1],

νi(t, s) :=

∫ t

0

θi(τ, S
t,s
i (τ)) exp

(

−

∫ t

τ

b′i(S
t,s
i (r))dr

)

dτ and πi(t, s) := ξi(S
t,s
i (0)) exp

(

−

∫ t

0

b′i(S
t,s
i (τ))dτ

)

.

Setting h(t, s) :=
∑

j∈I,j 6=i

H(ϕi(t, s)− ϕj(t, s))− ci(t, s) for any (t, s, i) ∈ [0, T ]× [0, 1]× I, we have h ∈ L1((0, T )×

(0, 1)). By switching the order of integration, and applying the change of variable x = St,s
i (τ) and equality (2.4),

one has:

∫ T

0

∫ 1

0

h(t, s)νi(t, s)dtds =

∫ T

0

∫ 1

0

∫ t

0

h(t, s)θi(τ, S
t,s
i (τ)) exp

(

−

∫ t

τ

b′i(S
t,s
i (r))dr

)

dτds dt

=

∫ T

0

∫ 1

0

θi(τ, x)

∫ T

τ

h(t, Sτ,x
i (t)) exp

(

−

∫ t

τ

b′i(S
τ,x
i (r))dr

)

∂xS
τ,x
i (t)dt dx dτ,

=

∫ T

0

∫ 1

0

θi(τ, x)

∫ T

τ

h(t, Sτ,x
i (t))dt dx dτ.

(4.20)
By the same computations, for any i ∈ I, one has:

∫ 1

0

gi(s)νi(T, s)ds =

∫ T

0

∫ 1

0

gi(S
τ,x
i (T ))θi(τ, x)dsdτ, (4.21)
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∫ T

0

∫ 1

0

h(t, s)πi(t, s)dtds =

∫ 1

0

ξi(x)

∫ T

0

h(t, S0,x
i (t))dtdx, (4.22)

∫ 1

0

gi(s)πi(T, s)ds =

∫ 1

0

ξi(x)gi(S
0,x
i (T ))dx, (4.23)

and:
∫ T

0

∫ 1

0

βi(t, s)dsλi(dt) =

∫ T

0

∫ 1

0

ξi(τ, x)L
λ
i (τ)dxdτ +

∫ 1

0

ξi(x)L
λ
i (0)dx. (4.24)

Using (4.20), (4.22), (4.23), (4.24) and (4.19), equality (4.18) becomes:

∫ 1

0

ξi(s)



ϕi(0, s) +

∫ T

0

∑

j∈I,j 6=i

H((ϕi − ϕj)(τ, S
0,s
i (τ))) − ci(τ, S

0,s
i (τ))dτ − Lλ

i (0)− gi(S
0,s
i (T ))



 ds

+

∫ T

0

∫ 1

0

θi(t, s)



ϕi(t, s) +

∫ T

t

∑

j∈I,j 6=i

H((ϕi − ϕj)(τ, S
t,s
i (τ))) − ci(τ, S

t,s
i (τ))dτ − Lλ

i (t)− gi(S
t,s
i (T ))



 dsdt

= 0.

This equality holds for any test functions θi and ξi. Then, one has for any s ∈ [0, 1]:

ϕi(0, s) =

∫ T

0

∑

j∈I,j 6=i

−H((ϕi − ϕj)(τ, S
0,s
i (τ))) + ci(τ, S

0,s
i (τ))dτ + Lλ

i (0) + gi(S
0,s
i (T )),

and forn any (t, s) ∈ [0, T ]× [0, 1]:

ϕi(t, s) =

∫ T

t

∑

j∈I,j 6=i

−H((ϕi − ϕj)(τ, S
t,s
i (τ))) + ci(τ, S

t,s
i (τ))dτ + Lλ

i (t) + gi(S
t,s
i (T )).

With the above lemmas, the proof of Theorem 4.1 is straightforward.

Proof of Theorem 4.1. The proof is a direct consequence of Lemmas 4.7 and 4.8. The uniqueness of a weak solution
is deduced by Remark 4.7. Indeed, since ψλ is the unique solution of (4.9), ϕλ is the unique solution of (4.15) and
thus, the unique weak solution of (2.5) in the sense of Definition 4.1.

5 The dual problem

In this section, an optimization problem (5.3) is introduced. Using tools from convex analysis [22], we show that
this problem is in duality with (3.4). We consider the following spaces:

E0 = C1([0, T ]× [0, 1]× I)× C0([0, T ]× I) and E1 := C0([0, T ]× [0, 1]× I)× C0([0, T ]× [0, 1]× I2).

Given (ϕ, λ) ∈ E0, we consider the following inequality:

−∂tϕi(t, s)− bi(s)∂sϕi(t, s)− ci(t, s)− λ(t) +
∑

j∈I,j 6=i

H((ϕi − ϕj)(t, s)) ≤ 0 on (0, T )× (0, 1)× I,

ϕi(T, ·) ≤ gi on (0, 1)× I.
(5.1)

The set K0 is defined by: K0 := {(ϕ, λ) ∈ E0, λ ≥ 0 and ϕ satisfies (5.1) associated to λ}. We introduce the
function A, defined on K0 by :

A(ϕ, λ) :=
∑

i∈I

∫ 1

0

−ϕi(0, s)m
0
i (ds) +

∫ T

0

λi(t)Di(t)dt, (5.2)

and the following problem is considered:
inf

(ϕ,λ)∈K0

A(ϕ, λ). (5.3)
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Lemma 5.1. inf
(ϕ,λ)∈K0

A(ϕ, λ) is finite.

Proof. Let (ϕ, λ) ∈ K0. Since ϕ is in C1([0, T ]× [0, 1]× I) and satisfies (5.1), using that H is non negative, we have,

for any (i, s) ∈ I × [0, 1], ϕi(0, s) ≤ T ‖c‖∞ +

∫ T

0

λi(τ)dτ + ‖g‖∞. Setting Q := −|I|(T ‖c‖∞ + ‖g‖∞), one has:

Q+
∑

i∈I

∫ T

0

λi(t)

(

Di(t)−

∫ 1

0

m0
i (ds)

)

dt ≤ A(ϕ, λ).

Since λ ≥ 0, we deduce from the Assumption 3 and previous inequality that Q ≤ inf
(ϕ,λ)∈K0

A(ϕ, λ).

We consider the linear and bounded function Λ : E0 → E1 defined by: Λ(ϕ, λ) := (∂tϕ+ b∂sϕ+ λ̃,∆ϕ), where
∂tϕ+b∂sϕ := (∂tϕi+bi∂sϕi)i∈I , ∆ϕ := (∆ϕi,j)(i,j)∈Ĩ with ∆ϕi,j = ϕj −ϕi and, for any (s, i) ∈ [0, 1]×I, λ̃i(·, s) :=

λi(·). The linear function Λ∗ : E∗
1 → E∗

0 is the adjoint operator of Λ. The functional F is defined, for any
(ϕ, λ) ∈ E0, by

F(ϕ, λ) :=











∑

i∈I

∫ 1

0

−ϕi(0, s)m
0
i (ds) +

∫ T

0

Di(t)λi(t)dt if ϕi(T, ·) ≤ gi and λi ≥ 0 ∀i ∈ I,

+∞ otherwise.

Using that:

〈(m,E),Λ(ϕ, λ)〉E∗

1
,E1

=
∑

i∈I

∫ 1

0

∫ T

0

(∂tϕi(t, s) + bi(s)∂sϕi(t, s))mi(ds, t) +
∑

j∈I,j 6=i

(ϕj(t, s)− ϕi(t, s))Ei,j(t, ds)dt

+
∑

i∈I

∫ T

0

∫ 1

0

mi(t, ds)λ̃i(t, s)dt,

defining F∗ as the Fenchel conjugate of F , we have:

F∗ (Λ∗(m,E)) :=































∫ 1

0

∑

i∈I

gi(s)mi(T, ds) if (m,E) is a weak solution of (3.1)

and

∫ 1

0

mi(t, ds) ≤ Di(t) ∀(t, i) ∈ [0, T ]× I,

+∞ otherwise.

For any (x, y) ∈ E1, the functional G is defined by:

G(x, y) :=







0 if − ci(t, s)− xi(t, s) +
∑

j∈I,j 6=i

H(−yi,j(t, s)) ≤ 0 ∀(t, s, i) ∈ (0, T )× (0, 1)× I,

+∞ otherwise.

Then, for any (ϕ, λ) ∈ E0, it holds:

G(Λ(ϕ, λ)) :=



















0 if − ci(t, s)− ∂tϕi(t, s)− bi(t, s)∂sϕi(t, s)− λ̃i(t, s) +
∑

j∈I,j 6=i

H(−∆ϕi,j(t, s)) ≤ 0

∀(t, s, i) ∈ (0, T )× (0, 1)× I,

+∞ otherwise.

Using that L(x) = H∗(x), one can show, as in [6] for the quadratic case, that, for any (v, w) ∈ R
2,

sup
a,b∈R

{av + bw; a+H(b) ≤ 0} =











L(
w

v
)v if v > 0 and w ≥ 0,

0 if v = 0 and w = 0,
+∞ otherwise.
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Then, with similar computations as in [16, Lemma 4.3], for any (m,E) ∈ E′
1, we have:

G∗(−(m,E))

= sup
(x,y)∈E1

∑

i∈I

∫ T

0

∫ 1

0

−xi(t, s)mi(t, ds)dt−
∑

j 6=i

yi,j(t, s)Ei,j(t, ds)dt − G(x, y)

= sup
(x,y)∈E1

∑

i∈I

∫ T

0

∫ 1

0

(−xi(t, s)− ci(t, s) + ci(t, s))mi(t, ds)−
∑

j 6=i

yi,j(t, s)Ei,j(t, ds)dt− G(x, y)

=
∑

i∈I

∫ T

0

∫ 1

0

ci(t, s)mi(t, ds)dt+ sup
(x,y)∈E1

∑

i∈I

∫ T

0

∫ 1

0

xi(t, s)mi(t, ds) +
∑

j 6=i

yi,j(t, s)Ei,j(t, ds)dt − G(−x− c,−y)

=























∫ T

0

∫ 1

0

∑

i∈I

ci(t, s)mi(t, ds) +
∑

j 6=i

L

(

dEi,j

dmi

(t, s)

)

mi(t, ds)dt if m > 0, E ≥ 0 and E ≪ m,

0 if m = 0 and E = 0,

+∞ otherwise.
(5.4)

The following lemma shows the constraint qualification for Problem (5.3).

Lemma 5.2. There exists (ϕ, λ) ∈ E0 such that F(ϕ, λ) <∞ and G is continuous at Λ(ϕ, λ).

Proof. Let ϕ and λ be such that, for any (t, s, i) ∈ [0, T ]× [0, 1]× I,

ϕi(t, s) = −max
i∈I

(‖gi‖∞)− 1,

and
λi(t) := ‖ci‖∞ + 1,

Functions ϕ and λ being constant, it holds that (ϕ, λ) ∈ E0 and F(ϕ, λ) <∞. Also, from the choice of ϕ and λ, it
follows that, for any i ∈ I, s ∈ [0, 1] and t ∈ [0, T ],

−ci(t, s)− ∂tϕi(t, s)− bi(t, s)∂sϕi(t, s)− λi(t, s) +
∑

j∈I,j 6=i

H(ϕi(t, s)− ϕj(t, s)) < 0.

Thus, G is continuous at Λ(ϕ, λ).

The main result on the duality of this section is the following.

Theorem 5.1. We have:
inf

(ϕ,λ)∈K0

A(ϕ, λ) = − inf
(m,E)∈S(m0,D)

J̃(m,E)

Proof. On can observe that:
inf

(ϕ,λ)∈K0

A(ϕ, λ) = inf
(ϕ,λ)∈E0

F(ϕ, λ) + G(Λ(ϕ, λ)),

and
inf

(m,E)∈S(m0,D)
J̃(m,E) = inf

(m,E)∈E∗

1

F(Λ∗(m,E)) + G∗(−(m,E)),

Using Lemmas 5.2 and 5.1, the conclusion follows by applying the Fenchel-Rockafellar duality theorem [22].

For any (ϕ, λ) ∈ (Lip([0, T ]× [0, 1]× I) +BV ([0, T ]× I))×M+([0, T ]× I), we define the function

Ã(ϕ, λ) :=
∑

i∈I

∫ 1

0

−ϕi(0, s)m
0
i (ds) +

∫ T

0

Di(t)λi(dt). (5.5)

Proposition 5.1. There exists λ ∈ M+([0, T ]× I) such that:

Ã(λ, ϕλ) = inf
(φ,µ)∈K0

A(φ, µ),

where ϕλ is defined in (4.16).
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Before proving this result, we need the following lemma.

Lemma 5.3. For any K > 0, there exists a constant C > 0 such that, for any (ϕ, λ) ∈ K0 satisfying A(ϕ, λ) ≤ K,
we have:

∑

i∈I

∫ T

0

λi(t)dt ≤ C.

Proof. Let K ∈ R
∗
+ and (ϕ, λ) ∈ K0 be such that A(ϕ, λ) ≤ K. Since (ϕ, λ) ∈ K0, one can show, as in the proof of

Lemma 5.1, that, for any (i, s) ∈ I × [0, 1],

ϕi(0, s) ≤ T ‖c‖∞ + ‖g‖∞ +
∑

i∈I

∫ T

0

λi(t)dt.

Therefore, recalling that A(ϕ, λ) ≤ K:

∑

i∈I

∫ T

0

λi(t)(Di(t)−mi([0, 1]))dt ≤ K + T ‖c‖∞ + ‖g‖∞.

From Assumption 3, there exists ε0 > 0 such that Di(t) − mi([0, 1]) > ε0 for any (t, i) ∈ [0, T ] × I. Setting
C := (K + T ‖c‖∞ + ‖g‖∞)/ε0, we have:

∑

i∈I

∫ T

0

λi(t)dt ≤ C.

We are now ready to prove Proposition 5.1.

Proof of Proposition 5.1. Let {(φn, λn)}n be a minimizing sequence of (5.3). For any n ∈ N, we consider ϕn the
classical solution of (2.5) associated to λn. Since ϕn is a classical solution and φn satisfies (5.1) on [0, T ]× [0, 1]× I,
we can easily check that the following comparison holds: ϕn ≤ φn. Thus, A(ϕn, λn) ≤ A(φn, λn) for any n ∈ N.
Therefore, {(ϕn, λn)}n is also a minimizing sequence and, there existK > 0 and n0 > 0 such that for any n ≥ n0 one

has A(ϕn, λn) ≤ K. From Lemma 5.3, the sequence {
∑

i∈I

∫ T

0

λni (t)dt}n is uniformly bounded. Thus, a subsequence

of {λn}n weakly converges to a measure λ ∈ M+([0, T ] × I) w.r.t. the weak topology in M+([0, T ]× I). We set
ϕλ := Θ(λ) +Lλ and ϕn := Θ(λn) +Lλn

for any n ∈ N, where Θ is defined in (4.10). By the same arguments as in
the proof of Lemma 4.6, one has lim

n→∞
‖ϕλ(0, ·) − ϕn(0, ·)‖∞ = 0 up to a subsequence of {ϕn}n and, therefore, we

have:
lim
n→∞

A(ϕn, λn) = Ã(ϕλ, λ),

and the conclusion follows.

6 Characterization of the minimizers

The purpose of this section is to define and characterize the solutions of Problem (3.4). We show that the following
system gives optimality conditions for (3.4):































































−∂tϕi − bi∂sϕi − ci − λi +
∑

j∈I,j 6=i

H(ϕi − ϕj) = 0 on (0, T )× (0, 1)× I,

∂tmi + ∂s(mibi) +
∑

j 6=i

H ′(ϕi − ϕj)mi −H ′(ϕj − ϕi)mj = 0 on (0, T )× (0, 1)× I,

mi(0, s) = m0
i (s), ϕi(T, s) = gi(s) on (0, 1)× I,

∫ 1

0

mi(t, ds)−Di(t) ≤ 0, λ ≥ 0 on [0, T ]× I,

∑

i∈I

∫ T

0

(∫ 1

0

mi(t, ds)−Di(t)

)

λi(dt) = 0.

(6.1)

The notion of weak solutions of system (6.1) is given in the following definition.
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Definition 6.1. A triplet (ϕ, λ,m) ∈ (Lip([0, T ]×[0, 1]×I)+BV ([0, T ]×I))×M+([0, T ]×I)×C0([0, T ],P([0, 1]×I))
is called a weak solution of (6.1) if it satisfies the following conditions:

1. The function ϕ is a weak solution of (2.5), associated to λ in the sense of Definition 4.1;

2. m satisfies the continuity equation:

∂tmi + ∂s(mibi) +
∑

j 6=i

H ′(ϕi − ϕj)mi −H ′(ϕj − ϕi)mj = 0, mi(0, ·) = m0
i ,

in the sense of Definition 3.1, with αi,j := H ′(ϕi − ϕj);

3. it holds that, for any t ∈ [0, T ],

∫ 1

0

mi(t, ds)−Di(t) ≤ 0 and
∑

i∈I

∫ T

0

(∫ 1

0

mi(t, ds)−Di(t)

)

λi(dt) = 0.

Remark 6.1. Since ϕ ∈ Lip([0, T ] × [0, 1] × I) + BV ([0, T ] × I) and H ′ is Lipschitz continuous, the control
αi,j := H ′(ϕi−ϕj) is bounded on [0, T ]× [0, 1]×I and ∂sαi,j ∈ L∞([0, T ]× [0, 1]). Thus, αi,j is in L2

mi
([0, T ]× [0, 1])

and the forward equation in (6.1) makes sense.

The following theorem states the optimality conditions of Problem (3.4).

Theorem 6.1. 1. If (m,E) ∈ S(m0, D) is a minimizer of Problem (3.4), and ϕ a weak solution of (2.5) in the
sense of Definition 4.1 associated to λ satisfying Ã(ϕ, λ) = inf

(φ,µ)∈K0

A(φ, µ), then (ϕ, λ,m) is a weak solution

of (6.1) and
dEi,j

dmi

= H ′(ϕi − ϕj) on {mi > 0} for any i, j ∈ I.

2. Conversely, if (ϕ, λ,m) is a weak solution of (6.1), then Ã(ϕ, λ) = inf
(φ,µ)∈K0

A(φ, µ) and there exists E, defined

for any i, j ∈ I by
dEi,j

dmi

:= H ′(ϕi − ϕj), such that (m,E) ∈ S(m0, D) is a minimizer of (3.4).

Remark 6.2. If (ϕ, λ,m) is a weak solution of (6.1), then (ϕ, λ) is a minimizer of a relaxed version of Problem
(5.3), i.e. (ϕ, λ) is the minimum of Ã over the space (Lip([0, T ]× [0, 1]× I) +BV ([0, T ]× I))×M+([0, T ]× I).

6.1 Proof of Theorem 6.1

Before the proof of Theorem 6.1, we make the following remark.

Remark 6.3. For any λ ∈ M+([0, T ] × I) and any (m,E) ∈ S(m0, D) one has −J̃(m,E) ≤ Ã(ϕλ, λ). Indeed,
considering a sequence {(λn, ϕn)}n defined as in Lemma 4.6 and using the proof of Theorem 5.1, we get: −J̃(m,E) ≤
A(ϕn, λn) and, therefore, −J̃(m,E) ≤ Ã(ϕλ, λ).

Proof of Theorem 6.1. 1. By Theorem 5.1, one has:

inf
(ϕ̂,λ̂)∈K0

A(ϕ̂, λ̂) = − inf
(m̂,Ê)∈S(m0,D)

J̃(m̂, Ê),

and thus
∑

i∈I

∫ 1

0

gimi(T )− ϕi(0)m
0
i +

∫ T

0

Diλi +

∫ T

0

∫ 1

0



ci +
∑

j 6=i

L

(

dEi,j

dmi

)



mi = 0. (6.2)

We want to show that Ei,j = H ′(ϕi − ϕj)mi. We consider a sequence {(λn, ϕn)}n defined as in Lemma 4.6. For
any n ∈ N, ϕn is smooth enough to be a test function for the weak formulation of (1.1) satisfied by m. According
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to Lemma 4.6 and the fact that D ∈ C0([0, T ]× I), it holds that, for any n ∈ N and i ∈ I,

∑

i∈I

∫ 1

0

gimi(T )− ϕi(0)m
0
i +

∫ T

0

λiDi

= lim
n→∞

∑

i∈I

∫ 1

0

gimi(T )− ϕn
i (0)m

0
i +

∫ T

0

Diλ
n
i

= lim
n→∞

∑

i∈I

∫ T

0

∫ 1

0



∂tϕ
n
i + bi∂s(ϕ

n
i ) +

∑

j∈I,j 6=i

(ϕn
j − ϕn

i )
dEi,j

dmi



mi +

∫ T

0

λni Di

= lim
n→∞

∑

i∈I

∫ T

0

∫ 1

0



−ci +
∑

j∈I,j 6=i

H(ϕn
i − ϕn

j ) +
∑

j∈I,j 6=i

(ϕn
j − ϕn

i )
dEi,j

dmi



mi +

∫ T

0

λni

(

Di −

∫ 1

0

mi

)

.

By the previous equality and (6.2),

lim
n→∞

∑

i∈I

∫ T

0

∫ 1

0





∑

j∈I,j 6=i

H(ϕn
i − ϕn

j ) + L

(

dEi,j

dmi

)

+ (ϕn
j − ϕn

i )
dEi,j

dmi



mi +

∫ T

0

λni

(

Di −

∫ 1

0

mi

)

= 0.

According to Lemma 4.6, for a.e. t ∈ [0, T ], the sequence {ϕ(t, ·)}n converges uniformly to ϕ. By the continuity

of H and the dominated convergence theorem, we get
∫ T

0

∫ 1

0 miH(ϕn
i − ϕn

j ) converges to
∫ T

0

∫ 1

0 miH(ϕi − ϕj) for

any i, j ∈ I. Since (m,E) is a solution of (3.4), J̃(m,E) is finite. Then one can show that, for any i, j ∈ I,
∫ T

0

∫ 1

0 Ei,j < ∞. Applying dominated convergence theorem, we can show that:
∫ T

0

∫ 1

0 (ϕ
n
j − ϕn

i )Ei,j converges to

∫ T

0

∫ 1

0 (ϕj − ϕi)Ei,j . Since, for any i ∈ I, the map t 7→ Di(t)−

∫ 1

0

mi(t, ds) is continuous, the weak convergence of

λn to λ in M+([0, T ]× I) gives:

lim
n→∞

∑

i∈I

∫ T

0

λni

(

Di −

∫ 1

0

mi

)

=
∑

i∈I

∫ T

0

λi

(

Di −

∫ 1

0

mi

)

.

Thus,

∫ T

0

∫ 1

0





∑

j∈I,j 6=i

H(ϕi − ϕj) + L

(

dEi,j

dmi

)

+ (ϕj − ϕi)
dEi,j

dmi



mi +

∫ T

0

λi

(

Di −

∫ 1

0

mi

)

= 0. (6.3)

Since λ ≥ 0 and

∫ 1

0

mi(t, ds) ≤ Di(t) for any t ∈ [0, T ], one has, for any i ∈ I and t ∈ [0, T ],

0 ≤

∫ T

0

(

Di(t)−

∫ 1

0

mi(t, ds)

)

λi(dt). (6.4)

Recalling that L∗(p) = H(p), we have L(p)+H(q)− pq ≥ 0 for any p, q ∈ R. Thus, by inequality (6.4) and equality
(6.3), one deduces

∑

j∈I,j 6=i

H(ϕi − ϕj) + L

(

dEi,j

dmi

)

+ (ϕj − ϕi)
dEi,j

dmi

= 0 m− a.e..

Therefore,
dEi,j

dmi

(t, s) = H ′(ϕi(t, s)− ϕj(t, s)) m− a.e. , (6.5)

and inequality (6.4) becomes an equality. Thus,
∫ T

0

(

Di −
∫ 1

0
mi(t, ds)

)

λi(dt) = 0. By equality (6.5), the properties

of H and the fact that ϕ ∈ Lip([0, T ] × [0, 1] × I) + BV ([0, T ] × I), one has
dEi,j

dmi

∈ L∞([0, T ] × [0, 1]) and

∂s

(dEi,j

dmi

)

∈ L∞((0, T )×(0, 1)). Thus, by Proposition 8.1 in Appendix, we deduce thatm ∈ Lip([0, T ],P([0, 1]×I)).

2. We assume now that (λ, ϕ,m) is a weak solution of (6.1). Since ϕ is in Lip([0, T ]× [0, 1]× I)+BV ([0, T ]× I)
and λ is a finite measure, the quantity Ã(ϕ, λ) is well defined. We want to show that Ã(ϕ, λ) + J̃(m,E) = 0. We
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approximate (λ, ϕ) by the sequence {(λn, ϕn)}n defined in Lemma 4.6.(1). For any n, ϕn is smooth enough to be
considered as a test function for the equation (1.1) satisfied in the weak sense by m. We have, for any i ∈ I,

∑

i∈I

∫ 1

0

gimi(T )− ϕn
i (0)m

0
i +

∑

i∈I

∫ T

0

∫ 1

0

−mibi∂sϕ
n
i −mi∂tϕ

n
i +

∑

j∈I,j 6=i

(ϕn
i − ϕn

j )H
′(ϕi − ϕj)mi = 0. (6.6)

For any i ∈ I, ϕn
i is a classical solution of (2.5) associated to λn. Multiplying (2.5) by mi, summing over I and

integrating over [0, T ]× [0, 1], we have:

∑

i∈I

∫ T

0

∫ 1

0

−mi∂tϕ
n
i −mibi∂sϕ

n
i −mici −miλ

n +
∑

j∈I,j 6=i

H(ϕn
i − ϕn

j )mi = 0. (6.7)

Combining (6.6) and (6.7) yields

∑

i∈I

∫ 1

0

gimi(T )− ϕn
i (0)m

0
i +

∑

i∈I

∫ T

0

∫ 1

0

cimi + λni mi +mi





∑

j∈I,j 6=i

H ′(ϕi − ϕj)(ϕ
n
i − ϕn

j )−H(ϕn
i − ϕn

j )



 = 0.

Since (ϕ, λ,m) is a weak solution of (6.1), by Lemma 4.6, and letting n tend to infinity, one deduces:

∑

i∈I

∫ 1

0

gimi(T )−ϕi(0)m
0
i +
∑

i∈I

∫ 1

0

Diλi+
∑

i∈I

∫ T

0

∫ 1

0

cimi+mi





∑

j∈I,j 6=i

H ′(ϕi − ϕj)(ϕi − ϕj)−H(ϕi − ϕj)



 = 0.

By the definition of L and H , we have:

∑

i∈I

∫ 1

0

gimi(T )− ϕi(0)m
0
i +

∑

i∈I

∫ 1

0

Diλi +
∑

i∈I

∫ T

0

∫ 1

0

cimi +mi





∑

j∈I,j 6=i

L(H ′(ϕi − ϕj))



 = 0.

By the definition of Ã in (5.5) and J̃ in (3.3), we have Ã(ϕ, λ) + J̃(m,E) = 0. Finally, by Remark 6.3, one deduces
that (m,E) is a minimizer of (3.4).

6.2 Proof of Theorem 2.1

We are now ready to prove our main theorem by using Theorem 1 and applying the change of variable αi,j :=
dEi,j

mi

.

Proof of Theorem 2.1. The existence of a solution to Problem (1.4) is given by Lemma 3.3.
1 This statement is proved by Theorem 6.1.1
2 This point is given by Theorem 6.1.2.
3 The uniform bound on α and ∂sα are deduced by Theorem 2.1.1, using the fact that H has a globally Lipschitz

continuous gradient and that ϕ is in Lip([0, T ]× [0, 1]× I) +BV ([0, T ]× I). The time regularity of m is obtained
by Proposition 8.2 in Appendix 8.

We now prove Proposition 2.1.

Proof of Proposition 2.1. Let (m,α) be a solution of Problem (1.4) and µ0 be the density of m0 w.r.t. the Lebesgue
measure. By a fixed point argument, it is easy to check that there exists a unique solution µ ∈ Lip([0, T ]× [0, 1]× I)
of the following equation on [0, T ]× [0, 1]× I:

µi(t, s) = µ0
i (S

t,s
i (0)) +

∫ t

0

µi(τ, S
t,s
i (τ))∂sbi(S

t,s
i (τ))dτ

+

∫ t

0

∑

j∈I,j 6=i

−αi,j(τ, S
t,s
i (τ))µi(τ, S

t,s
i (τ)) + αj,i(τ, S

t,s
i (τ))µj(τ, S

t,s
i (τ))dτ.

(6.8)

Denote by L the Lebesgue measure on [0, T ]× [0, 1]. The conclusion follows by proving that µL is the unique weak
solution of (1.1).
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7 Sensitivity analysis of the value of the optimization problem w.r.t.

the data

In this section we study how the value of Problem (1.4) depends on the initial distribution m0 ∈ P([0, 1]×I) and on
the parameterD ∈ C0([0, T ]×I,R∗

+) of the constraint (1.2). We endow the space Ω := P([0, 1]×I)×C0(I×[0, T ],R∗
+)

with the distance DΩ defined by:

DΩ((m
0, D), (m̄0, D̄)) := W(m0, m̄0) + ‖D − D̄‖∞,

where W is the Wasserstein distance on P([0, 1]× I). We recall that the definition of Ωε is given in (2.1). For any
ε > 0 we consider the function V : Ωε → R defined by:

V(m0, D) := inf
(m,E)∈S(m0,D)

J̃(m,E), (7.1)

where the set S(m0, D) is defined in (3.2).
The main result of this section is the following proposition, which shows the Lipschitz continuity of the value of

the problem (1.4) w.r.t. the initial distribution and the congestion constraint (1.2).

Proposition 7.1. For any ε > 0, V is Lipschitz continuous on Ωε w.r.t. the distance DΩ.

To prove the proposition, we need to introduce some lemmas. For any (m0, D) ∈ Ωε, we consider the function
A[m0, D] : C0([0, T ]× [0, 1]× I)× C0([0, T ]× I,R+) → R defined by:

A[m0, D](ϕ, λ) :=
∑

i∈I

∫ 1

0

−ϕi(0, s)m
0
i (ds) +

∫ T

0

λi(t)Di(t)dt.

The following result gives some properties of the function V .

Lemma 7.1. For any ε > 0, the function V is bounded independently of ε, convex and l.s.c. on Ωε.

Proof. Let ε > 0 and C := (T ‖c‖∞ + ‖g‖∞). By the definition of V in (7.1), one can show, for any (m0, D) ∈ Ωε,
that |V(m0, D)| ≤ C. For any (m0, D) ∈ Ωε, the duality result in Theorem 5.1 gives

V(m0, D) = sup
(ϕ,λ)∈K0

−A[m0, D](ϕ, λ). (7.2)

Since V is the supremum of continuous and linear functions, we deduce that V is convex and l.s.c. on Ωε.

For any ε > 0 and (m0, D) ∈ Ωε, we know by Proposition 5.1 that there exists (ϕm0,D, λm
0,D) ∈ (Lip([0, T ]×

[0, 1]× I) +BV ([0, T ]× I))×M+([0, T ]× I) such that ϕm0,D is a weak solution of (2.5), in the sense of Definition

4.1, associated to λm
0,D and such that (ϕm0,D, λm

0,D) satisfies:

∑

i∈I

∫ 1

0

ϕm0,D
i (0, s)m0

i (ds)−

∫ T

0

Di(t)λ
m0,D
i (dt) = − inf

(ϕ,λ)∈K0

A[m0, D](ϕ, λ) = V(m0, D).

The next lemma provides an estimate on ϕm0,D and λm
0,D for any ε > 0 and (m0, λ) ∈ Ωε.

Lemma 7.2. For any ε > 0, there exists C > 0 such that, for any (m0, D) ∈ Ωε,

max
(

‖ϕm0,D‖∞, ‖∂sϕ
m0,D‖∞, λ

m0,D(I × [0, T ])
)

≤ C.

Proof. Let ε > 0 and (m0, D) ∈ Ωε. According to Lemma 7.1, there exists a constant K > 0, independent of ε,

such that
∑

i∈I

∫ 1

0 ϕ
m0,D
i (0, s)m0

i (ds)−
∫ T

0 Di(t)λ
m0,D
i (dt) < K. Thus, by using same arguments as in the proof of

Lemma 5.3 and setting K̃ := (K + T ‖c‖∞ + ‖g‖∞)/ε, one obtains:

λm
0,D(I × [0, T ]) ≤ K̃. (7.3)

By Remark 4.7 and the previous inequality, there exists a constant C̃, which depends on K̃, such that ‖ϕm0,D‖∞

and ‖∂sϕ
m0,D‖∞ are bounded by C̃. The conclusion follows by setting C := max(C̃, K̃).
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We are now ready to prove the Lipschitz regularity of V .

Proof of Proposition 7.1. Let ε > 0 and (m0, D), (m̄0, D̄) ∈ Ωε. By the definition of V in (7.1) and Lemma 7.2, one
has:

V(m0, D) ≤
∑

i∈I

∫ 1

0

ϕm0,D
i m̄0

i (ds)−
∑

i∈I

∫ T

0

D̄i(t)λ
m0,D
i (dt) + ‖∂sϕ

m0,D‖∞W(m0, m̄0) + λm
0,D(I × [0, T ])‖D− D̄‖∞

≤ V(m̄0, D̄) + CDΩ((m
0, D), (m̄0, D̄)),

where C > 0 is a constant defined in Lemma 7.2. Similarly, we have:

V(m̄0, D̄) ≤ V(m0, D) + CDΩ((m
0, D), (m̄0, D̄)).

The conclusion follows.

8 Appendix

Some properties of the weak solution of the continuity equation (1.1) are derived in this subsection. Assumptions
in Section 1 are in force in the Appendix. A first result on the support of the solution is established in Lemma 8.1.

Lemma 8.1. For any weak solution (α,m) of (1.1) in the sense of Definition 3.1, m(t) has a support contained
in [0, 1]× I for any t ∈ [0, T ].

Proof. Let ε > 0 and ϕε ∈ C∞
c ([0, T ]× R× I) such that, for any t ∈ [0, T ] and i ∈ I,

ϕε
i (t, s) ∈ [0, 1], ∀s ∈ R; ϕε

i (t, s) = 0, ∀s ∈ R \ (−1− ε, 2 + ε); and ϕε
i (t, s) = 1 ∀s ∈ [−1, 2].

Since m is a weak solution of (1.1), b satisfies Assumption 1, and ϕi = ϕj for any i, j ∈ I, we deduce that, for any
t ∈ (0, T ),

d

dt

∫

R

∑

i∈I

ϕε
i (t, s)mi(t, ds) =

∫

R

∑

i∈I

∂sϕ
ε
i (t, s)bi(s)mi(t, ds)

=

∫ −1

−1−ε

∑

i∈I

∂sϕ
ε
i (t, s)bi(s)mi(t, ds) +

∫ 2+ε

2

∑

i∈I

∂sϕ
ε
i (t, s)bi(s)mi(t, ds)

= 0.

(8.1)

By (8.1) and the continuity of m, we deduce that t 7→

∫

R

∑

i∈I

ϕε
i (t, s)mi(t, ds) is constant on [0, T ]. Let ε tend to

+∞, it holds that t 7→

∫

R

∑

i∈I

mi(t, ds) is constant over [0, T ]. Then, we have for any t ∈ (0, T ),

∫

R

∑

i∈I

mi(t, ds) =

∫

R

∑

i∈I

m0
i (ds) = 1. Now let us show that

∫ 1

0

∑

i∈I

mi(t, ds) = 1. Let ε > 0 and ψε be another test function in

C∞
c ([0, T ]× R× I) such that, for any t ∈ [0, T ] and i ∈ I,

ψε
i (t, s) = 0, ∀s ∈ R \ (−ε, 1 + ε); ∂sψ

ε
i (t, s) ≥ 0, ∀s ∈ (−ε, 0); ∂sψ

ε
i (t, s) ≤ 0, ∀s ∈ (1, ε);

and ψε
i (t, s) = 1, ∀s ∈ [0, 1].

By the same computation as in (8.1) and Assumption 1, one has, for any t ∈ (0, T ),

d

dt

∫

R

∑

i∈I

ψε
i (t, s)mi(t, ds) =

∫ 0

−ε

∑

i∈I

∂sψ
ε
i (t, s)bi(s)mi(t, ds) +

∫ 1+ε

1

∑

i∈I

∂sψ
ε
i (t, s)bi(s)mi(t, ds) ≥ 0.

Thus, t 7→

∫

R

∑

i∈I

ψε
i (t, s)mi(t, ds) is non-decreasing on [0, T ]. Taking the limit ε→ 0, the map t 7→

∫ 1

0

∑

i∈I

mi(t, ds)

is also non-decreasing on [0, T ]. Finally, for any t ∈ [0, T ]: 1 =

∫ 1

0

∑

i∈I

mi(0, ds) ≤

∫ 1

0

∑

i∈I

mi(t, ds) ≤

∫

R

∑

i∈I

mi(t, ds) =

1.
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For any pair of weak solution (m,α) of (1.1), the next lemma provides some regularity on m if α and ∂sα are
bounded.

Lemma 8.2. Let m0 ∈ P([0, 1] × I) and (m,α) be a weak solution of (1.1) in the sense of Definition 3.1, with
α ∈ L∞([0, T ]×I×I× [0, 1],R+) . Then, m belongs to Lip([0, T ],P([0, 1]×I)) with a Lipschitz constant independent
of m0.

Proof. As in Lemma 3.1, following standards arguments and computations from Optimal Transport [2], one can
show that, for any t, t̃ ∈ [0, T ],

W(m(t, ·),m(t̃, ·)) ≤ |t− t̃|(|I|‖b‖∞ + ‖α‖∞).

The conclusion follows.

Finally, the next Proposition states that, for any α, the existence and uniqueness of an m such that (m,α) is a
weak solution of (1.1).

Proposition 8.1. Let m0 ∈ P([0, 1]× I) and α ∈ L∞([0, T ]× I× I× [0, 1]) satisfy ∂sα ∈ L∞([0, T ]× I× I × [0, 1]).
Then, there exists a unique m ∈ Lip([0, T ],P([0, 1]× I) such that (m,α) is a weak solution of (1.1) in the sense of
Definition 3.1.

Proof. The existence and uniqueness of a weak solution are proved in [19] for controls α that are continuous in
space and time independent. The extension of this result to bounded controls that are measurable in time is
straightforward.
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[39] Pierre-Louis Lions. Théorie des jeux de champ moyen et applications (mean field games). Cours du College de
France. http://www. college-de-france. fr/default/EN/all/equ der/audio video. jsp, 2009, 2007.
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[46] Filippo Santambrogio. Regularity via duality in calculus of variations and degenerate elliptic pdes. Journal of
Mathematical Analysis and Applications, 457(2):1649–1674, 2018.

[47] Adrien Seguret. Mean field approximation of an optimal control problem for the continuity equation arising in
smart charging. Unpublished Manuscript, 2022.

[48] Adrien Seguret, Cheng Wan, and Clemence Alasseur. A mean field control approach for smart charging with
aggregate power demand constraints. accepted in IEEE PES Innovative Smart Grid Technologies Europe (ISGT
Europe), oct 2021.

[49] Colin Sheppard, Laurel N Dunn, Sangjae Bae, and Max Gardner. Optimal dispatch of electrified autonomous
mobility on demand vehicles during power outages. In 2017 IEEE Power & Energy Society General Meeting,
pages 1–5. IEEE, 2017.

[50] Richard Vinter. Convex duality and nonlinear optimal control. SIAM journal on control and optimization,
31(2):518–538, 1993.

25


	Introduction
	Contributions, methodology and literature

	Assumptions and main results
	Notations and Assumptions
	Main results

	Existence of an optimal solution
	Analysis of the Hamilton-Jacobi equation
	The Hamilton-Jacobi equation for continuous valued data
	The Hamilton-Jacobi equation for measure valued data
	Analysis of weak solution of the Hamilton-Jacobi equation (2.5)

	The dual problem
	Characterization of the minimizers
	Proof of Theorem 6.1
	Proof of Theorem 2.1

	Sensitivity analysis of the value of the optimization problem w.r.t. the data
	Appendix

