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Constrained optimal control of a first order Fokker-Planck with reaction

term

Adrien Seguret ∗

September 24, 2021

Abstract

We consider a constrained optimal control of an advection-reaction partial differential equation (PDE). We
prove the existence of a minimizer and we characterize the solution as the weak solution of a system of two coupled
PDEs. This system is composed of a Fokker-Planck equation and of a Hamilton-Jacobi equation, similarly to
systems obtained in Mean Field Games (MFG). We provide regularity results of the solutions.

Keywords: Optimal control, optimality conditions, mean field control.

1 Introduction

We study in this article the optimal control of a first order Fokker-Planck equation with a reaction term, under
congestion constraints. This kind of equation typically arises to model the evolution of a probability measure of
a large population of agents. In this paper, the state of each agent is composed of a continuous variable and of a
discrete variable. The optimal control problem we study can be interpreted heuristically as an approximation of
the limit case n→ ∞ of an optimal switching problem of n agents. Our work is motivated by the optimal switching
control for a large population of agents, and more precisely to the smart charging in electrical engineering [43].
Each agent can represent a plug-in electric vehicle (PEV) aiming at charging its battery. The overall population of
PEVs is controlled by a central planner. The continuous variable represents the level of battery of the PEV and
the discrete variable the mode of charging (e.g. not charging, charging, discharging, etc...). Finally, the congestion
constraint avoids high demand of energy over the period. Combinatorial techniques as well as optimal control
tools fail to solve problems with large population of PEVs, due to the curse of dimensionality [5]. To overcome
these difficulties, a continuum of PEVs can be considered, leading to optimal control of PDE techniques. Optimal
control of a Fokker-Planck applied to smart charging can be found in [33, 44], and applied to the management of a
population of thermostatically controlled loads in [23, 37].

Through the article, we consider a finite horizon [0, T ] and a mixed state space equal to the product [0, 1]× I,
where I is a finite space, whose cardinality is denoted by |I|. We consider the uncontrolled velocity field b, which
describes how agents move on the segment [0, 1]. We consider the function α, which is the control determining the
jump intensity of the agents between the different modes in I. For any (t, s, i, j) ∈ [0, T ]× [0, 1]× I × I, the value
αi,j(t, s) denotes the jump intensity of agents from state (s, i) to the state (s, j), at time t. The control α is required
to be a non negative measurable function and to satisfy αi,i = 0, meaning that no agents can jump from state
(s, i) to state (s, i). The function α is determined by an aggregator. We highlight that the agents are controlled by
the same function α. We define m such that for any (t, s, i) ∈ [0, T ] × [0, 1] × I, the value mi(t, s) represents the
proportion of agents at time t at state (s, i). The pair (α,m) is the weak solution, in the sense of Definition 2.1, of
the continuity equation on [0, T ]× [0, 1]× I:

∂tmi(t, s) + ∂s(mi(t, s)bi(s)) = −
∑

j 6=i

(αi,j(t, s)mi(t, s)− αj,i(t, s)mj(t, s)) (i, t, s) ∈ I × (0, T )× (0, 1),

mi(0, s) = m0
i (s) (i, s) ∈ I × [0, 1],

(1.1)

where the initial distribution m0 is given. This equation is a first order Fokker-Planck equation, where the right-
hand side is a reaction term. As mentioned above, we consider congestion constraints on the total mass per mode i
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in I at any t ∈ [0, T ]. This is used to avoid synchronization effects and to limit the proportion of agents per mode
i ∈ I at any time. Note that this constraint introduces interactions between agents in our model. In the limit case
n→ ∞, the constraint is of the form:

mi(t, [0, 1]) ≤ Di(t) ∀(i, t) ∈ I × [0, T ], (1.2)

where Di > 0 is given. The objective function J is defined as followed:

J(m,α) :=
∑

i∈I

∫ T

0

∫ 1

0

(
∑

j∈I,j 6=i

L(αij(t, s)) + ci(t, s))mi(t, ds)dt+
∑

i∈I

∫ 1

0

gi(s)mi(T, ds), (1.3)

where the function L : R 7→ R̄+ is defined by:

L(x) :=







x2

2
if x ≥ 0

+∞ otherwise.
(1.4)

The cost function L penalizes high values of α. It aims at avoiding multiple jumps of agents between the elements
of the set I. The value ci(t, s) corresponds to the cost per agent to be at time t ∈ [0, T ) at state (s, i), while gi(s) is
a final cost per agent to be at state (s, i). Regularity assumptions on c and g will be introduced later. Our purpose
is to study the optimization problem:

inf
m,α

J(m,α)

(α,m) satisfies (1.1) and (1.2)
(1.5)

1.1 Motivations

We briefly present an optimal switching problem of n agents in this subsection. Problem (1.5) can be interpreted
heuristically as an approximation of the limit case n→ ∞ of this problem.

We consider n controlled agents x1, . . . , xn over the period [0, T ]. The state of the kth agent at time t is denoted
by xk(t) := (qk(t), zk(t)) and is composed of a continuous variable qk(t) ∈ [0, 1] and a discrete one zk(t) ∈ I. A
strategy is a couple (τ, ι) where τ is composed of n sequences (one sequence per agent) of stopping times in [0, T ]
and ι is composed of n sequences (also one sequence per agent) with values I. The dynamic of the state of the kth

agent is controlled as follows:

dqk(t)

dt
= bzk(t)(q

k(t)) and zk(t) =

∞
∑

h=0

ιkh1[τk
h
,τk

h+1
)(t).

The stopping time τkh ∈ [0, T ] is the hth jump of the kth agent and ιkh its jump destination. The cost of a strategy
is estimated by:

Jn(τ, ι) :=
1

n

n
∑

k=0

(

∫ T

0

czk(t)(t, q
k(t))dt+ gzk(T )(q

k(T ))

)

+
1

n
P (ι, τ)

in which P is the cost of switching between nodes, aiming at avoiding large number of jumps and synchronization
effects between agents. This function will be determined in a later work. Functions c and g have already been
defined in the definition of J at (1.3). The goal of the switching problem is to solve:

inf
τ,ι

Jn(τ, ι)

s.c.
1

n

∑

n

1i(z
k(t)) ≤ Di(t) for any t ∈ [0, T ].

(1.6)

The reader can refer to [3, Section 4.4] for an introduction to optimal switching. Heuristically, Problem (1.5) can
be interpreted as a formulation, when n tends to infinity, of (1.6). The connection between the two problems will
be addressed in a later work. Note that the mean field behaviour of interacting and controlled processes has been
investigated, in deterministic and stochastic settings, in [18, 28] and the references therein. As precised above,
this problem is motivated by its application in smart charging. Each agent represents an electric vehicle aiming at
charging its battery. The continuous variable q represents the level of battery of the electric vehicle and the discrete
variable z the mode of charging (e.g. not charging, charging, discharging, etc...). The transfers from one mode
of charging to another one are penalized through the cost P in order to avoid multiple switches, synchronization
effects and battery aging. The goal of the final cost g is to penalize small battery level at the end of the period,
while the function c can represent a cost of electricity for power consumption. Finally, the constraint (1.6) avoids
high demand of energy over the period.
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1.2 Contributions and literature

One of our main results states the existence of solutions of (1.5) and gives optimality conditions, by using classic
tools of optimization and convex duality theory [19]. More precisely we show that, if (m,α) is a solution to (1.5),
then there exists a pair (φ, λ) such that for any i, j ∈ I, αi,j = (ϕi − ϕj)

+ and (φ, λ,m) is a weak solution of the
following system:































































−∂tϕi − bi∂sϕi − ci − λi +
∑

j∈I,j 6=i

H(ϕj − ϕi) = 0 on (0, T )× (0, 1)× I

∂tmi + ∂s(mibi) +
∑

j 6=i

((ϕi − ϕj)
+mi − (ϕj − ϕi)

+mj) = 0 on (0, T )× (0, 1)× I

mi(0, s) = m0
i (s), ϕi(T, s) = gi(s) on (0, 1)× I

∫ 1

0

mi(t, s)ds−D(t) ≤ 0, λ ≥ 0 on [0, T ]× I

∑

i∈I

∫ T

0

∫ 1

0

mi(t, ds)λi(dt)−
∫ T

0

D(t)λ(dt) = 0

(1.7)

The function ϕ is the multiplier associated to the dynamic constraint (1.1), and λ is associated to the congestion
constraint (1.2). The first equation is a backward Hamilton-Jacobi equation, whereH is defined byH(y) := (y−)2 for
any y ∈ R. Existence, uniqueness and characterization of weak solution of the backward Hamilton-Jacobi equation
are investigated in the paper. The second equation is a forward Fokker-Planck equation, similar to (1.1), where the
control α, defined by αi,j = (ϕi − ϕj)

+, is optimal. The measure λ is non negative and finite and the last equality
in (1.7) ensures that that the congestion constraint (1.2) is satisfied. Moreover, one of our main contributions is a
regularity property for any weak solution (λ, ϕ,m) of (1.7). We prove, that under suitable assumptions on the data
m0, b, g and c, the function ϕ is continuous for a.e. t in [0, T ] and ∂sϕ ∈ L∞((0, T )× I, C0([0, 1])). In addition, for
any i ∈ I the measure mi is a Lipschitz continuous function on [0, T ]× [0, 1].

This kind of system (1.7) typically arises in the Mean Field Game Theory (MFG for short). This class of
problem, introduced by Lasry and Lions [29, 30, 31] and Huang, Malhamé and Caines [26, 27], describes the
interaction between a large population of identical and rational agents in competition.

The duality approach adopted to obtain (1.7) consists in relaxing the dynamic (1.1) and congestion constraint
(1.2). The resulting relaxed problem is then expressed as the dual of an other convex problem. We show that
the system (1.7) is an optimality condition of both problems. Solving optimal control of a Fokker-Planck equation
by means of duality theory is well known since few decades [22, 45]. Our work follows the method developed in
the seminal work of Benamou and Brenier [6], for optimal transport problems. In [6], a Fokker-Planck equation is
controlled with initial and final constraint, optimality conditions are obtained as a system of PDEs close to (1.7).
Similar method and results still in optimal transport are derived in [14]. The duality approach adopted in the
paper is close to method used in MFG theory as in [15], where existence and uniqueness of the weak solution of the
MFG system are proved, and the solution is characterized as the minimizer of some optimal control of Hamilton-
Jacobi and Fokker-Planck equations. This approach enables to use optimization techniques, to prove existence and
uniqueness of the solution of the MFG system as well as for Mean Field Control (MFC for short) problem. We
refer to [1, 8, 12, 16, 38] and the references therein. The variational approach allows besides to apply optimization
algorithms to solve numerically MFG problems [7, 11, 12]. Note that different optimality conditions, for control
problems in the space of probability measures, can be derived by using a kind of Pontryagin Maximum Principle
[10].

The paper deals with a congestion constraint (1.2) on the measure. Two kinds of congestions effects have been
explored in the MFG and MFC frameworks. On the one hand, ”soft constraints” which increase the cost of velocity
of the agents in areas with high density. On the other hand, ”hard congestion” which imposes density constraints,
e.g. m ≤ m̄ at any point (t, s). The variational approach shows good results when applied to MFC [1] and MFG
with ”soft congestion” in a stationary framework [20], as well as to MFG problems dealing with ”hard congestion”
constraints. This has been first investigated in [40] where the density of the population does not exceed a given
threshold, then in [35] where stationary second order MFG are considered. In [17] a price, imposed on the saturated
zone to make the density satisfy the constraints, is obtained. In the same vein as the work of Benamou and Brenier
[6], ”hard congestion” constraints are also examined in optimal transport [13]. We highlight that our paper deals
with aggregated ”hard congestion” constraints on the measure m (1.2), i.e. our constraint is less restrictive than a
constraint of the type m ≤ m̄ a.e..

We consider a mixed state space, with continuous and discrete state variables. To the best of our knowledge,
these settings have been barely investigated in the MFG literature, e.g. articles cited above look only at continuous
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state variables. The resulting Fokker-Planck equation (1.1) contains a term of reaction, indicating mass transfers
between states on I. Such PDE arises also in [2], to model the mean field limit of Piecewise Deterministic Markov
Proccesses (PDMP for short). The velocity is controlled in [2] while we control the intensity of the jump α (the
velocity b is given). A discrete time and state space MFG problem is explored in [24]. The uniqueness of the
solution of a finite state MFG is discussed in [4]. Mixed state space in a MFG framework can be found in [21],
where a major player can switch his state on a finite state space and minor players decide their stopping time. A
MFG problem in a finite state space and discrete time settings with ”hard congestion”, has been studied in [9],
using also variational methods.

Concerning the regularity results, let us point out that the regularity of solutions of (1.7) is not usual, and we
believe that it is mainly due to the linearity of the Hamilton-Jacobi equation w.r.t. ∂sϕ, and to the regularity
assumptions on b, allowing to use the characteristic method to solve the PDEs. These results will be useful in a
later work to quantify the mean field limit assumption of the model. The time regularity of m and ϕ may not be
improved as far as we have no more regularity results on λ. The function ϕ is discontinuous at each atom of the
measure λ. Regularity results, about the multiplier of the density constraint can be found in the literature: in [17]
the authors show some BV estimates on the pressure, whereas L∞ estimates for the price have been proved in [32],
in the special case of a quadratic Hamiltonian. Sobolev regularity, for the solution of a first order MFG, has been
established in [34], and improved in [42]; see also [25].

The paper is organized as follows. In the rest of Section 1 we present our assumptions and main results. Problem
(1.5) is analyzed in Section 2 and we give some regularity results on the solution m of (1.1). We study in detail
the Hamilton-Jacobi equation of the system (1.7) in Section 3. In Section 4, the variational approach of Problem
(1.5) is developed. We prove our main result in Section 5. Finally, we recall basic statements about weak solutions
in the Appendix A.

1.3 Assumptions

The following assumptions are in force throughout the paper.

1. For any i ∈ I, bi ∈ C2(R) with bi(s) = 0 for any s 6∈ (0, 1).

2. m0 is a probability measure on [0, 1], absolutely continuous w.r.t. the Lebesgue measure, with a density
denoted in the same way. We assume that for any i ∈ I: m0

i ∈ C1(R), with supp(m0
i ) ⊂ [0, 1].

3. For any i ∈ I, Di ∈ C0([0, T ]) and there exists ε0 > 0 such that for any i ∈ I and t ∈ [0, T ]:

ε0 < Di(t)−
∫ 1

0

m0
i (s)ds. (1.8)

4. For any i ∈ I, it is assumed that ci ∈ C1([0, T ]× [0, 1]) and gi ∈ C1([0, 1]).

The main role of assumptions 1 and 2 is to ensure that the population of agents remains concentrated on [0, 1].
Inequality (1.8) of Assumption 3 is used to show the existence of a solution of the optimization problem, whose
optimality condition is the system (1.7). Finally, the regularity results of the weak solutions of the system (1.7) are
derived thanks to the assumptions formulated on c and g in Assumption (4).

1.4 Notations

The space of positive and bounded measures on a space A is denoted by M+(A) and the space of probability

measure P(A). For any measure µ ∈ M([0, T ]) and 0 ≤ t1 < t2 ≤ T , we set
∫ t2

t1
µ(dt) := µ([t1, t2)). Given a

finite vector space S, for any function f defined on I × S we use the notation fi(x) := f(i, x) for any (i, x) ∈
I × S. Similarly, for any function g defined on I × I × S we consider the notation fi,j(x) := f(i, j, x) for any
(i, j, x) ∈ I × I × S. The Wasserstein distance on P([0, 1]× I) is denoted by W1. Given a finite vector space S, let
Lip(S) denote the vector space of bounded functions f : S → R such that the Lipschitz constant of f defined by
sup{|f(x)−f(y)|/‖x−y‖ |x, y ∈ S, x 6= y} is finite. Let L∞((0, T )×I×I,Lip([0, 1]) be the vector space of measurable
maps f : (0, T )× (0, 1)× I × I → R such that there exists a finite constant cf > 0 where for a.e. t ∈ (0, T ) and any
i, j ∈ I, ‖fi,j(t, ·)‖∞ ≤ cf and such that fi,j(t, ·) is Lipschitz continuous on [0, 1] with Lipschitz constant cf . For

any µ ∈ C0([0, T ],P(R)), we define the set: L2
µ([0, T ]× R) := {f : [0, T ]× R 7→ R,

∫ T

0

∫ 1

0 f(t, s)
2µ(t, ds)dt < +∞}.
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The norm ‖ · ‖1 is defined for any f ∈ L1([0, T ],×[0, 1]× I) by ‖f‖1 =
∑

i∈I

∫ T

0

∫ 1

0 |fi|. The dual of a normed space

X is denoted by X∗. We denote for any s ∈ [0, 1], i ∈ I and t ∈ [0, T ] by St,s
i the unique solution on [0, T ] of:

St,s
i (t) = s,

dSt,s
i (τ)

dτ
= bi(S

t,s
i (τ)) τ ∈ [0, T ]. (1.9)

1.5 Main results

We introduce, for a given λ ∈ M+([0, T ]× I), the Hamilton-Jacobi equation on (0, T )× (0, 1)× I:

−∂tϕi(t, s)− bi(s)∂sϕi(t, s)− ci(t, s)− λi(t) +
∑

j∈I,j 6=i

H((ϕj − ϕi)(t, s)) = 0 (t, s, i) ∈ (0, T )× (0, 1)× I,

ϕi(T, ·) = gi (s, i) ∈ [0, 1]× I,
(1.10)

We denote by R0 the set of weak solutions of (1.10), in the sense of Definition 3.1, and consider the following
problem

inf
(ϕ,λ)∈R0

Ã(ϕ, λ) (1.11)

where:

Ã(ϕ, λ) :=
∑

i∈I

∫ 1

0

−ϕi(0, s)m
0
i (ds) +

∫ T

0

Di(t)λi(dt). (1.12)

We can now state our main result.

Theorem 1.1. Problem (1.5) has a solution (m,α), and Problem (1.11) has also a solution (ϕ, λ), where ϕ ∈
L∞([0, T ] × [0, 1] × I) and ∂sϕ ∈ L∞((0, T ) × I, C0(0, 1)). In addition, we have the following characterization of
the minimizers:

1. If (m,α) is a minimizer of Problem (1.5) and (ϕ, λ) ∈ R0 a minimizer of Problem (1.11), then (ϕ, λ,m) is a
weak solution of (1.7), in the sense of Definition 5.1, and αi,j = (ϕi − ϕj)

+ on {mi > 0} for any i, j ∈ I.

2. Conversely, if (ϕ, λ,m) is a weak solution of (1.7) in the sense of Definition 5.1, then (ϕ, λ) ∈ R0 is a
minimizer of Problem (1.11) and there exists α, defined for any i, j ∈ I by: αi,j := (ϕi − ϕj)

+ on {mi > 0},
such that (m,α) is a minimizer of (1.5).

3. If (m,α) is a minimizer of Problem (1.5), then for any i, j ∈ I αi,j ∈ L∞((0, T ),Lip([0, 1])), and m ∈
Lip([0, T ]× [0, 1]× I)

Remark 1.1. For the sake of simplicity, we have defined L in (1.4). However, results in this paper still hold for
any function L : R → R+, satisfying:

1. L is a lower semi continuous and convex function and dom L = R+.

2. The function H, defined by H(x) := L∗(−x) is non decreasing and differentiable, and is such that its Fenchel
conjugate H∗, defined by H∗(x) := L(−x), is essentially strictly convex [39, Theorems 26.1, 26.3].

3. There exist r > 1 and C > 0, such that for any x ∈ R+ we have:

xr

rC
− C ≤ L(x) ≤ C

r
xr + C.

The existence of a solution of (1.5) is stated by Lemma 2.3 in Section 2. In section 4 Theorem 4.2 proves the
existence of a solution of (1.11). These results are obtained by classical techniques in convex optimization. The
characterization of these solutions are given by Theorem 5.1 in Section 5. A variational approach is used to deduce
this characterization. We introduce a convex problem, whose dual is, up to a change of variable, Problem (1.5)
(from Theorem 4.1) and Problem (1.11) is a relaxed version of this problem. The Lipschitz continuity of m is
deduced from the regularity of ϕ, derived in Section 3, and Lemma 2.4.
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2 Variational problem

Definition 2.1. A pair (α,m) satisfies (1.1) in the weak sense if t ∈ [0, T ] 7→ m(t, ·) ∈ P(R× I) is continuous, for
any i, j ∈ I with i 6= j it holds αi,j ∈ L2

mi
([0, T ]× R) and for any test function φ ∈ C∞

c ([0, T ]× R× I) we have:

∑

i∈I

∫

R

φi(T, s)mi(T, ds)− φi(0, s)m
0
i (ds)

=

∫ T

0

∫

R

∑

i∈I

(∂tφi(t, s) + bi(s)∂sφi(t, s))mi(t, ds) +
∑

j∈I,j 6=i

(φj(t, s)− φi(t, s))αi,j(t, s)mi(t, ds)dt,

Remark 2.1. Recalling Assumptions 1 and 2, Lemma A.3 in Appendix A.2 states that for any weak solution (α,m)
of (1.1), in the sense of Definition 2.1, the measure mi(t, ·) has its support included in [0, 1] for any (t, i) ∈ [0, T ]×I.
Thus, we will consider throughout the paper, only weak solutions (α,m) of (1.1) where for any t ∈ [0, T ] we have
m(t, ·) ∈ P([0, 1]× I).

Problem (1.5) being not convex w.r.t. the variables (m,α), we make a change of variables E := αm. We now
rewrite the continuity equation (1.1) for any i ∈ I:

∂tmi(t, s) + ∂s(mi(t, s)bi(s)) = −
∑

i,j∈I,j 6=i

(Ei,j(t, s)− Ej,i(t, s)) (i, t, s) ∈ I × (0, T )× (0, 1)

mi(0, s) = m0
i (s) (i, s) ∈ I × [0, 1],

(2.1)

where Ei,j ∈ M+([0, T ] × [0, 1]), with a first marginal equals to the Lebesgue measure on [0, T ] and such that

Ei,j(t, ·) ≪ mi(t, ·) with
dEi,j

dmi

= αi,j and
dEi,j

dmi

∈ L2
mi

([0, T ] × R). For any initial distribution, absolutely

continuous w.r.t. the Lebesgue measure, with density satisfying m0 ∈ C1([0, 1]× I) and any D ∈ C0([0, T ]× I), we
introduce the set:

CE(m0, D) :=

{

(m,E) such that (m,α) satisfies (2.1) in the weak sense, where αi,j :=
dEi,j

dmi

,

with additional constraints:

∫ 1

0

mi(t, ds) ≤ Di(t) ∀(i, t) ∈ I × [0, T ], and
dEi,j

dmi

≥ 0

}

.

(2.2)

The function ρ denotes, throughout the paper, the function such that (ρ, 0) is the weak solution of (1.1). One can

easily show that for any i ∈ I it holds ρi ∈ C1([0, T ]× [0, 1]) and for any t ∈ [0, T ]:

∫ 1

0

ρi(t, s)ds =

∫ 1

0

m0
i (s)ds <

Di(t). Then, it follows that (ρ, 0) ∈ CE(m0, D). We define the function B̃ for any (m,E) ∈ CE(m0, D) by:

B̃(E,m) :=
∑

i∈I

∫ T

0

∫ 1

0

ci(t, s)mi(t, ds) +
∑

nI,j 6=i

L

(

dEi,j

dmi

(t, s)

)

mi(t, ds)dt+
∑

i∈I

∫ 1

0

gi(s)mi(T, ds), (2.3)

where the function L is defined in (1.4). The following optimization problem is considered:

inf
(m,E)∈CE(m0,D)

B̃(E,m) (2.4)

From Assumption 4, we deduce that the quantity B̃(E,m) is finite for any (m,E) ∈ CE(m0, D). For any γ > 0,
we denote by CEγ(m

0, D) the subset of CE(m0, D) whose elements (m,E) satisfy:

∑

(i,j)∈I,i6=j

∫ T

0

∫ 1

0

L

(

dEi,j

dmi

(t, s)

)

mi(t, ds)dt =
∑

(i,j)∈I,i6=j

∫ T

0

∫ 1

0

1

2

(

dEi,j

dmi

(t, s)

)2

mi(t, ds)dt ≤ γ. (2.5)

For any (m,E) ∈ CEγ(m
0, D), the next Lemma provides a Hölder regularity property on m.

Lemma 2.1. For any γ > 0, there exists a positive constant Cγ such that, for any (m,E) ∈ CEγ(m
0, D), m is

1

2
-Hölder continuous of constant Cγ .
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Proof. Let ϕ : R × I → R be globally 1−Lipschitz continuous and C1 w.r.t. the first variable. We show that the

function: t→ d

dt

∫

R

d
∑

i=0

ϕi(s)mi(t, ds) is uniformly bounded on [0, T ]:

d

dt

∫

R

d
∑

i=1

ϕi(s)mi(t, ds) =

∫

R

∑

i∈I

bi(s)∂sϕi(s)mi(t, ds) +

∫

R

∑

i,j∈I,j 6=i

(ϕj(s)− ϕi(s))αi,j(t, s)mi(t, ds),

where we used Assumption 1 and that (m,E) is a weak solution of (2.1) with αi,j :=
dEi,j

dmi

. Since bi is bounded

by ‖b‖∞ := max
i

(‖bi‖∞) and ‖∂sϕi‖ is bounded by 1 for any i ∈ I, Lemma A.3 in the Appendix A implies that:

∣

∣

∣

∣

∣

d

dt

∫

R

∑

i∈I

ϕi(s)mi(t, ds)

∣

∣

∣

∣

∣

≤ |I|‖b‖∞ +

∫ 1

0

∑

i,j∈I,j 6=i

|ϕj(s)− ϕi(s)|αi,j(t, s)mi(t, ds)

≤ |I|‖b‖∞ +

∫ 1

0

∑

i,j∈I,j 6=i

αi,j(t, s)mi(t, ds),

where we used that s 7→ (ϕj(s) − ϕi(s)) is bounded by 1 for any pair (i, j). Let t, t̃ ∈ (0, T ), with t > t̃, using
Cauchy-Schwarz inequality, it holds:

∣

∣

∣

∣

∣

∫

R

d
∑

i=1

ϕi(s)mi(t, ds)−
∫

R

d
∑

i=1

ϕi(s)mi(t̃, ds)

∣

∣

∣

∣

∣

≤ (t− t̃)|I|‖b‖∞ +





∫ t

t̃

∫ 1

0

∑

i,j∈I,j 6=i

mi(τ, ds)dτ





1
2




∫ t

t̃

∫ 1

0

∑

i,j∈I,j 6=i

(αi,j(τ, s))
2mi(τ, ds)dτ





1
2

≤ |t− t̃| 12
(

T
1
2 |I|‖b‖∞ +

√
2γ

1
2

)

.

(2.6)

From (2.6) it holds:

W1(m(t, ·),m(t̃, ·)) ≤ |t− t̃| 12
(

T
1
2 |I|‖b‖∞ +

√
2γ

1
2

)

.

The next Lemma is usefull to show that any minimizing sequence of (2.4) is relatively compact.

Lemma 2.2. For any γ > 0, the subset CEγ(m
0, D) is relatively compact.

Proof. For any (m,E) ∈ CEγ(m
0, D), using Lemma A.3, it holds that m is tight. In addition for any i, j ∈ I with

i 6= j, using that Ei,j is a positive measure and Cauchy-Schwarz inequality, we have:

∫ T

0

∫ 1

0

Ei,j(t, ds)dt =

∫ T

0

∫ 1

0

dEi,j

dmi

(t, s)mi(t, ds)dt ≤
(

∫ T

0

∫ 1

0

(

dEi,j

dmi

(t, s)

)2

mi(t, ds)dt

)
1
2
(

∫ T

0

∫ 1

0

mi(t, ds)dt

)
1
2

≤ (2γT )
1
2 ,

thus the mass of Ei,j is bounded on [0, 1]× I by (γT )
1
2 . Since Ei,j ≪ mi, it holds that E is also tight. Thus, for

any sequence {(mn, En)}n in CEγ(m
0, D), there exists a subsequence {(mθn , Eθn)}n converging weakly to (m̃, Ẽ).

Using Lemma 2.1, {mθn}n converges uniformly on [0, T ] to a m̃ and it holds m̃ ∈ C([0, T ],P(R× I)).
We want to show that Ẽ is absolutely continuous w.r.t. m̃. We define the functional Θ by:

Θ(m,E) :











∫ T

0

∫ 1

0

∑

i,j∈I,i6=j

L(αi,j(t, s))mi(t, ds)dt if ∀i, j, Ei,j ≪ mi and αi,j :=
dEi,j

dmi

with αi,j ≥ 0,

+∞ otherwise

The functional Θ being w.l.s.c. [41, Proposition 5.18], and Θ(mn, En) being bounded by γ for any n, we deduce
that Θ(m̃, Ẽ) ≤ γ and Ẽ ≪ m̃. Finally, using the definition of weak convergence, it is easy to check that (m̃, Ẽ) is

a weak solution of (2.1) and m̃ satisfies for any (i, t) ∈ I × [0, T ]:

∫ 1

0

m̃i(t, ds) ≤ Di(t).
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Lemma 2.3. Problem (2.4) admits a solution.

Proof. We consider (m̄, Ē) ∈ CE(m0, D) and we define γ by:

γ := B̃(m̄, Ē) + |I|(T ‖c‖∞ + ‖g‖∞) + 1,

where ‖c‖∞ := max
i∈I

(‖ci‖∞), ‖g‖∞ := max
i∈I

(‖gi‖∞). For any pair (m,E) ∈ CE(m0, D), if B̃(m,E) ≤ B̃(m̄, Ē),

then:
∑

(i,j)∈I,i6=j

∫ T

0

∫ 1

0

1

2

(

dEi,j

dmi

(t, s)

)2

mi(t, ds)dt ≤ γ.

We deduce that (m̄, Ē) ∈ CEγ(m
0, D). Taking a minimizing sequence {(mn, En)}n of Problem (2.4), there exists

ñ ∈ N such that (mn, En) ∈ CEγ(m
0, D) for all n ≥ ñ. From Lemma 2.2, a subsequence of {(mn, En)}n weakly

converges to a certain (m∗, E∗) ∈ CEγ(m
0, D). Since B̃ is weakly lower semi continuous on CE(m0, D), (m∗, E∗)

minimizes B̃.

We end up this section giving the following lemma, which provides Lipschitz continuity results on m. This
Lemma will be useful in section 5.

Lemma 2.4. Suppose α ∈ L∞((0, T )× I × I,Lip([0, 1])), then there exists a unique solution m of (1.1) associated
to α. In addition we have m ∈ Lip([0, T ]× [0, 1]× I).

To prove Lemma 2.4, we need to rewrite the equation (1.1) in R
|I|, in the following form:

∂tm(t, s) + b(s)∂sm(t, s) = G(t, s)m(t, s), (2.7)

where m(t, s) := (m0(t, s), . . . ,m|I|(t, s)), b(s) := diag(b0(s), . . . , b|I|(s)) and G(t, s) is a square matrix of size |I|,
such that the ith coordinate of the vector G(t, s)m(t, s) is equal to:

(G(t, s)m(t, s))i := −mi(t, s)∂sbi(s)−
∑

j 6=i

(αi,j(t, s)mi(t, s)− αj,i(t, s)mj(t, s)), (2.8)

with the initial constraint: m(0, ·) = m0(·) on [0, 1]. Note that if α ∈ L∞((0, T ) × I × I,Lip([0, 1])), then G ∈
L∞((0, T )× I × I,Lip([0, 1])).

Proof of Lemma 2.4. This Lemma is a direct application of Proposition 1 in Appendix A.

3 Analysis of the HJB solutions

This section is devoted to the analysis of the equation:

−∂tϕi(t, s)− bi(s)∂sϕi(t, s)− ci(t, s)− λi(t) +
∑

j∈I,j 6=i

H((ϕj − ϕi)(t, s)) = 0 on (0, T )× (0, 1)× I,

ϕi(T, ·) = gi on (0, 1)× I,
(3.1)

where λ ∈ M+([0, T ]× I) is given and H(y) :=
1

2
(y−)2 for any y ∈ R. We introduce the notion of weak solution

for this equation.

Definition 3.1. For a given λ ∈ M+([0, T ] × I), ϕ is called a weak solution of equation (3.1) if for any i ∈ I
ϕi ∈ BV ((0, T )× (0, 1)) and for any test function ψ ∈ C1((0, T )× (0, 1)× I), it satisfies:

∫ 1

0

ϕi(0, s)ψi(0, s)ds−
∫ 1

0

gi(s)ψi(T, s)ds+

∫ T

0

∫ 1

0

(∂tψi(t, s) + ∂s(ψi(t, s)bi(s)))ϕi(t, s)dsdt

+

∫ T

0

∫ 1

0





∑

j∈I,j 6=i

H((ϕj − ϕi)(t, s))− ci(t, s)



ψi(t, s)dtds−
∫ T

0

∫ 1

0

ψi(t, s)λi(dt)ds

= 0,

(3.2)

φi(0, ·) is understood in the sense of trace.
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Remark 3.1. Observe that there is no boundary condition in (3.2). This is due to the Assumption 1, involving a
null incoming flow in the domain [0, 1].

In order to analyze (3.1) we now introduce several notations. Let δ > 0 (to be chosen below) and assume that:

λ([0, T ]× I) < δ. (3.3)

Let M δ and M̄ δ be such that:

M δ := max
i∈I

‖gi‖∞ + T (max
i∈I

‖ci‖∞ + |I|H(δ)) + 2.

M̄ δ :=M δ + δ.
(3.4)

From Assumptions 1 and 4, there exists a positive constant K such that for any i ∈ I and t ∈ [0, T ], functions gi,
ci(t, ·) and bi are Lipschitz continuous on [0, 1] with Lipschitz constant K. Using the definition of H , introduced in
equation (3.1), there exists a positive constant Kδ such that H and H ′ are Lipschitz continuous on [−2M̄ δ, 2M̄ δ]
with Lipschitz constant Kδ. For any i ∈ I, let St,s

i : [0, T ] → R be the maximal solution of the ODE (1.9) with
condition: St,s

i (t) = s. The function bi being C
1, the map:

Si : (τ, t, s) → St,s
i (τ)

is C1 on [0, T ]× [0, T ]× [0, 1]. The flow St,·
i (τ) is a diffeomorphism on [0, 1] whose inverse function is Sτ,·

i (t) with
derivative w.r.t. space variable ∂sS

τ,·
i (t). For any i ∈ I ∂sSi being continuous on [0, T ]× [0, T ]× [0, 1] we define:

‖∂sS‖∞ := max
i∈I

(‖∂sSi‖∞). Let kδ ∈ R
+ be such that:

kδ := K + lδ where lδ := 4(|I| − 1)Kδ + 1, (3.5)

We consider the space L1((0, T ) × I, C1([0, 1])) endowed with the norm ‖ · ‖δ1, which is defined for every v ∈
L1((0, T )× I, C1(0, 1)) by :

‖v‖δ1 :=
∑

i∈I

∫ T

0

‖vi(t, ·)‖C1e−κδ(T−t)dt, (3.6)

where ‖vi(t, ·)‖C1 := ‖vi(t, ·)‖∞ + ‖∂svi(t, ·)‖∞ and the constant κ is defined by:

κδ := |I|2Kδ(‖∂sS‖∞ + 1) + 1. (3.7)

The space (L1((0, T )×I, C1(0, 1)), ‖·‖δ1) is a Banach space. The constants defined in (3.5) and (3.7) are determined
to build a contracting map in a subspace of (L1((0, T )× I, C1(0, 1)), ‖ · ‖δ1).

In this section we are looking for a solution of (3.1) in an integral form, i.e. a function ϕ, defined on [0, T ]×
[0, 1]× I, satisfying:

ϕi(t, s) =

∫ T

t

∑

j∈I,j 6=i

−H((ϕj − ϕi)(τ, S
t,s
i (τ))) + ci(τ, S

t,s
i (τ))dτ +

∫ T

t

λi(dτ) + gi(S
t,s
i (T )) on (0, T )× [0, 1]× I

ϕi(T, s) = gi(s) on [0, 1]× I
(3.8)

One can observe that ϕ is a solution of (3.8) if and only if the function ν, defined by:

νi(t, s) := ϕi(t, s)−
∫ T

t

λi(dτ)

is a solution of:

νi(t, s) =

∫ T

t

∑

j∈I,j 6=i

−Hλ(i, j, t, τ, s, ν) + ci(τ, S
t,s
i (τ))dτ + gi(S

t,s
i (T )) a.e. on (0, T )× [0, 1]× I

νi(T, s) = gi(s) a.e. on [0, 1]× I

(3.9)

where Hλ is defined on I × I × [0, T ]× [0, T ]× [0, 1]× L1((0, T )× (0, 1)× I) by:

Hλ(i, j, t, τ, s, ν) := H

(

(ϕj − ϕi)(τ, S
t,s
i (τ)) +

∫ T

τ

(λj − λi)(dr)

)

.
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Our aim is to build a solution to (3.9) (and thus to (3.1)) by a fixed point argument. Let for any i ∈ I, Γλ
i be the

map defined for any ϕ ∈ L1((0, T )× I, C1([0, 1])) by:

Γλ
i (ϕ)(t, s) :=

∫ T

t

∑

j∈I,j 6=i

−Hλ(i, j, t, τ, s, ϕ) + ci(τ, S
t,s
i (τ))dτ + gi(S

t,s
i (T )). (3.10)

Let Σλ be the set of functions f : [0, T ] × [0, 1] × I → R such that for any i ∈ I, (t, s) 7→ fi(t, s) is measurable
on [0, T ]× [0, 1] and for a.e. t ∈ (0, T ): fi(t, ·) ∈ C1([0, 1]), ‖fi(t, ·)‖∞ ≤ M δ and ‖∂sfi(t, ·)‖∞ ≤ 2Kek(T−t). We
want to apply a fixed point theorem in the space Σλ. To do so, we need to define a function on Σλ with values in
Σλ. For a given v ∈ Σλ, the value ‖Γλ

i (v)‖∞ may be larger than M δ. Thus, we introduce the smooth truncation
Fδ ∈ C1(R, [−M δ + 1/2, M δ − 1/2]), satisfying F ′

δ ≥ 0, |F ′
δ(x)| ≤ 1 for any x ∈ R and:

Fδ(x) :















−M δ +
1

2
if x < −M δ,

x if − (M δ − 1) ≤ x ≤M δ − 1,

M δ − 1

2
if M δ ≤ x.

(3.11)

Finally we define the function Πλ by:

∀ϕ ∈ Σλ, Πλ(ϕ) := (Πλ
1 (ϕ), . . . ,Π

λ
|I|(ϕ)) where Πλ

i (ϕ) := (FM ◦ Γλ
i )(ϕ) ∀i ∈ I

Remark 3.2. The set Σλ is bounded and closed w.r.t. the topology induced by the norm ‖ · ‖δ1, defined in (3.6).

3.1 Existence of a fixed point of Πλ on Σλ

The following lemma states that Πλ maps Σλ to itself.

Lemma 3.1. For any ϕ ∈ Σλ, it holds Πλ(ϕ) ∈ Σλ.

Proof. For any i ∈ I, let ϕi be a function in Σλ and ψi be such that: ψi := Γλ
i (ϕ). From equation (3.10), it holds that

for any i ∈ I, (t, s) 7→ ψi(t, s) is measurable on [0, T ]× [0, 1]. We need to show that for all i ∈ I and a.e. t ∈ [0, T ],
the function s 7→ ψi(t, s) is in C1([0, 1]) and that ‖∂sψi(t, s)‖∞ is bounded by 2Kek(T−t). From Assumption 4, it
is clear that ψi(T, ·) ∈ C1([0, 1]) for any i ∈ I and that ‖∂sψi(T, ·)‖∞ ≤ 2K. For any (i, s, t) ∈ I × [0, 1] × (0, T )
and a.e τ ∈ [0, T ], using the chain rule it holds:

∂sH
λ(i, j, t, τ, s, ϕ) = ∂sS

t,s
i (τ)∂s(ϕj − ϕi)(τ, S

t,s
i (τ))H ′

(

(ϕj − ϕi)(τ, S
t,s
i (τ)) +

∫ T

τ

(λj − λi)(dr)

)

. (3.12)

Since H ′ is bounded by Kδ on [−2M̄ δ, 2M̄ δ], it comes:

|∂sHλ(i, j, t, τ, s, ϕ)| ≤ 4‖∂sS‖∞KKδek(T−τ).

Therefore for any t ∈ [0, T ], the function: s 7→
∫ T

t

−
∑

j∈I,j 6=i

Hλ(i, j, t, τ, s, ϕ)dτ is differentiable on [0, 1] and ψi

satisfies:

∂sψi(t, s) =

∫ T

t

−
∑

j∈I,j 6=i

∂sS
t,s
i (τ)∂s(ϕj − ϕi)(τ, S

t,s
i (τ))H ′

(

(ϕj − ϕi)(τ, S
t,s
i (τ)) +

∫ T

τ

(λj − λi)(dr)

)

dτ

+

∫ T

τ

∂sS
t,s
i (τ)∂sci(τ, S

t,s
i (τ))dτ + ∂sS

t,s
i (T )g′i(S

t,s
i (T )).

(3.13)
From equality (3.12), it holds that for any s ∈ [0, 1] and any t ∈ [0, T ], the function τ 7→ ∂sH

λ(i, j, t, τ, s, ϕ) is
measurable on [0, T ]. In addition for a.e. τ, t ∈ [0, T ] the function s 7→ ∂sH

λ(i, j, t, τ, s, ϕ) is continuous on [0, 1].
Therefore it comes for a.e. t ∈ [0, T ] that ψi(t, ·) ∈ C1([0, 1]). We need now to show that for a.e. t ∈ [0, T ], it
holds ‖∂sψ(t, ·)‖∞ ≤ 2Kek(T−t). From Lemma A.2 and the Lipschitz continuity of bi, it holds for any t ∈ [0, T ]:
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‖∂sSt,s
i (τ)‖∞ ≤ eK(τ−t). Using the Lipschitz continuity of ci and gi, the bound ofH ′ and the bound on ‖∂sϕ(t, ·)‖∞,

from equation (3.13) it holds for a.e. t ∈ [0, T ] and any s ∈ [0, 1]:

‖∂sψi(t, ·)‖∞ ≤
∫ T

t

(

4(|I| − 1)KKδeK(τ−t)ek
δ(T−τ) +KeK(τ−t)

)

dτ +KeK(T−t) (3.14)

Using that kδ = K + lδ and that

∫ T

t

eK(τ−t)dτ ≤ K

lδ
ek

δ(T−t), inequality(3.14) becomes:

‖∂sψi(t, ·)‖∞ ≤ K

(

4(|I| − 1)Kδ + 1

lδ
+ 1

)

ek
δ(T−t).

Using the definition of l at equation (3.5), it comes for a.e. t ∈ [0, T ]: ‖∂sψi(t, ·)‖∞ ≤ 2Kek
δ(T−t). From the

definition of Fδ in equation (3.11), it is clear that Fδ(ψi) is bounded by M δ. Finally the composition by Fδ

preserves the continuity and differentiability. Since |F ′
δ| ≤ 1 and ‖∂sψi(t, ·)‖∞ ≤ 2Kek

δ(T−t) a.e. on [0, T ], it comes

that ‖∂sFδ(ψi(t, ·))‖∞ ≤ 2Kek
δ(T−t) a.e. on [0, T ].

Lemma 3.2. The map Πλ is a contraction on Σλ.

Proof. Let ϕ, θ ∈ Σλ, using that ϕ and θ are bounded by M δ, it holds for any (t, s, i) ∈ (0, T )× [0, 1]× I:

|Γλ
i (ϕ)(t, s) − Γλ

i (θ)(t, s)| ≤
∑

j∈I,j 6=i

∫ T

t

|Hλ(i, j, t, τ, s, θ)−Hλ(i, j, t, τ, s, ϕ)| dτ

≤ |I|Kδ
∑

j∈I

∫ T

t

|θj(τ, St,s
i (τ)) − ϕj(τ, S

t,s
i (τ))| dτ.

Then it holds:

∫ T

0

∑

i∈I

‖Γλ
i (ϕ)(t, ·) − Γλ

i (θ)(t, ·)‖∞e−κδ(T−t)dt ≤ |I|2Kδ

∫ T

0

∫ T

t

∑

i∈I

‖θi(τ, ·)− ϕi(τ, ·)‖∞e−κδ(T−t) dτdt

≤ |I|2Kδ

κδ

∫ T

0

∑

i∈I

‖θi(τ, ·)− ϕi(τ, ·)‖∞e−κδ(T−τ) dτ.

(3.15)
Now consider: for any (s, i) ∈ [0, 1]× I and a.e. (t, τ) ∈ (0, T )× (0, T ):

|∂s(Γλ
i (ϕ)(t, s) − Γλ

i (θ)(t, s))| ≤
∑

j∈I,j 6=i

∫ T

t

|∂sHλ(i, j, t, τ, s, θ)− ∂sH
λ(i, j, t, τ, s, ϕ)| dτ (3.16)

Using (3.12) and that H ′ is bounded by Kδ on [−2M̄ δ, 2M̄ δ], it comes:

|∂sHλ(i, j, t, τ, s, θ)− ∂sH
λ(i, j, t, τ, s, ϕ)| ≤ ‖∂sS‖∞Kδ‖∂s(ϕi − ϕj − θi + θj)(τ, ·)‖∞ (3.17)

From inequalities (3.16) and (3.17), it holds:

|∂s(Γλ
i (ϕ)(t, s)− Γλ

i (θ)(t, s))| ≤ |I|
∑

j∈I

∫ T

t

‖∂sS‖∞Kδ‖∂s(ϕj − θj)(τ, ·)‖∞ dτ. (3.18)

Integrating over [0, T ] inequality (3.18), one has:

∫ T

0

∑

i∈I

‖∂s(Γλ
i (ϕ)− Γλ

i (θ))(t, ·)‖∞e−κδ(T−t)dt

≤ |I|2‖∂sS‖∞Kδ

∫ T

0

∫ T

t

∑

i∈I

‖∂s(ϕi − θi)(τ, ·)‖∞e−κδ(T−t)dτdt

≤ |I|2
κδ

‖∂sS‖∞Kδ

∫ T

0

∑

i∈I

‖∂s(ϕi − θi)(τ, ·)‖∞e−κδ(T−τ)dτ

(3.19)
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From equations (3.15) and (3.19) and the definition of the norm ‖ · ‖δ1 in (3.6), we deduce:

‖Γλ
i (ϕ)− Γλ

i (θ)‖δ1 ≤ |I|2Kδ(‖∂sS‖∞ + 1)

κδ
‖ϕ− θ‖δ1

Using the definition of κ at (3.7), it follows that Γ is a contraction. The function FM being also non expensive, the
conclusion follows.

Lemma 3.3. The function Πλ admits a fixed point νλ ∈ Σλ.

Proof. This is a direct consequence of Lemma 3.2.

For any λ ∈ M+([0, T ]×I) satisfying inequality (3.3), the subset Eλ of (0, T ) denotes the set of points where for

any i, the function λ 7→
∫ T

t

λi(dτ) is differentiable. One has [0, T ] \ Eλ is negligible w.r.t. the Lebesgue measure.

The next lemma provides usefull regularity properties of the fixed point νλ.

Lemma 3.4. For any λ ∈ M+([0, T ] × I) the associated fixed point νλ of Πλ is Lipschitz continuous w.r.t. the
time variable, differentiable at any (t, s, i) ∈ Eλ × [0, 1]× I, and for any (t, i) ∈ Eλ × I, s 7→ ∂sνi(t, s) is continuous
on [0, 1]. In addition, if λ ∈ C0([0, T ]× I,R+) then it holds νλ ∈ C1((0, T )× [0, 1]× I).

Proof. From the definition of Γλ in equation (3.10), the continuity of g and of the flow S, it holds that for any
(s, i) ∈ [0, 1] × I, the function Γλ

i (ν
λ)(·, s) is continuous on [0, T ]. For any (s, i) ∈ [0, 1] × I, the function t 7→

gi(S
t,s
i (T )) being Lipschitz on [0, T ] and the function τ 7→

∑

j∈I,j 6=i

−Hλ(i, j, t, τ, s, νλ) + ci(τ, S
t,s
i (τ)) bounded by

sup
x∈[−2M̄δ,2M̄δ ]

|H(x)|+ ‖ci‖∞ on [0, T ], the function Γλ
i (ν

λ)(·, s) is Lipschitz continuous on [0, T ]. Since Fδ is a non

expensive map, by composition the function νλi (·, s) is Lipschitz continuous for any (i, s) ∈ I × [0, 1] on [0, T ]. For
any (i, s, t) ∈ I × [0, 1]× (0, T ) and τ ∈ Eλ, using the chain rule we have:

∂tH
λ(i, j, t, τ, s, νλ) = ∂t(S

t,s
i (τ))∂s(ν

λ
j − νλi )(τ, S

t,s
i (τ))H ′

(

(νλj − νλi )(τ, S
t,s
i (τ)) +

∫ T

τ

(λj − λi)(dr)

)

. (3.20)

Thanks to the Lemma A.1 in Appendix, we have the bound: |∂tSt,s
i (τ)| ≤ ‖bi‖∞‖∂sS‖∞. Thus, one deduces that:

|∂tHλ(i, j, t, τ, s, νλ)| ≤ 4‖bi‖∞‖∂sS‖∞KKδek(T−t). Therefore for any s ∈ [0, 1], the function

t 7→
∫ T

t

−
∑

j∈I,j 6=i

Hλ(i, j, t, τ, s, νλ)dτ

is differentiable onEλ. It has been shown in the proof of Lemma 3.1, that |∂sHλ(i, j, t, τ, s, ϕ)| ≤ 4‖∂sS‖∞KKδek
δ(T−τ),

therefore for any t ∈ Eλ, the function s 7→
∫ T

t
−∑j∈I,j 6=iH

λ(i, j, t, τ, s, νλ)dτ is differentiable on [0, 1]. From As-

sumption 4, it holds for any i ∈ I that ci ∈ C1((0, T ) × [0, 1]) and gi ∈ C1([0, 1]). Then, for any s ∈ [0, 1] the
function t 7→ Γi(ν

λ)(t, s) is differentiable on Eλ. Since the function Fδ belongs to C1, νλ is also differentiable on
Eλ × [0, 1]× I. Now suppose λ ∈ C0([0, T ]× I,R+). It comes Eλ = [0, T ] and the conclusion follows.

Lemma 3.5. Let λ ∈ M+([0, T ] × I) satisfies inequality (3.3). Let t0 ∈ [0, T ) be such that for any t ∈ [t0, T ] it
holds for any i ∈ I ‖νλi (t, ·)‖∞ ≤M δ − 1. Then for any (t, s, i) ∈ (Eλ ∩ [t0, T ])× [0, 1]× I, we have:

− ∂tν
λ
i (t, s)− bi(s)∂sν

λ
i (t, s)− ci(t, s) +

∑

j∈I,j 6=i

Hλ(i, j, t, t, s, ϕ) = 0 (3.21)

Proof. From Lemma 3.4, for any i ∈ I the function νλi is differentiable on Eλ × [0, 1]. Since νλ satisfies (3.9) on
(Eλ ∩ (t0, T ))× [0, 1]× I, we have:

∂tν
λ
i (t, s) = −

∫ T

t

∂tS
t,s
i (τ)

∑

j∈I,j 6=i

∂s(ν
λ
j − νλi )(τ, S

t,s
i (τ))H ′

(

(νλj − νλi )(τ, S
t,s
i (τ)) +

∫ T

τ

(λj − λi)(dr)

)

dτ

+

∫ T

t

∂tS
t,s
i (τ)∂sci(τ, S

t,s
i (τ))dτ +

∑

j∈I,j 6=i

Hλ(i, j, t, t, s, νλ)− ci(t, s) + ∂t(S
t,s
i (T ))g′i(S

t,s
i (T )),

(3.22)

12



and

bi(s)∂sν
λ
i (t, s) =

∫ T

t

−bi(s)∂sSt,s
i (τ)

∑

j∈I,j 6=i

∂s(ν
λ
j − νλi )(τ, S

t,s
i (τ))H ′

(

(νλj − νλi )(τ, S
t,s
i (τ)) +

∫ T

τ

(λj − λi)(dr)

)

dτ

+

∫ T

t

bi(s)∂sS
t,s
i (τ)∂sci(τ, S

t,s
i (τ))dτ + bi(s)∂s(S

t,s
i (T ))g′i(S

t,s
i (T )).

(3.23)
Adding (3.22) and (3.23) and using Lemma A.1, it holds on (Eλ ∩ [t0, T ])× [0, 1]:

∂tν
λ
i (t, s) + bi(s)∂sν

λ
i (t, s) =

∑

j∈I,j 6=i

Hλ(i, j, t, t, s, νλ)− ci(t, s). (3.24)

For any λ ∈ M+([0, T ]× I), let φλ be defined on I × [0, T ]× [0, 1] by:

φλi (t, s) := νλi (t, s) +

∫ T

t

λi(dτ), (3.25)

where νλ is the fixed point of Πλ, whose existence is established in Lemma 3.3. We want to prove that φλ is a
solution of (3.8). To obtain this result, it suffices to show that φλ is bounded independently of M̄ δ − 1/2.

3.2 Comparison principle

Definition 3.2. Let λ ∈ M+([0, T ] × I) and t0 ∈ [0, T ). A function u ∈ L1((0, T ) × I, C1([0, 1])) (resp. ū ∈
L1((0, T ) × I, C1([0, 1]))), is a weak subsolution (resp. a weak supersolution) of (3.1) if the function ν (resp. ν̄),
defined on (t0, T ]× [0, 1]× I by:

νi(t, s) = ui(t, s)−
∫ T

t

λi(dτ) (3.26)

(and resp. ν̄i(t, s) = ūi(t, s) −
∫ T

t

λi(dτ)) is Lipschitz continuous in time, differentiable on Eλ × [0, 1] × I, and

satisfies for any (t, s, i) ∈ (Eλ ∩ (t0, T ))× [0, 1]× I:

−∂tνi(t, s)− bi(s)∂sνi(t, s) ≤ −
∑

j∈I,j 6=i

Hλ(i, j, t, t, s, ν) + ci(t, s)

and for any (s, i) ∈ (0, 1)× I:
νi(T, s) ≤ gi(s),

and resp. ν̄ is Lipschitz continuous in time, differentiable on Eλ × (0, 1) × I, and satisfies for any (t, s, i) ∈
(Eλ ∩ (t0, T ))× [0, 1]× I:

−∂tν̄i(t, s)− bi(s)∂sν̄i(t, s) ≥ −
∑

j∈I,j 6=i

Hλ(i, j, t, t, s, ν̄) + ci(t, s)

and for any (s, i) ∈ (0, 1)× I:
ν̄i(T, s) ≥ gi(s).

Lemma 3.6 (Comparison principle). Let u and ū be respectively weak subsolution and supersolution of (3.1) on
(t0, T )× [0, 1]× I. Then one has ui ≤ ūi on (t0, T )× [0, 1]× I.

Proof. Let γ be defined on (t0, T ] by: γ(t) := sup
j∈I,s∈[0,1]

(uj(t, s) − ūj(t, s)). From (3.26), it comes: γ(t) :=

sup
j∈I,s∈[0,1]

(νj(t, s) − ν̄j(t, s)). For any t ∈ (t0, T ), ν(t, ·) and ν̄(t, ·) are continuous on [0, 1] thus, γ is well de-

fined. Since ν and ν̄ are Lipschitz continuous in time, γ is also Lipschitz continuous and thus, differentiable a.e.
on [0, T ]. Using the envelop theorems [36, Theorem 1], γ is absolutely continuous on (t0, T ] and for a.e. t ∈ (t0, T ]
there exists maximum point (i(t), x(t)) ∈ I × [0, 1] such that:

γ′(t) = ∂t(νi(t)(t, x(t)) − ν̄i(t)(t, x(t))).
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Since ν̄i(t) and νi(t) are respectively weak supersolution and subsolution:

−γ′(t)− bi(t)(x(t))∂s(νi(t)(t, x(t)) − ν̄i(t)(t, x(t))) ≤
∑

j 6=i(t)

H((ūj − ūi(t))(t, x(t))) −H((uj − ui(t))(t, x(t))).

From Assumption 1 and definition of i(t) and x(t), if x(t) ∈ {0, 1} then bi(t)(x(t)) = 0, while if x(t) ∈ (0, 1), then
∂s((ui(t)(t, x(t)) − ūi(t, x(t))) = 0. It comes: bi(t)(x(t))∂s((ui(t)(t, x(t)) − ūi(t, x(t))) = 0. Thus:

−γ′(t) ≤
∑

j 6=i(t)

H((ūj − ūi(t))(t, x(t))) −H((uj − ui(t))(t, x(t))).

The function H being convex and differentiable, it holds:

−γ′(t) ≤
∑

j 6=i(t)

H ′((ūj − ūi(t))(t, x(t)))(ūj − ūi(t) − (uj − ui(t)))(t, x(t))

Using that H is non increasing and that at time t it holds for any j 6= i(t): (ui(t) − ūi(t))(t, x(t)) ≥ (uj − ūj)(t, x(t))
it comes that γ is increasing over (t0, T ]. Since γ(T ) ≤ 0, the conclusion follows.

Lemma 3.7. Let λ ∈ M+([0, T ]× I) verifying (3.3) and u be a function satisfying (3.8) a.e. on (t0, T )× [0, 1]× I.
Then for any i ∈ I, ui is bounded a.e. on (t0, T )× [0, 1] by P δ, where

P δ := max
i∈I

‖gi‖∞ + T (max
i∈I

‖ci‖∞ + |I|H(δ)) + δ = M̄ δ − 2 (3.27)

Proof. From Lemma 3.5, it holds that u is both a weak sub-solution and a super solution of (3.1) on (t0, T )× [0, 1].
Let u be such that for any (t, s, i) ∈ (t0, T ]× [0, 1]× I:

ui(t, s) := −max
i∈I

‖gi‖∞ − (T − t)(max
i∈I

‖ci‖∞ + |I|H(δ)).

The function u is a weak sub-solution of (3.8). Let ū be such that for any (t, s, i) ∈ (t0, T ]× [0, 1]× I:

ūi(t, s) := max
i∈I

‖gi‖∞ + (T − t)max
i∈I

‖ci‖∞ +

∫ T

t

λi(dτ).

The function ū is a weak super-solution of (3.8). Thus from comparison principle in Lemma 3.6, it holds that for
any (t, s, i) ∈ (t0, T )× [0, 1]× I:

−max
i∈I

‖gi‖∞ − (T − t)(max
i∈I

‖ci‖∞ + |I|H(δ)) ≤ ui(t, s) ≤ max
i∈I

‖gi‖∞ + (T − t)max
i∈I

‖ci‖∞ +

∫ T

t

λi(dτ)

Using the definition of P δ in (3.27), the conclusion follows.

Lemma 3.8. For any λ ∈ M+([0, T ]× I) satisfying inequality (3.3), the function φλ defined in (3.25) is bounded
independently of M̄ δ − 1 and is a solution of (3.8) a.e. on [0, T ]× [0, 1]× I.

Proof. To show that φλ is a solution a.e. on [0, T ] × [0, 1] × I of (3.8), one needs to prove that νλ is bounded
independently of M δ − 1. To do so, we only need to show that φλ is bounded independently of M̄ δ − 1. Let
t0 ∈ [0, T ) be the minimum time such that φλ is a solution (3.8) a.e. on (t0, T ]. The time t0 is less than T . Indeed,
for any i ∈ I it holds ‖νλi (T, ·)‖∞ = ‖gi‖∞ < M δ − 1 and thus ‖φλi (T, ·)‖∞ < M̄ δ − 1. From the continuity of c
and H , the boundedness of φλ in Lemma 3.7 and the definition of M̄ δ in (3.4), there exists ε > 0 such that for any
s ∈ [0, 1] and i ∈ I:

ε

(

‖ci‖∞ + |I| sup
x∈[−2M̄δ,2M̄δ ]

|H(x)|
)

+

∫ T

T−ε

λi(dτ) + ‖gi‖∞ < M̄ δ − 1.

Therefore it holds t0 ≤ T − ε and for all t ∈ (t0, T ] and any i ∈ I it holds ‖νλi (t, ·)‖∞ ≤ M δ − 1. From Lemma
3.7, for any i the function φλi is bounded by P δ, defined in 3.27, a.e. on (t0, T ]× [0, 1]× I. We deduce that a.e. on
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(t0, T ]× [0, 1]× I, |νλi (t, s)| ≤M δ − 2. Applying the same argument as previously, there exists ε′ > 0 such that for
a.e. (t′s, i) ∈ (t0 − ε′, t0]× [0, 1]× I:

|νλi (t′, s)| ≤ ‖νλi (t0, ·)‖∞ + ε′

(

‖ci‖∞ + |I| sup
x∈[−2M̄δ,2M̄δ ]

|H(x)|
)

< M δ − 1,

and thus for a.e. (t′s, i) ∈ (t0 − ε′, t0] × [0, 1]× I |φλi (t, s)| ≤ M̄ δ − 1. Therefore φλ is a solution of (3.8) a.e. on
(t0 − ε′, T ] and the contradiction holds. Therefore φλ is a solution of (3.8) a.e. on [0, T ]× [0, 1]× I.

Lemma 3.9. For any λ ∈ M+([0, T ]×I) satisfying inequality (3.3), the function φλ defined in (3.25), is the unique
solution of (3.8).

Proof. From Lemma 3.8 it holds that φλ is a solution of (3.8). Uniqueness is a direct consequence of the comparison
principle in Lemma 3.6.

The following Lemma gives an important continuity property of the mapping λ 7→ νλ.

Lemma 3.10. Let λ ∈ M+([0, T ] × I) satisfying inequality (3.3) and {λn}n be a sequence {λn}n, where for any
n ∈ N λn ∈ C0([0, T ]× I,R+), weakly converging to λ. Then we have for any i ∈ I and for a.e. t ∈ [0, T ]:

lim
n→∞

‖φni (t, ·)− φλi (t, ·)‖∞ = 0 (3.28)

where φλ (resp. φn) is the solution to (3.8) associated to λ (resp. λn).

Proof. There exists n0 ∈ N such that for any n ≥ n0, λ
n satisfies inequality (3.3). Using that φλ and φn are fixed

points of Πλ and Πλn

and that Fδ is a contraction, it comes for all (s, i) ∈ [0, 1]× I and a.e. t ∈ (0, T ):

|φλi (t, s)− φni (t, s)|
= |Πλ

i (φ
λ)(t, s)−Πλn

i (φn)(t, s)|

≤

∣

∣

∣

∣

∣

∣

∫ T

t

∑

j∈I,j 6=i

H((φλj − φλi )(τ, S
t,s
i (τ))) −H((φnj − φni )(τ, S

t,s
i (τ)))dτ +

∫ T

t

(λn − λ)(dτ)

∣

∣

∣

∣

∣

∣

.

(3.29)

Recalling that functions φλ and φn are bounded a.e. on (0, T )× [0, 1]×I by M̄ δ, and that H is Lipschitz continuous
on [−2M δ, 2M δ] with Lipschitz constant K, from inequality (3.29) it comes:

|φλi (t, s)− φni (t, s)| ≤
∫ T

t

Kδ
∑

j∈I,j 6=i

|(φλi − φni )(τ, S
t,s
i (τ))| + |(φλj − φnj )(τ, S

t,s
i (τ))|dτ +

∣

∣

∣

∣

∣

∫ T

t

(λni − λi)(dτ)

∣

∣

∣

∣

∣

Taking the supremum over I × [0, 1] and applying Gronwall Lemma to t 7→ sup
i∈I,s∈[0,1]

|φλi (t, s) − φni (t, s)| on [0, T ],

it comes for a.e. t ∈ [0, T ]:

sup
i,s

|φλi (t, s)− φni (t, s)| ≤ 2Kδ|I|
∫ T

t

sup
i,s

|φλi (t, s)− φni (t, s)|dτ + sup
i

∣

∣

∣

∣

∣

∫ T

t

(λni − λi)(dτ)

∣

∣

∣

∣

∣

≤ sup
i

∣

∣

∣

∣

∣

∫ T

t

(λni − λi)(dτ)

∣

∣

∣

∣

∣

+ 2Kδ|I|e2TKδ|I|

∫ T

0

sup
i

∣

∣

∣

∣

∣

∫ T

t

(λni − λi)(dτ)

∣

∣

∣

∣

∣

dt

(3.30)

Since for any t ∈ Eλ we have lim
n→∞

∣

∣

∣

∣

∣

∫ T

t

(λni − λi)(dτ)

∣

∣

∣

∣

∣

= 0, the result follows.

3.3 Link between weak solution (3.2) and fixed point solution (3.8)

We start to show the connection between the solutions of (3.2) and (3.8) when λ ∈ C0([0, T ] × I,R+). Let
λ ∈ C0([0, T ]× I) satisfy (3.3).

Lemma 3.11. For any λ ∈ C0([0, T ] × I,R+) satisfying inequality 3.3, the solution φλ of (3.8) is a classical
solution of (3.1) and a weak solution in the sense of Definition (3.1).
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Proof. From Lemma 3.4, the function νλ is in C1 and from (3.25) it holds that φλ is also in C1. Applying Lemma
3.5 with t0 = 0 it holds on (0, T )× (0, 1):

∂tφ
λ
i (t, s) + bi(s)∂sφ

λ
i (t, s) =

∑

j∈I,j 6=i

H((φλj − φλi )(t, s))− ci(t, s)− λi(t). (3.31)

For any ψ ∈ C∞(0, T )× (0, 1)× I), integrating by part over (0, T )× (0, 1) and using that φλi (T, ·) = gi on [0, 1], it
comes for any i ∈ I:

∫ 1

0

φλ(0, s)ψi(0, s)ds−
∫ 1

0

gi(s)ψi(T, s)ds = −
∫ T

0

∫ 1

0

(∂tψi(t, s))φ
λ
i (t, s)dsdt−

∫ T

0

∫ 1

0

ψi(t, s)∂tφ
λ
i (dt, s)ds, (3.32)

Using (3.31), equality (3.32) becomes:

∫ 1

0

φλ(0, s)ψi(0, s)ds−
∫ 1

0

gi(s)ψi(T, s)ds = −
∫ T

0

∫ 1

0

(∂tψi(t, s))φ
λ
i (t, s) + ψi(t, s)bi(s)∂sφ

λ
i (t, s)dsdt

+

∫ T

0

∫ 1

0

ψi(t, s)





∑

j∈I,j 6=i

−H((φλj − φλi )(t, s)) + ci(t, s) + λi(t)



 dsdt

Integrating by part ψibi∂sφ
λ
i knowing that bi(0) = bi(1) = 0 and the result follows.

The previous Lemma is then extended for any λ ∈ M+([0, T ]× I), satisfying t 7→ λ([t, T )) is continuous at 0.
This continuity assumption is motivated by the following remark.

Remark 3.3. Let λ ∈ M+([0, T ]× I) and {λn}n, a sequence in C∞([0, T ]× I,R+) converging weakly to λ. If for
any i ∈ I the function t 7→ λi([t, T )) is continuous at 0, then for any ψ ∈ C0(0, 1), we have for any i ∈ I:

∫ 1

0

φni (0, s)ψ(s)ds −−−−→
n→∞

∫ 1

0

φλ(0, s)ψi(s)ds, (3.33)

where φn is a solution of (3.8) associated to λn. Indeed, the continuity of t 7→ λi([t, T )) at 0 implies

lim
n→∞

∣

∣

∣

∣

∣

∫ T

0

(λni − λi)(dτ)

∣

∣

∣

∣

∣

= 0. Applying the same arguments as in the proof of Lemma 3.10, the result is then

deduced from inequality (3.30) at time t = 0.

Lemma 3.12. For any λ ∈ M+([0, T ]× I), such that t 7→ λ([t, T )) is continuous at 0, the solution φλ of (3.8) is
a weak solution of (3.1) in the sense of Definition 3.1.

Proof. Let λ̃ ∈ M+(R × I) be an extension of λ to R× I, defined for any i ∈ I by λ̃i(B) = λi(B ∩ [0, T ]) for any
B ∈ B(R). Let ξ be a standard convolution kernel on R+ such that ξ > 0. Let ξn(t) := ξ(t/εn)/εn with εn −−−−→

n→∞
0.

For any n ∈ N, let the function λn be defined by:

λn := ξn ∗ λ̃, (3.34)

where ∗ stands for the convolution product. Then, λn ∈ C∞([0, T ] × I,R+) and the sequence {λn}n weakly
converges to λ in M+([0, T ] × I). From Lemmas 3.8 and 3.4, we know that for any λn, there exists a function
φn ∈ C1([0, T ] × [0, 1] × I) such that φn is a solution of (3.8). From Lemma 3.10 it comes that the sequence φn

converges to φλ w.r.t. the norm ‖ · ‖1. Since for any i ∈ I and n ∈ N λni ∈ C∞((0, T ),R+), Lemma 3.11 gives that
for any ψi ∈ C∞((0, T )× (0, 1)) we have:

∫ 1

0

φni (0, s)ψi(0, s)ds−
∫ 1

0

gi(s)ψi(T, s)ds+

∫ T

0

∫ 1

0

(∂tψi(t, s) + ∂s(ψi(t, s)bi(s)))φ
n
i (t, s)dsdt

+

∫ T

0

∫ 1

0





∑

j∈I,j 6=i

H((φnj − φni )(t, s))− ci(t, s)



ψi(t, s)dtds −
∫ T

0

∫ 1

0

ψi(t, s)λ
n
i (dt)ds

= 0,

(3.35)

Taking a subsequence of {φnk}k converging a.e. on [0, T ]× [0, 1]× I to φλ and using Remark 3.3, letting k tend to
infinity in equality (3.35) gives the result.
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Finally, the next lemma states the converse of the previous lemma.

Lemma 3.13. For any (λ, ϕ) ∈ M+([0, T ]× I)× BV ((0, T )× (0, 1)× I), if ϕ is a weak solution of (3.1), in the
sense of Definition 3.1, associated to λ, then ϕ satisfies a.e. on [0, T ]× [0, 1]× I equality (3.8).

Proof. Let θ ∈ C∞((0, T )× (0, 1)× I), Θ ∈ C∞((0, 1)× I) and ψ ∈ C1((0, T )× (0, 1)× I,R) such that it holds on
(0, T )× (0, 1)× I:

∂tψi(t, s) + ∂s(ψi(t, s)bi(s)) = θi(t, s) on (0, T )× (0, 1)× I
ψi(0, ·) = Θi(·) on(0, 1)× I.

(3.36)

One has for any (i, t, s) ∈ [0, T ]× [0, 1]× I]:

ψi(t, s) =

∫ t

0

θi(τ, S
t,s
i (τ)) exp

(

−
∫ t

τ

b′i(S
t,s
i (r))dr

)

dτ +Θi(S
t,s
i (0)) exp

(

−
∫ t

0

b′i(S
t,s
i (τ))dτ

)

For any i ∈ I, let νi and πi be defined for any (t, s) ∈ [0, T ]× [0, 1] by:

νi(t, s) :=

∫ t

0

θi(τ, S
t,s
i (τ)) exp

(

−
∫ t

τ

b′i(S
t,s
i (r))dr

)

dτ and πi(t, s) := Θi(S
t,s
i (0)) exp

(

−
∫ t

0

b′i(S
t,s
i (τ))dτ

)

.

One can observe: ψi = νi + πi. For any function f ∈ L1((0, T ) × (0, 1)), by switching the order of integration,
applying the change of variable x = St,s

i (τ) and Lemma A.2, it holds:

∫ T

0

∫ 1

0

f(t, s)νi(t, s)dtds =

∫ T

0

∫ 1

0

∫ t

0

f(t, s)θi(τ, S
t,s
i (τ)) exp

(

−
∫ t

τ

b′i(S
t,s
i (r))dr

)

dτdsdt

=

∫ T

0

∫ 1

0

θi(τ, x)

∫ T

τ

f(t, Sτ,x
i (t)) exp

(

−
∫ t

τ

b′i(S
τ,x
i (r))dr

)

∂xS
t,x
i (τ)dtdxdτ,

=

∫ T

0

∫ 1

0

θi(τ, x)

∫ T

τ

f(t, Sτ,x
i (t))dtdxdτ.

(3.37)

Applying same calculus, for any i ∈ I one has:

∫ 1

0

gi(s)νi(T, s)ds =

∫ T

0

∫ 1

0

gi(S
τ,x
i (T ))θi(τ, x)dsdτ, (3.38)

∫ T

0

∫ 1

0

f(t, s)πi(t, s)dtds =

∫ 1

0

Θi(x)

∫ T

0

f(t, S0,x
i (t))dtdx, (3.39)

and:
∫ 1

0

gi(s)πi(T, s)ds =

∫ 1

0

Θi(x)gi(S
0,x
i (T ))dx (3.40)

Let λi ∈ M+([0, T ]), applying same computation gives:

∫ T

0

∫ 1

0

ψi(t, s)dsλi(dt) =

∫ T

0

∫ 1

0

θi(τ, x)

(

∫ T

τ

λi(dt)

)

dx+

∫ 1

0

Θi(x)

(

∫ T

0

λi(dt)

)

dx (3.41)

Taking f(t, s) =
∑

j∈I,j 6=i

H((ϕj − ϕi)(t, s)) + ci(t, s), using (3.37), (3.39), (3.40) and (3.41) and (3.36) satisfied

by ψi, for any i ∈ I equation (3.2) becomes:

∫ 1

0

Θi(s)



ϕi(0, s) +

∫ T

0

∑

j∈I,j 6=i

H((ϕj − ϕi)(τ, S
0,s
i (τ))) − ci(τ, S

0,s
i (τ))dt −

∫ T

0

λi(dτ) − gi(S
0,s
i (T ))



 ds

+

∫ T

0

∫ 1

0

θi(t, s)



ϕi(t, s) +

∫ T

t

∑

j∈I,j 6=i

H((ϕj − ϕi)(τ, S
t,s
i (τ))) − ci(τ, S

t,s
i (τ))dτ −

∫ T

t

λi(dτ) − gi(S
t,s
i (T ))



 dsdt

= 0
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Since θi and Θi are test functions, for a.e. s ∈ [0, 1] one has:

ϕi(0, s) =

∫ T

0

∑

j∈I,j 6=i

−H((ϕj − ϕi)(τ, S
0,s
i (τ))) + ci(τ, S

0,s
i (τ))dt +

∫ T

0

λi(dτ) + gi(S
0,s
i (T )) (3.42)

and a.e. on (0, T )× (0, 1):

ϕi(t, s) =

∫ T

t

∑

j∈I,j 6=i

−H((ϕj − ϕi)(τ, S
t,s
i (τ))) + ci(τ, S

t,s
i (τ))dτ +

∫ T

t

λi(dτ) + gi(S
t,s
i (T )).

From (3.42), and using that ϕi ∈ BV ((0, T )× (0, 1), it holds in the sense of trace: ϕi(T, ·) = gi on (0, 1).

4 Dual problem

In this section, an optimization problem (4.3) is introduced. Using tools from convex analysis [19], we show that
this problem is in duality with (2.4).

We consider the set Ĩ := {(i, j) ∈ I2; i 6= j} and the following spaces:

E0 = C1([0, T ]× [0, 1]× I)× C0([0, T ]× I) and E1 := C0([0, 1]× [0, T ]× I)× C1([0, T ]× [0, 1]× Ĩ)

We consider the following inequality:

−∂tϕ̄i(t, s)− bi(s)∂sϕ̄i(t, s)− ci(t, s)− λ(t) +
∑

j∈I,j 6=i

H((ϕ̄j − ϕ̄i)(t, s)) ≤ 0 on (0, T )× (0, 1)× I,

ϕ̄i(T, ·) ≤ gi on (0, 1)× I.
(4.1)

The set K0 is defined by: K0 := {(ϕ, λ) ∈ E0; ϕ solution of (4.1) associated to λ}. We introduce the function A,
defined on K0 by :

A(ϕ, λ) :=
∑

i∈I

∫ 1

0

−ϕi(0, s)m
0
i (ds) +

∫ T

0

λi(t)Di(t)dt, (4.2)

and the following problem is considered:
inf

(ϕ,λ)∈K0

A(ϕ, λ) (4.3)

Lemma 4.1. inf
(ϕ,λ)∈K0

A(ϕ, λ) is finite.

Proof. We consider (ϕ, λ) ∈ K0 and ϕ̄ a classical solution of the PDE (3.1) associated to λ, where the inequality is
replaced by an equality. From the comparison principle (see Lemma 3.6), it holds ϕ ≤ ϕ̄ on [0, T ]× R × I. Thus,
we have:

A(ϕ̄, λ) ≤ A(ϕ, λ). (4.4)

The set L0 is defined by: L0 := {(ϕ, λ) ∈ E0; (ϕ, λ) solution of (3.1) and λ ≥ 0}. From (4.4), we obtain:

inf
(ϕ,λ)∈L0

A(ϕ, λ) = inf
(ϕ,λ)∈K0

A(ϕ, λ). (4.5)

Let (ϕ̄, λ) ∈ L0. From Lemma 3.13 ϕ̄ satisfies (3.8). Then, taking t = 0, we have for any (i, s) ∈ I × [0, 1]:

ϕi(0, s) ≤
∫ T

0

ci(τ, S
0,s
i (τ)) + λi(τ)dτ + gi(S

0,s
i (T )), where Si is the flow defined at equation (1.9). Setting Q :=

−
∑

i∈I

∫ 1

0

(

gi(S
0,s
i (T ) +

∫ T

0

ci(t, S
0,s
i (t))dt)

)

m0
i (ds), one has:

Q+
∑

i∈I

∫ T

0

λi(t)

(

Di(t)−
∫ 1

0

m0
i (ds)

)

dt ≤ A(ϕ̄, λ) (4.6)

Using that λ ≥ 0, we deduce from Assumption 3 and (4.6):

Q ≤ inf
(ϕ,λ)∈L0

A(ϕ, λ). (4.7)

Combining (4.7) and (4.5), the conclusion follows.
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We consider the linear and bounded function Λ : E0 → E1 defined by: Λ(ϕ, λ) := (∂tϕ+ b∂sϕ+ λ̃,∆ϕ), where
∂tϕ+ b∂sϕ := (∂tϕi+ bi∂sϕi)i∈I , ∆ϕ := (∆ϕi,j)(i,j)∈Ĩ with ∆ϕi,j = ϕj −ϕi and for any (s, i) ∈ [0, 1]× I, λ̃i(·, s) :=
λi(·). The linear function Λ∗ : E∗

1 → E∗
0 is the adjoint operator of Λ. The functional F is defined by:

F(ϕ, λ) :=











∑

i∈I

∫ 1

0

−ϕi(0, s)m
0
i (ds) +

∫ T

0

Di(t)λi(t)dt if ϕi(T, ·) ≤ gi and λi ≥ 0 ∀i ∈ I,

+∞ otherwise.

Using that:

〈(m,E),Λ(ϕ, λ)〉E∗

1
,E1

=
∑

i∈I

∫ 1

0

∫ T

0

(∂tϕi(t, s) + bi(s)∂sϕi(t, s))mi(ds, t) +
∑

j∈I,j 6=i

(ϕj(t, s)− ϕi(t, s))Ei,j(t, ds)dt

+
∑

i∈I

∫ T

0

∫ 1

0

mi(t, ds)λ̃i(t, s)dt,

defining F∗ as the Fenchel conjugate of F , we have:

F∗ (Λ∗(m,E)) :=































∫ 1

0

∑

i∈I

gi(s)mi(T, ds) if (m,E) weak solution of (2.1)

and

∫ 1

0

mi(t, ds) ≤ Di(t) ∀(t, i) ∈ [0, T ]× I,

+∞ otherwise.

For any (x, y) ∈ E1, the functional G is defined by:

G(x, y) :=











0 if − ci(t, s)− xi(t, s) +
∑

j∈I,j 6=i

(yi,j(t, s)
−)2

2
≤ 0 ∀(t, s, i) ∈ (0, T )× (0, 1)× I,

+∞ otherwise.

Then for any (ϕ, λ) ∈ E0 it holds:

G(Λ(ϕ, λ)) :=



















0 if − ci(t, s)− ∂tϕi(t, s)− bi(t, s)∂sϕi(t, s)− λ̃i(t, s) +
∑

j∈I,j 6=i

((∆ϕi,j(t, s))
−)2

2
≤ 0

∀(t, s, i) ∈ (0, T )× (0, 1)× I,

+∞ otherwise.

Observing, from [6], that for any (ρ, w) ∈ R
2:

sup
a,b∈R

{aρ+ bw; a+
(b+)2

2
≤ 0} =















1

2

w2

ρ
if ρ > 0 and w ≥ 0,

0 if ρ = 0 and w = 0,
+∞ otherwise,
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then, applying similar computations as in [15][Lemma 4.3], for any (m,E) ∈ E′
1, we have:

G∗(−(m,E))

= sup
(x,y)∈E1

∑

i∈I

∫ T

0

∫ 1

0

−xi(t, s)mi(t, ds)dt−
∑

j 6=i

yi,j(t, s)Ei,j(t, ds)dt − G(x, y)

= sup
(x,y)∈E1

∑

i∈I

∫ T

0

∫ 1

0

(−xi(t, s)− ci(t, s) + ci(t, s))mi(t, ds)−
∑

j 6=i

yi,j(t, s)Ei,j(t, ds)dt− G(x, y)

=
∑

i∈I

∫ T

0

∫ 1

0

ci(t, s)mi(t, ds)dt+ sup
(x,y)∈E1

∑

i∈I

∫ T

0

∫ 1

0

xi(t, s)mi(t, ds) +
∑

j 6=i

yi,j(t, s)Ei,j(t, ds)dt − G(−x− c,−y)

=























∫ T

0

∫ 1

0

∑

i∈I

ci(t, s)mi(t, ds) +
∑

j 6=i

1

2

(

dEi,j

dmi

(t, s)

)2

mi(t, ds)dt if m > 0, E ≥ 0 and E ≪ m,

0 if m = 0 and E = 0,

+∞ otherwise
(4.8)

The following lemma is useful to show the constraint qualification for Problem (4.3).

Lemma 4.2. There exists (ϕ, λ) ∈ E0 such that F(ϕ, λ) <∞ and G is continuous at Λ(ϕ, λ).

Proof. Let ϕ and λ be such that for any i ∈ I, s ∈ [0, 1] and t ∈ [0, T ]:

ϕi(t, s) = −max
i∈I

(‖gi‖∞)− 1,

and
λi(t) := ‖ci‖∞ + 1,

Functions ϕ and λ being constant, it holds that (ϕ, λ) ∈ E0 and F(ϕ, λ) <∞. Also, from the choice of ϕ and λ, it
follows that for any i ∈ I, s ∈ (0, 1) and t ∈ (0, T ):

−ci(t, s)− ∂tϕi(t, s)− bi(t, s)∂sϕi(t, s)− λi(t, s) +
∑

j∈I,j 6=i

((∆ϕi,j(t, s))
−)2

2
< −1

2
.

Thus, G is continuous at Λ(ϕ, λ).

Theorem 4.1. We have:
inf

(ϕ,λ)∈K0

A(ϕ, λ) = − inf
(m,E)∈CE(m0,D)

B̃(E,m)

Proof. On can observe that:
inf

(ϕ,λ)∈K0

A(ϕ, λ) = inf
(ϕ,λ)∈E0

F(ϕ, λ) + G(Λ(ϕ, λ)),

and
inf

(m,E)∈CE(m0,D)
B̃(m,E) = inf

(m,E)∈E′

1

F(Λ∗(m,E)) + G∗(−(m,E)),

Using Lemmas 4.2 and 4.1, the conclusion follows by applying the Fenchel-Rockafellar duality theorem [19].

4.1 Relaxed problem of (4.3)

The problem defined at (4.3) might not have a solution. A relaxed problem is introduced and the existence of a
solution is proved. We define R0 by:

R0 := {(ϕ, λ) |λ ∈ M+([0, T ]× I) and ϕ solution of (3.1), in the sense of definition 3.1, associated to λ}.

The following relaxed problem is considered:
inf

(ϕ,λ)∈R0

Ã(ϕ, λ) (4.9)

where:

Ã(ϕ, λ) :=
∑

i∈I

∫ 1

0

−ϕi(0, s)m
0
i (ds) +

∫ T

0

Di(t)λi(dt) (4.10)
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4.2 Existence of solution of the relaxed problem (4.9)

In order to prove the existence of a solution of (4.9), we need the following estimate on λ.

Lemma 4.3. Let A > 0, there exists a constant KA > 0 such that for any (ϕ, λ) ∈ R0 satisfying Ã(ϕ, λ) ≤ A, we
have:

∑

i∈I

∫ T

0

λi(dt) ≤ KA,

Proof. Let A ∈ R and (ϕ, λ) ∈ R0 be such that Ã(ϕ, λ) ≤ A. Since (ρ, 0) ∈ CE(m0, D) (where ρ is defined in
Section 2) and using Assumptions 1 and 2, it comes ρ ∈ C1((0, T ) × (0, 1) × I). From the definition of a weak
solution 3.2, taking ρ as a test function, we have for any i ∈ I:

∫ 1

0

(

ϕi(0, s)m
0
i (s)− gi(s)ρi(T, s)

)

ds+

∫ T

0

∫ 1

0

∑

j∈I,j 6=i

H((ϕj − ϕi)(t, s))ρi(t, s)dsdt

=

∫ T

0

∫ 1

0

ci(t, s)ρi(t, s)dsdt+

∫ T

0

∫ 1

0

ρi(t, s)dsλi(dt).

Since that for any (t, s) ∈ [0, T ]× [0, 1] and (i, j) ∈ Ĩ it holds H((ϕj − ϕi)(t, s))ρi(t, s) ≥ 0, it comes:

∫ 1

0

ϕi(0, s)m
0
i (ds) ≤

∫ T

0

∫ 1

0

ρi(t, s)dsλi(dt) +Ki,

where: Ki :=

∫ T

0

gi(s)ρi(T, s)ds+

∫ T

0

∫ 1

0

ci(t, s)ρi(t, s)dsdt. From the definition Ã in (4.2), we deduce:

−
∑

i∈I

Ki +

∫ T

0

(

Di(t)−
∫ 1

0

ρi(t, s)ds

)

λi(dt) ≤ Ã(ϕ, λ) ≤ A.

Using Assumption 3, there exists ε0 > 0 such that for any i ∈ I and t ∈ [0, T ], it holds Di(t) −
∫ 1

0

ρi(t, s)ds =

Di(t)−
∫ 1

0

m0
i (s)ds > ε0. Thus, we get λ([0, T ]× I)dt ≤ KA, where KA :=

A+
∑

i∈I Ki

ε0
.

Next lemma is useful to show that for any minimizing sequence {(ϕn, λn)}n of 4.9, {Ã(ϕn, λn)}n converges up
to a subsequence.

Lemma 4.4. Let (φ, λ) ∈ R0 and a sequence {(φn, λn)}n ∈ KN

0 be such that {φn}n converges to φ in L1((0, T )×
(0, 1)× I) and {λn}n weakly converges to λ in M+(I × [0, T ]). Then, up to a subsequence of {(φn, λn)}n it holds
for any i ∈ I :

lim
n→∞

∫ 1

0

∑

i∈I

(φni (0, s)− φi(0, s))m
0
i (s)ds = 0.

Proof. Let ρ be defined as in Section 2. Since (φ, λ) ∈ R0 and that for any n ∈ N (φn, λn) ∈ K0, we obtain for any
i ∈ I:

∫ 1

0

(φi(0, s)− φni (0, s))m
0
i (s)ds+

∫ T

0

∫ 1

0

∑

j∈I,j 6=i

(

H((φj − φi)(t, s))−H((φnj − φni )(t, s))
)

ρi(t, s)dsdt

=

∫ T

0

∫ 1

0

ρi(t, s)ds(λi − λni )(dt).

(4.11)

Since φn →
n→∞

φ in L1, there exists a subsequence of {(φn, λn)}n such that φn →
n→∞

φ a.e. on [0, T ]× [0, 1]×I. From
Lemma 3.8 and the weak convergence of {λn}n, the sequence {φn}n is uniformly bounded. Then, the continuity of
H and the dominated convergence theorem give:

lim
n→∞

∫ T

0

∫ 1

0

∑

j∈I,j 6=i

(

H((φj − φi)(t, s)) −H((φnj − φni )(t, s))
)

ρi(t, s)dsdt = 0. (4.12)
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Since for any i ∈ I it holds ρi ∈ C1((0, T )× (0, 1)). Then from the weak∗ convergence of {λni }n to λi, we get:

lim
n→∞

∫ T

0

∫ 1

0

ρi(t, s)ds(λi − λni )(dt) = 0. (4.13)

Taking the limit in (4.11) and using (4.12) and (4.13), the result follows.

Theorem 4.2. The relaxed problem (4.9) has a solution.

Proof. Taking a minimizing sequence {(ϕn, λn)}n of (4.9), according to Lemmas 4.3, the sequence {λn}n is bounded.
Thus there exists a subsequence {λθn}n of {λn}n weakly converging to λ∗ in M+([0, T ] × I). From Lemma 3.8,
there exists a weak solution ϕ∗ of (3.2) associated to λ∗. From Lemma 3.10, it holds {ϕθn}n converges to ϕ∗ w.r.t.
the norm ‖ · ‖1. Thus, Lemma 4.4 gives up to a subsequence of {ϕθn}n:

lim
n→∞

∑

i∈I

∫ 1

0

(ϕn(0, s)− ϕ∗(0, s))m0
i (s)ds = 0. (4.14)

From Assumption 3, we have for any i ∈ I Di ∈ C0(0, T ), then from the weak∗ convergence of {λθni }n to λ∗i , one
has:

lim
n→∞

∑

i∈I

∣

∣

∣

∣

∣

∫ T

0

Di(t)λ
∗
i (dt)−

∫ T

0

Di(t)λ
n
i (t)dt

∣

∣

∣

∣

∣

= 0. (4.15)

Thus, (ϕ∗, λ∗) minimizes Ã.

The next Theorem shows that Problem (4.3) and the relaxed problem (4.9) have the same value.

Theorem 4.3. It holds:
inf

(ϕ,λ)∈K0

A(ϕ, λ) = inf
(ϕ,λ)∈R0

Ã(ϕ, λ) (4.16)

Proof. From Theorem 4.2 we get that (4.9) has a solution, (ϕ∗, λ∗) ∈ R0. Since K0 ⊂ R0, it is clear that

Ã(ϕ∗, λ∗) ≤ inf
(ϕ,λ)∈K0

A(ϕ, λ). (4.17)

Let ξ be a standard convolution kernel on R+ such that ξ > 0 and the functions {λn}n be defined as in (3.34)
to approximate λ∗. For any n ∈ N, let φn be the solution of (3.8) associated to λn. From Lemma 3.10, we have
that the sequence φn converges to φ∗ w.r.t. the norm ‖ · ‖1. From Lemma 3.4, it holds for any n ∈ N that
ϕn ∈ C1((0, T )× (0, 1)× I) and thus, (ϕn, λn) ∈ K0. Using similar arguments as in the proof of Theorem 4.2, one
obtains: inf

(ϕ,λ)∈K0

A(ϕ, λ) ≤ inf
(ϕ,λ)∈R0

Ã(ϕ, λ).

5 Characterization of minimizers

The purpose of this section is to define and characterize the solutions of Problem (2.4). We show that the following
system gives optimality conditions for (2.4):































































−∂tϕi − bi∂sϕi − ci − λi +
∑

j∈I,j 6=i

H((ϕj − ϕi)) = 0 on (0, T )× (0, 1)× I

∂tmi + ∂s(mibi) +
∑

j 6=i

((ϕi − ϕj)
+mi − (ϕj − ϕi)

+mj) = 0 on (0, T )× (0, 1)× I

mi(0, s) = m0
i (s), ϕi(T, s) = gi(s) on (0, 1)× I

∫ 1

0

mi(t, s)ds−D(t) ≤ 0, λ ≥ 0 on [0, T ]× I

∑

i∈I

∫ T

0

∫ 1

0

mi(t, ds)λi(dt)−
∫ T

0

D(t)λ(dt) = 0

(5.1)

The notion of weak solutions of the system (5.1) is detailed in the following definition.

Definition 5.1. A triplet (ϕ, λ,m) ∈ BV ((0, T )× (0, 1)× I)×M+([0, T ]× I)× Lip([0, T ]× [0, 1]× I) is called a
weak solution of (5.1) if it satisfies the following conditions.
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1. The function ϕ is a weak solution of (3.1), associated to λ in the sense of Definition 3.1 and ϕ(T, ·) = gi in
the sense of trace.

2. m satisfies the continuity equation:

∂tmi + ∂s(mibi) +
∑

j 6=i

((ϕi − ϕj)
+mi − (ϕj − ϕi)

+mj) = 0, mi(0, ·) = m0
i

in the sense of Definition 2.1, with αi,j = (ϕi − ϕj)
+.

3. It holds for any t ∈ [0, T ]:
∫ 1

0

mi(t, s)ds−D(t) ≤ 0 and
∑

i∈I

∫ T

0

∫ 1

0

mi(t, ds)λi(dt) −
∫ T

0

D(t)λ(dt) = 0.

Remark 5.1. From Lemmas 3.4 and 3.8, it holds that for any i ∈ I, ϕi is bounded and for a.e. t ∈ [0, T ] ϕ(t, ·) is
continuous on [0, 1]. Thus, the forward equation in (5.1) makes sense.

Theorem 5.1. 1. If (m,E) ∈ CE(m0, D) is a minimizer of Problem (2.4) and (ϕ, λ) ∈ R0 a minimizer of

Problem (4.9), then (ϕ, λ,m) is a weak solution of (5.1) and
dEi,j

dmi

= (ϕi−ϕj)
+ on {mi > 0} for any i, j ∈ I.

2. Conversely, if (ϕ, λ,m) is a weak solution of (5.1), then (ϕ, λ) ∈ R0 is a minimizer of Problem (4.9) and

there exists E, defined for any i, j ∈ I by:
dEi,j

dmi

:= (ϕi−ϕj)
+, such that (m,E) ∈ CE(m0, D) is a minimizer

of (2.4).

5.1 Proof of Theorem (5.1)

Before to start the proof of Theorem 5.1, we make the following remark.

Remark 5.2. Suppose (ϕ, λ) ∈ R0 and (m,E) ∈ CE(m0, D) with m ∈ L∞([0, T ]× [0, 1]× I) and E ∈ L∞([0, T ]×
[0, 1] × I × I,R+), then one has: −B̃(m,E) ≤ Ã(ϕ, λ). Indeed, let {λn}n be a sequence of smooth functions,
approximating λ, obtained by convolution as in (3.34). For any n ∈ N, ϕn ∈ C1((0, T ) × (0, 1) × I) denotes the
solution of (3.8) associated to λn. From Lemma 4.4, one has : lim

n→∞
A(ϕn, λn) = Ã(ϕ, λ). Observing that for

any n ∈ N we have (ϕn, λn) ∈ R0, and using the proof of Theorem 4.1, we get: A(ϕn, λn) ≥ −B̃(m,E) and thus
Ã(ϕ, λ) ≥ −B̃(m,E).

Proof of Theorem 5.1.(1). From Theorems 4.3 and 4.1, it comes:

inf
(ϕ,λ)∈R0

Ã(ϕ, λ) = − inf
(m,E)∈CE(m0,D)

B̃(E,m),

and thus
∑

i∈I

∫ 1

0

gimi(T )− ϕi(0)m
0
i +

∫ T

0

Diλi +

∫ T

0

∫ 1

0



ci +
∑

j 6=i

L

(

dEi,j

dmi

)



mi = 0. (5.2)

We want to show that Ei,j = mi(ϕi − ϕj)
+. Let {λn}n be a sequence of smooth functions, approximating λ,

obtained by convolution as in (3.34). For any n ∈ N, ϕn ∈ C1((0, T ) × (0, 1) × I) denotes the solution of (3.8)
associated to λn. For any n ∈ N, ϕn is smooth enough to be a test function for the weak formulation of (3.1)
satified by m. Using Lemma 4.4 and that D ∈ C0([0, T ]× I), it holds for any n ∈ N and i ∈ I:

∑

i∈I

∫ 1

0

gimi(T )− ϕi(0)m
0
i +

∫ T

0

λiDi

= lim
n→∞

∑

i∈I

∫ 1

0

gimi(T )− ϕn
i (0)m

0
i +

∫ T

0

Diλ
n
i

= lim
n→∞

∑

i∈I

∫ T

0

∫ 1

0



∂tϕ
n
i + bi∂s(ϕ

n
i ) +

∑

j∈I,j 6=i

(ϕn
j − ϕn

i )
dEi,j

dmi



mi +

∫ T

0

λni Di

= lim
n→∞

∑

i∈I

∫ T

0

∫ 1

0



−ci +
∑

j∈I,j 6=i

H(ϕn
j − ϕn

i ) +
∑

j∈I,j 6=i

(ϕn
j − ϕn

i )
dEi,j

dmi



mi +

∫ T

0

λni

(

Di −
∫ 1

0

mi

)
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Using previous equality and (5.2), it comes:

lim
n→∞

∑

i∈I

∫ T

0

∫ 1

0





∑

j∈I,j 6=i

H(ϕn
j − ϕn

i ) + L

(

dEi,j

dmi

)

+ (ϕn
j − ϕn

i )
dEi,j

dmi



mi +

∫ T

0

λni

(

Di −
∫ 1

0

mi

)

= 0

From Lemma 3.10, for a.e. t ∈ [0, T ], the sequence {ϕ(t, ·)}n converges uniformly to ϕ. From Lemma 3.8 we
have that ϕ is bounded, consequently the sequence {ϕ(t, ·)}n is uniformly bounded. Using dominated convergence

theorem, we get
∫ T

0

∫ 1

0
miH(ϕn

j − ϕn
i ) converges to

∫ T

0

∫ 1

0
miH(ϕj − ϕi) for any i, j ∈ I and a.e. t ∈ [0, T ].

Since (m,E) is a solution of (2.4), B̃(m,E) is finite and from Lemma 2.2 one has for any i, j ∈ I:
∫ T

0

∫ 1

0
Ei,j <∞.

Applying dominated convergence theorem, we get:
∫ T

0

∫ 1

0
(ϕn

j −ϕn
i )Ei,j converges to

∫ T

0

∫ 1

0
(ϕj−ϕi)Ei,j . In addition,

for any i ∈ I, the map t 7→
∫ 1

0

mi(t, s)ds is continuous, the weak convergence of λn to λ in M+([0, T ]× I) gives:

lim
n→∞

∑

i∈I

∫ T

0

λni

(

Di −
∫ 1

0

mi

)

=
∑

i∈I

∫ T

0

λi

(

Di −
∫ 1

0

mi

)

.

Thus, we have:

∫ T

0

∫ 1

0





∑

j∈I,j 6=i

H(ϕj − ϕi) + L

(

dEi,j

dmi

)

+ (ϕj − ϕi)
dEi,j

dmi



mi +

∫ T

0

λi

(

Di −
∫ 1

0

mi

)

= 0 (5.3)

Since λ ≥ 0 and for any t ∈ [0, T ]

∫ 1

0

mi(t, s)ds ≤ Di(t), one has for any i ∈ I and t ∈ [0, T ]:

0 ≤
∫ T

0

λi(t)

(

Di −
∫ 1

0

mi(t, s)ds

)

. (5.4)

Recalling the definition of L and H :

L(p) :=







p2

2
if p ≥ 0

+∞ otherwise
and H(q) =

(q−)2

2
,

we have: L∗(p) = H(−p). One can observe that:

∀q ∈ R− H(q) + L(p) + pq =
(p+ q)2

2
≥ 0 and ∀q ∈ R+ H(q) + L(p) + pq ≥ p2

2
≥ 0.

Using the two previous equations and (5.4), equality (5.3) gives:

dEi,j

dmi

(t, s) =

{

ϕi(t, s)− ϕj(t, s) if ϕi(t, s)− ϕj(t, s) ≥ 0
0 otherwise

m− a.e. (5.5)

and inequality (5.4) becomes an equality. Thus, it also comes:
∫ T

0

(

Di −
∫ 1

0
mi(t, s)ds

)

λi(dt) = 0. From equality

(5.5) and Lemma 2.4, we deduce that m ∈ Lip([0, T ]× [0, 1]× I).
(2) We assume now that (λ, ϕ,m) is a weak solution of (5.1). Since ϕ is in BV ((0, T ) × (0, 1) × I) and λ

is a finite measure, the quantity Ã(ϕ, λ) is well defined. Thus (ϕ, λ) belongs to R0. We want to show that
Ã(ϕ, λ)+ B̃(m,E) = 0. We approximate (λ, ϕ) with the same sequence {(ϕn, λn)}n as in the proof of Theorem 5.1.
(1). For any n, ϕn is smooth enough to be considered as a test function for m and we have for any i ∈ I:

∑

i∈I

∫ 1

0

gimi(T )−ϕn
i (0)m

0
i −

∑

i∈I

∫ T

0

∫ 1

0

mibi∂sϕ
n
i +mi∂tϕ

n
i +ϕn

i

∑

j∈I,j 6=i

(ϕi −ϕj)
+mi − (ϕj −ϕi)

+mj = 0. (5.6)

For any i ∈ I, ϕn
i is a classical solution of (3.1) associated to λn. Multiplying (3.1) by mi, summing over I and

integrating over [0, T ]× [0, 1], we have:

∑

i∈I

∫ T

0

∫ 1

0

−mi∂tϕ
n
i −mibi∂sϕ

n
i −mici −miλ

n +
∑

j∈I,j 6=i

H(ϕn
j − ϕn

i )mi = 0. (5.7)
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Combining (5.6) and (5.7):

∑

i∈I

∫ 1

0

gimi(T )− ϕn
i (0)m

0
i +

∑

i∈I

∫ T

0

∫ 1

0

cimi + λimi −mi





∑

j∈I,j 6=i

(ϕi − ϕj)
+(ϕn

i − ϕn
j ) +H(ϕn

j − ϕn
i )



 = 0.

Since (ϕ, λ,m) is a weak solution of (5.1), using Lemmas 4.4 and 3.10, and letting n tend to infinity one deduces:

∑

i∈I

∫ 1

0

gimi(T )−ϕi(0)m
0
i +
∑

i∈I

∫ 1

0

Diλi+
∑

i∈I

∫ T

0

∫ 1

0

cimi−mi





∑

j∈I,j 6=i

(ϕi − ϕj)
+(ϕi − ϕj) +H(ϕj − ϕi)



 = 0.

Using the definition of L and H , we have:

∑

i∈I

∫ 1

0

gimi(T )− ϕi(0)m
0
i +

∑

i∈I

∫ 1

0

Diλi +
∑

i∈I

∫ T

0

∫ 1

0

cimi +mi





∑

j∈I,j 6=i

L((ϕi − ϕj)
+)



 = 0.

Using the definition of Ã in (4.10) and B̃ in (2.3) and we have Ã(ϕ, λ) + B̃(m,E) = 0. The conclusion follows from
Remark 5.2

5.2 Proof of Theorem (1.1)

Using Theorem 5.1, we are now ready to prove our main Theorem, applying the change of variable αi,j =
dEi,j

dmi

.

1.1.

Proof of Theorem 1.1. (1) This statement is proved by Theorem 5.1.1
(2) This point is given by Theorem 5.1.2.
(3) Using Theorem 1.1.(1), there exists (ϕ, λ) such that (ϕ, λ,m) is a weak solution of 5.1 and for any i, j ∈ I

αi,j = (ϕi − ϕj)
+. Since ∂sϕ ∈ L∞((0, T )× I, C0([0, 1])), then one deduces αi,j ∈ L∞((0, T ),Lip(0, 1)). Applying

Lemma 2.4, we deduce that m ∈ Lip([0, T ]× [0, 1]× I).

A Appendix

Assumptions in subsection 1.3 are in forced in the Appendix.

A.1 On the flow defined by b

We recall the following basic properties on the flow Si.

Lemma A.1. For any i ∈ I, the flow Si satisfies the equation for any (τ, t, s) ∈ (0, T )× (0, T )× (0, 1):

∂tS
t,s
i (τ) + bi(s)∂sS

t,s
i (τ) = 0. (A.1)

Proof. Using the definition of the flow, we have for any (t, τ, r, x, i) ∈ [0, T ]× [0, T ]× [0, T ]× [0, 1]× I,:

S
t,S

r,x
i

(t)
i (τ) = Sr,x

i (τ).

Deriving w.r.t. to t previous equality, applying the change of variable s = Sr,x
i (t), and the result follows.

Lemma A.2. For any (t, τ, x, i) ∈ [0, T ]× [0, T ]× [0, 1]× I,it holds:

∂xS
τ,x
i (t) = exp(

∫ t

τ

b′i(S
τ,x
i (r))dr) (A.2)

Proof. From its definition, Si satisfies for any (t, τ, x) ∈ [0, T ]× [0, T ]× [0, 1]:

∂tS
τ,x
i (t) = bi(S

τ,x
i (t)), (A.3)

deriving both terms in (A.3) w.r.t. x, it comes:

∂t (∂xS
τ,x
i (t)) = ∂xS

τ,x
i (t)b′i(S

τ,x
i (t)). (A.4)

Since ∂xS
τ,x
i (τ) = 1, solving (A.4) gives the result (A.2).
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A.2 Analysis of weak solutions of (1.1) and (2.7)

Lemma A.3. For any weak solution (α,m) of (1.1), in the sense of Definition 2.1, it holds for any i ∈ I and
t ∈ [0, T ]: supp(mi(t, ·)) ⊂ [0, 1].

Proof. Let ε > 0 and ϕε be a test function in C∞
c ([0, T ]× R× I) with for any t ∈ [0, T ] and i ∈ I:

ϕε
i (t, s) ∈ [0, 1] ∀s ∈ R, ϕε

i (t, s) = 0 ∀s ∈ R \ (−1− ε, 2 + ε) and ϕε
i (t, s) = 1 ∀s ∈ [−1, 2],

Since m is a weak solution of (1.1) and b satisfies Assumption 1, we have for any t ∈ (0, T ) :

d

dt

∫

R

∑

i∈I

ϕε
i (t, s)mi(t, ds) =

∫

R

∑

i∈I

∂sϕ
ε
i (t, s)bi(s)mi(t, ds)

=

∫ −1

−1−ε

∑

i∈I

∂sϕ
ε
i (t, s)bi(s)mi(t, ds) +

∫ 2+ε

2

∑

i∈I

∂sϕ
ε
i (t, s)bi(s)mi(t, ds)

= 0.

(A.5)

From (A.5) and continuity of m we deduce that t 7→
∫

R

∑

i∈I

ϕε
i (t, s)mi(t, ds) is constant on [0, T ]. Letting ε →

+∞, it holds that t 7→
∫

R

∑

i∈I

mi(t, ds) is constant over [0, T ] and we have for any t ∈ (0, T ):

∫

R

∑

i∈I

mi(t, ds) =

∫

R

∑

i∈I

m0
i (ds) = 1. Now we show that

∫ 1

0

∑

i∈I

mi(t, ds) = 1. Let ε > 0 and ψε be another test function in

C∞
c ([0, T ]× R× I) with for any t ∈ [0, T ] and i ∈ I:

ψε
i (t, s) = 0 ∀s ∈ R \ (−ε, 1 + ε), ∂sψ

ε
i (t, s) ≥ 0 ∀s ∈ (−ε, 0), ∂sψ

ε
i (t, s) ≤ 0 ∀s ∈ (1, ε),

and ψε
i (t, s) = 1 ∀s ∈ [0, 1].

Using same calculus as in (A.5) and Assumption 1 have for any t ∈ (0, T ) :

d

dt

∫

R

∑

i∈I

ψε
i (t, s)mi(t, ds) =

∫ 0

−ε

∑

i∈I

∂sψ
ε
i (t, s)bi(s)mi(t, ds) +

∫ 1+ε

1

∑

i∈I

∂sψ
ε
i (t, s)bi(s)mi(t, ds) ≥ 0.

Thus t 7→
∫

R

∑

i∈I

ψε
i (t, s)mi(t, ds) is non-decreasing on [0, T ]. Taking the limit ε → 0, t 7→

∫ 1

0

∑

i∈I

mi(t, ds) is

also non-decreasing on [0, T ]. Finally we have for any t ∈ [0, T ]: 1 =

∫ 1

0

∑

i∈I

mi(0, ds) ≤
∫ 1

0

∑

i∈I

mi(t, ds) ≤
∫

R

∑

i∈I

mi(t, ds) = 1.

Lemma A.4. If the pairs (α,m) and (α, µ) are weak solutions of (1.1) in the sense of Definition 2.1 and α ∈
L∞((0, T )× I × I,Lip([0, 1])), then mi(t, ·) = µi(t, ·) for any (t, i) ∈ [0, T ]× I.

Proof. Let χ be a standard convolution kernel on R+ such that χ > 0. Let χn(t) := χ(t/εn)/εn with εn −−−−→
n→∞

0.

Fix θ ∈ C∞
c ((0, T )× (0, 1)) and for any n ∈ N, let the function αn be defined by:

αn := χn ∗ α,

where ∗ stands for the convolution product. Then, αn ∈ C0((0, T ) × (0, 1),R|I|×|I|) and for any s ∈ [0, 1], the
sequence {αn(s, ·)}n converges a.e. on [0, T ] to α. For any n ∈ N let ξn be the classical solution on (0, t)× (0, 1)× I
of:

∂tξ
n
i + bi∂xξ

n
i +

∑

j∈I,j 6=i

(ξnj − ξni )α
n
i,j = θ with ξni (T, ·) = 0.

Using the method of characteristics to solve the previous PDE and the Gronwall’s Lemma, one can show that {ξn}n
is uniformly bounded. Since (α,m) and (α, µ) are weak solutions of (1.1), we deduce that (α,m − µ) is a weak
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solution of (1.1) associated to m0 = 0. For any n ∈ N, The function ξn is smooth enough to be a test function for
equation (1.1) associated to (α,m− µ):

0 =
∑

i∈I

∫ T

0

∫ 1

0

(∂tξ
n
i + bi∂sξ

n
i )(mi − µi) +

∑

j∈I,j 6=i

(ξnj − ξni )αi,j(mi − µi)

=
∑

i∈I

∫ T

0

∫ 1

0

θi(mi − µi) +
∑

j∈I,j 6=i

(

(ξnj − ξni )αi,j − (ξnj − ξni )α
n
i,j

)

(mi − µi)

Using the uniform bound of {ξn}n and the convergence for any s ∈ [0, 1] of {αn(·, s)}n to α(·, s) a.e. on [0, T ],
letting n tends to infinity in the previous equality and one has:

∑

i∈I

∫ T

0

∫ 1

0

θi(mi − µi) = 0

Since θ is arbitrary, the proof is complete.

We are looking for regularity properties of solutions of (2.7). The following equation is introduced on (0, T )×
(0, 1)× I:

mi(t, s) = m0
i (S

t,s
i (0)) +

∫ t

0

(G(τ, St,s
i (τ))m(τ, St,s

i (τ)))idτ, (A.6)

where G(t, s) is a square matrix of size |I| and, using an abuse of notation, m(t, s) is considered as a vector of size
|I|. The quantity (G(τ, St,s

i (τ))m(τ, St,s
i (τ)))i is the i

th coordinate of the vector G(t, s)m(t, s).
We introduce following assumptions.

a) The function G satisfies G ∈ L∞((0, T ),Lip([0, 1],R|I|×|I|)).

b) The function α satisfies α ∈ L∞((0, T )× I × I,Lip([0, 1])).

The two next lemmas state the existence of a solution m of (A.6).

Lemma A.5. Let G satisfies Assumption a), then there exists a solution m of (A.6), such that for any i ∈ I
mi ∈ Lip((0, T )× (0, 1)).

Proof. The proof of existence is based on a fixed point argument, following the steps of the proof of Lemmas 3.1, 3.2
and 3.3. The regularity ofm is obtained by applying the fixed point argument on a subspace of Lip((0, T )×I×(0, 1))
of functions uniformly bounded with the same Lipschitz constant.

Remark A.1. For any G ∈ C1((0, T )× (0, 1),R|I|×|I|), there exists a unique solution m ∈ C1((0, T )× (0, 1)× I)
of (A.6) which is also a classical solution of (2.7). It holds:

‖m‖∞ ≤ ‖m0‖∞e|I|T‖G‖∞ . (A.7)

The existence is also proved by a fixed point argument. The regularity of m is obtained by applying the fixed point
argument on the space C1((0, T )×(0, 1)×I). For any t ∈ [0, T ], using Gronwall Lemma, we have: sup

i∈I

‖mi(t, ·)‖∞ ≤

sup
i∈I

‖m0
i ‖∞ + |I|‖G‖∞

∫ t

0

sup
i∈I

‖mi(τ, ·)‖∞dτ ≤ ‖m0‖∞eT |I|‖G‖∞, which gives uniqueness.

Lemma A.6. Let G satisfies Assumption a), m be the solution of (A.6) associated to G, {Gn}n a sequence in
C1((0, T )×(0, 1),R|I|×|I|) and {mn}n the sequence of solutions of (A.6) associated respectively to {Gn}n . If {Gn}n
converges to G w.r.t. to the L1 norm ‖·‖1, then {mn}n converges to m w.r.t. the norm ‖·‖1 in L1((0, T )×(0, 1)×I)
and up to a subsequence, for any t ∈ [0, T ], {mn(t, ·)}n converges to m(t, ·) w.r.t. the metric W1 in P([0, 1]× I).

Proof. Since m and mn are solutions of (A.6), associated respectively to G and Gn, one has for any (i, t, s) ∈
I × [0, T ]× [0, 1]:

|mn
i (t, s)−mi(t, s)| ≤

∫ t

0

|(Gn(τ, St,s
i (τ))mn(τ, St,s

i (τ)))i − (G(τ, St,s
i (τ))m(τ, St,s

i (τ)))i|dτ
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Applying the triangle inequality, integrating over [0, 1] and summing over I, applying the change of variable x =
St,s
i (τ), using that G is bounded and that from Remark A.1 {‖mn‖∞}n is bounded by a constant CG > 0, we have:

∑

i∈I

∫ 1

0

|mn
i (t, s)−mi(t, s)|ds ≤ |I|‖∂xS‖∞‖G‖∞

∫ t

0

∫ 1

0

∑

j∈I

|mj(τ, x)−mn
j (τ, x)|dsdτ

+|I|CG

∫ t

0

∫ 1

0

∑

i,j

|Gi,j(τ, x) −Gn
i,j(τ, x)|dsdτ.

Applying Gronwall lemma and integrating over [0, T ], we have: ‖mn − m‖1 ≤ T |I|CG‖Gn − G‖1eT‖∂xS‖∞‖G‖∞ .
Using the convergence of {Gn}n to G w.r.t. to the norm ‖ · ‖, convergence of {mn}n to m w.r.t. to the norm ‖ · ‖1
is obtained. Using the continuity of m and the convergence a.e. of a subsequence of {mn}n to m, the convergence
of {mn(t, ·)}, up to a subsequence, to m(t, ·) w.r.t. W1 in P(([0, 1]× I) is deduced.

Lemma A.7. Let α satisfies Assumption b), G be defined from α as in (2.8) and m be the solution of (A.6)
associated to G. Then, m is a weak solution of (1.1), in the sense of Definition 2.1.

Proof. Let the sequence {αn}n in C1((0, T )× (0, 1)×|I|× |I|) converge to α w.r.t. the norm ‖ · ‖1 and be uniformly
bounded by ‖α‖∞. Let the sequence {Gn}n in C1((0, T ) × (0, 1),R|I|×|I|) be defined as in (2.8) associated with
{αn}n. Then {Gn}n converges to G w.r.t. the norm ‖ · ‖1. For any n ∈ N, mn denotes the solution of (1.1)
associated to Gn. From Lemma A.6, for any test function ψ ∈ C∞

c ([0, T ]× R× I), it holds:

∑

i∈I

∫ 1

0

ψi(T )m
n
i (T )− ψi(0)m

0
i =

∫ T

0

∫ 1

0

∑

i∈I

(∂tψi + bi∂sψ)m
n
i +

∑

j∈I,j 6=i

(ψj − ψi)α
n
i,jm

n
i , (A.8)

where αn is linked to Gn by definition (2.8). Since {αn}n converges weakly∗, up to a subsequence, to α in
L∞((0, T )× (0, 1)×|I|× |I|), the result is obtained by applying Lemma A.6 and taking the limit n→ ∞ in equation
(A.8).

Lemmas A.4, A.5 and A.7 can be sum up by the following proposition.

Proposition 1. Let α satisfies Assumption b) and G be defined from α as in (2.8). Then there exists a unique
solution m of (A.6), which is also the unique weak solution of (1.1), in the sense of Definition 2.1, associated to
α. In addition, m is bounded by ‖m0‖∞e|I|T‖G‖∞, and is such that for any i ∈ I, mi ∈ Lip([0, T ]× [0, 1]).
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[35] Alpár Richárd Mészáros and Francisco J Silva. A variational approach to second order mean field games with
density constraints: the stationary case. Journal de Mathématiques Pures et Appliquées, 104(6):1135–1159,
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[42] Filippo Santambrogio. Regularity via duality in calculus of variations and degenerate elliptic pdes. Journal of
Mathematical Analysis and Applications, 457(2):1649–1674, 2018.

[43] Adrien Seguret, Cheng Wan, and Clemence Alasseur. A mean field control approach for smart charging with
aggregate power demand constraints. accepted in IEEE PES Innovative Smart Grid Technologies Europe (ISGT
Europe), oct 2021.

[44] Colin Sheppard, Laurel N Dunn, Sangjae Bae, and Max Gardner. Optimal dispatch of electrified autonomous
mobility on demand vehicles during power outages. In 2017 IEEE Power & Energy Society General Meeting,
pages 1–5. IEEE, 2017.

[45] Richard Vinter. Convex duality and nonlinear optimal control. SIAM journal on control and optimization,
31(2):518–538, 1993.

30


	Introduction
	Motivations
	Contributions and literature
	Assumptions
	Notations
	Main results

	Variational problem
	Analysis of the HJB solutions
	Existence of a fixed point of  on 
	Comparison principle
	Link between weak solution (3.2) and fixed point solution (3.8)

	Dual problem
	Relaxed problem of (4.3)
	Existence of solution of the relaxed problem (4.9)

	Characterization of minimizers
	Proof of Theorem (5.1)
	Proof of Theorem (1.1)

	Appendix
	On the flow defined by b
	Analysis of weak solutions of (1.1) and (2.7)


