
HAL Id: hal-03353878
https://hal.science/hal-03353878v1

Submitted on 28 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Virtual Platform to Analyze the Security of a System on
Chip at Microarchitectural Level

Quentin Forcioli, Jean-Luc Danger, Clémentine Maurice, Lilian Bossuet,
Florent Bruguier, Maria Mushtaq, David Novo, Loïc France, Pascal Benoit,

Sylvain Guilley, et al.

To cite this version:
Quentin Forcioli, Jean-Luc Danger, Clémentine Maurice, Lilian Bossuet, Florent Bruguier, et al..
Virtual Platform to Analyze the Security of a System on Chip at Microarchitectural Level. EuroS&PW
2021 - IEEE European Symposium on Security and Privacy Workshops, Sep 2021, Vienne, Austria.
pp.96-102, �10.1109/EuroSPW54576.2021.00017�. �hal-03353878�

https://hal.science/hal-03353878v1
https://hal.archives-ouvertes.fr


Virtual Platform to Analyze the Security of a
System on Chip at Microarchitectural Level

Quentin Forcioli∗, Jean-Luc Danger∗, Clémentine Maurice†, Lilian Bossuet‡,
Florent Bruguier§, Maria Mushtaq§, David Novo§, Loı̈c France§,

Pascal Benoit§, Sylvain Guilley¶ Thomas Perianin¶
∗LTCI, Télécom Paris, Institut Polytechnique de Paris, France

†Univ. Lille, CNRS, Inria, France
‡Laboratoire Hubert Curien, St Etienne, France

§LIRMM, Univ. Montpellier, CNRS, Montpellier, France
¶Secure-IC, France

Abstract—The processors (CPUs) embedded in System on
Chip (SoC) have to face recent attacks taking advantage of
vulnerabilities/features in their microarchitectures to retrieve
secret information. Indeed, the increase in complexity of modern
CPU and SoC is mainly driven by the seek of performance rather
than security. Even if efforts like isolation techniques have been
taken to thwart cyberattacks, most microarchitectural features
can open the door to security holes. One typical example is the
exploitation of cache memory which keeps track of the program
execution and paves the way to side-channel (SCA) analysis and
transient execution attacks like Meltdown and Spectre, which
take advantage of speculative execution. This paper introduces
an ongoing study aiming at analyzing the attacks relying on the
hardware vulnerabilities of the microarchitectures of CPUs and
SoCs. The main objective is to create a virtual and open platform
that simulates the behavior of microarchitectural features and
their interactions with the peripherals, like accelerators and
memories in emerging technologies. The gem5 simulator, whose
configuration can be customized to a specific CPU or SoC
architecture, is the basis of our chosen platform for security
analysis.

Index Terms—Security, Microarchitecture, Simulation, gem5,
SoC

I. INTRODUCTION

Cyber-security has an ever-increasing effect on our day-to-
day lives. Although in the beginning, the attacks were mainly
concentrated on the Operating System (OS), software, network
stacks, smartcards, or discrete components on the PCBs, in
recent years a new type of threats, known as microarchitectural
attacks, has infiltrated every components in Systems-on-Chip
(SoCs).

We observe a growing trend in the recent attacks to exploit
vulnerabilities/features in on-chip components to finally gain
control of protected information. Many attacks on caches have
been well known for a few years: namely Prime+Probe [33]
and Flush+Reload [49], which have been used to guess cryp-
tographic keys or break Address Space Layout Randomization
(ASLR) [18]. Attacks on CPU cores include Meltdown [31],
which exploits out-of-order execution in modern Intel proces-
sors, and Spectre [28], which exploits speculative execution.
Both of them use a covert channel to retrieve the data. Malware
and keyloggers from integrated GPUs have been reported [11],

[14], [29], [41], [45], and cache-timing attacks can be mounted
from integrated on-chip FPGAs [4], [6], [11], [12]. Even the
main memory has not been spared from these attacks, one
of the prime examples being Rowhammer [26]. In face of this
growing number of attacks and diversity, it is urgent to address
this issue comprehensively, encompassing all the components,
namely core, cache hierarchy, accelerators or I/O devices, and
main memory.

To tackle the security analysis of processors and SoC
against microarchitectural attacks, we propose to investigate a
novel method that allows the designer to detect vulnerabilities
and validate their exploitability through simulating attacks
exploiting them. We use a virtual platform relying on the
gem5 simulator [7]. The latter is a cycle-accurate simulator
that presents many interests. Among them is the support
of most CPU manufacturers, like ARM, and the ability to
provide accurate information to observe the microarchitecture
behavior and perpetrate attacks. Another interest is the possi-
bility to simulate some components of the heterogeneous SoC
architecture. This allows to reproduce the realistic behavior
of accelerators or memories and execute fault attacks like
the Rowhammer [39] on DRAM or Dynamic Voltage and
Frequency Scaling (DVFS) in a cryptographic accelerator.

The paper is organized as follows. After Section I, which
presents the context of the study, Section II gives an overview
of the state-of-the-art of attacks against CPU and SoC. Then
Section III describes the principle of the analysis method
relying on a virtual platform built around the gem5 simulator.
Section IV gives concrete examples of attack simulations with
gem5. The perspectives of the study are presented in Section V
before the conclusion in Section VI.

II. STATE OF THE ART

A. Attacks and defenses on CPUs

a) Microarchitectural side-channel attacks: Side-
channel attacks aim to recover secrets by uncovering traces
left in the microarchitecture by some victim program. These
have typically targeted the cache [18], [30], [33], [49] and
other elements such as the branch predictor [1], [15]. Cache
timing attacks [33], [49] have been the most studied and

1



rely on differences in latencies between the CPU cache
and the main memory. In particular, Flush+Reload [49]
allows observing loads from other processes at the cache
line granularity and across cores by using shared read-only
memory between the attacker and the victim (e.g., a shared
library). The attacker continuously flushes a cache line
from the whole hierarchy and reloads it while timing the
operation. If the victim used the cache line between the
flush and the reload operations, the attacker observes a
fast access; otherwise, a slow access. Other cache attack
techniques include Prime+Probe [33] or Flush+Flush [20].
Cache attacks have been showed to be able to recover
cryptographic secrets [33], [49], user inputs [21], and
addressing information [18]. While they were mainly carried
on x86, they have also been demonstrated on ARM [30].

Covert channels are a special case of side-channel attacks
where the attacker controls both ends, the sender and the
receiver. All techniques used for side-channel attacks can be
used as a covert channel, e.g., Flush+Reload & Prime+Probe.

b) Transient execution attacks: Spectre [28] and Melt-
down [31] have been the first of many transient execution
attacks discovered since 2018 [8]. Modern CPUs rely on
optimization mechanisms such as out-of-order execution and
prediction to keep the pipeline full at all times. Mispredictions
and faults are handled by flushing the pipeline to ensure
correctness at the architectural level. However, transient in-
structions, i.e., instructions that started to be executed but
whose results were never committed to the architectural state,
leave traces in the microarchitecture, e.g., caches or branch
predictors. Transient execution attacks therefore exploit these
transient instructions to encode a secret – which is not nor-
mally accessible to an attacker – into the microarchitectural
state. More formally, the transient instructions act as the sender
of a microarchitectural covert channel. While Flush+Reload is
typically used as a covert channel for its easy use and high
speed, any microarchitectural covert channel can be used.

c) Defenses: Several past work have tried to provide
a framework to evaluate attacks on real hardware. Some
approaches use dynamic analysis [47], static analysis [9],
[13], [42], or a combination of static and dynamic anal-
ysis [46], while other approaches directly measure cache
hits and misses [21], [48] to find paths of exploitation for
vulnerable implementations.

B. Attacks and defenses on System on Chips

Systems-on-Chip (SoC) are becoming increasingly complex
as they integrate more and more functionalities including many
processor cores, memory, third party hardware IPs, and re-
configurable hardware (i.e., FPGA) for hardware acceleration.
Consequently, these systems are highly vulnerable to many
inside-SoC physical attacks including SoC security corruption
by using malicious IP/hardware, side-channel analysis, fault
injection and covert channel. SoC security corruption attacks
have been proposed first by Jacob et al. [23] which showed
how a malicious hardware IP can access processor core fea-
tures and memory to bypass software or system security such

as the secure boot. Then Benhani and Bossuet [6] evaluated
the security of the ARM TrustZone technology in an FPGA-
based SoC. They presented how to insert automatically at the
CAD tool level a malicious hardware to take advantage of
security failures in the FPGA fabric and to bypass ARM core
security including TrustZone technology.

Many recent works suggest embedding an information leak-
age sensor inside the SoC to be able to perform physical SCA
without the need for external measurements. These works use
the sensitivity of the power distribution network to power
supply fluctuations due to intrinsic noise [34], [35], [38],
[51]. At the SoC level, other side channels can be considered
such as cache timing analysis as proposed by Chaudhuri [12]
which presented three possible types of attack (direct memory
access attacks, cache-timing attacks, and Rowhammer attacks)
that can exploit the optional cache coherency between the
programmable logic part and the processing system of an
FPGA-based SoC.

Malicious use of cache coherency can also be used to
perform inside SoC fault injection. In another work, Kim et
al. [25] used cache coherency between the programmable logic
part and the processing system of the SoC to slow down the
execution of a CPU program. They used a hardware Trojan
that continuously injects memory transactions, which increases
the miss rate in the L1 data cache.

At the SoC level, other ways to perform fault injections
are also presented in the literature. Tang et al. proposed the
CLKSCREW fault injection attack [43]. This attack used
Dynamic Voltage and Frequency Scaling (DVFS) to induce
a fault in the seventh round of an AES encryption executed
in the secure world. DVFS can also be used as a covert
channel to secretly send information from one thread to
another [2], [5]. In addition, the security of main memories
should not be overlooked. To increase the performance, the
memory cells are becoming smaller which makes them more
vulnerable to disturbance errors [26]. Rapidly, Rowhammer,
an attack exploiting this error, was able to precisely flip
bits and gain kernel privileges [39]. This attack has been
declined in different versions and across different architectures
and environments [19]. Van der Veen et al. showed that
the Rowhammer effect can be used to attack an architecture
based on ARM processors [44]. This was confirmed by
Carru [10] who described a successful attack to recover a
private key stored in the secure memory of an RSA signature
implementation, by making a specific read of a row in the
accessible DRAM. Rowhammer can also be performed using
only network requests [32].

III. ANALYSIS METHOD

A. Principle and challenges

In this section, we present the targeted methodology to
detect, characterize and validate new vulnerabilities. Namely,
we introduce a virtual-to-real approach, enabling the in-depth
study of vulnerabilities, attacks, and countermeasures in a
virtual sandbox-like environment before validation on a real
platform. The method consists of 3 steps:

2



a) Vulnerability identification: detecting lines of code
that are potential targets of cache timing attacks, for example
from the source code of a security-sensitive application using
static or symbolic analysis methods which have the advantage
of being platform-agnostic.

b) Virtual implementation: implementing the attack in
a virtual environment (namely gem5) to study its feasibility.
Here, the attack configuration can be studied in detail. Indeed,
attack parameters or target configuration (at the microarchi-
tecture level or at the system level) impact the outcome of an
attack. Additionally, the virtual platform can be used to char-
acterize a vulnerability severity (the amount of leakage), by
accounting for several security metrics such as the probability
of success of an attack, the number of traces required, etc.

c) Validation in the real world: the necessary final step
of the analysis method is to verify the vulnerability acuteness
in the real world, by bootstrapping an attack on a real platform.

This virtual-to-real method enables several improvements
to microarchitectural security research.

Attack analysis: this approach enables the exhaustive
study of attack parameters and of targets microarchitectural
configurations, which is often not possible with a real-only ap-
proach. By using a virtual platform, it is possible to extensively
customize target properties, e.g., to modify the size of cache
memories, the cache replacement policies, etc. Therefore, it
is possible to analyze attacks and their parameters to design
better countermeasures.

Vulnerability characterization: cache timing vulnerabili-
ties are more or less exploitable, depending on several factors
such as the number of times they are encountered within an ex-
ecution or the number of secret bits leaking, but also depending
on the underlying architecture and the environmental context.
For example, third-party processes running concurrently to the
victim and the attacker may impact the readability of cache
timing traces. Leveraging the virtual platform, it is possible
to characterize these factors in detail and to create metrics in
order to quantify a vulnerability severity, depending on a given
context and on a given microarchitecture.

Countermeasures: our methodology offers the possibility
to design and test countermeasures, and to evaluate and com-
pare their effectiveness and performance overhead thoroughly
thanks to the debug features of the virtual platform. These
countermeasures may be at the hardware or software level,
and prevent various attacks, e.g., transient execution attacks,
cache timing attacks, fault attacks.

Reproducibility: microarchitectural attacks are notori-
ously difficult to reproduce. To do so, one needs specific CPU
models and it is sometimes unclear whether an attack can be
replicated on a different or newer version of a given physical
platform. The virtual platform allows researchers and security
testers to replicate easily an attack without having access to
the proper hardware.

This approach also offers several challenges to tackle:

• Imitating the security vulnerabilities of real architectures.
Indeed, simulators, such as gem5, are primarily designed

for performance evaluation. As we will detail next, ex-
tending such simulators for security analysis requires
extensive modeling of additional behavior that is not
relevant or has a negligible effect on performance (e.g.,
the Rowhammer effect in DRAM).

• Facilitating the study of security vulnerabilities by expos-
ing relevant changes in the virtual platform of microarchi-
tectural state to the user. This will require the design of
a monitoring infrastructure specially tailored for security
analysis.

• Building a list of example existing attacks (either on
gem5 or on both gem5 and a real platform) that can be
easily tested and demonstrate the different means that
are used by the attack thus representing the threat, a
countermeasure is mitigating.

• Anticipating new attacks by designing efficient vulnera-
bility detection mechanisms. In addition to studying and
validating attacks on the virtual platform, it is important
for the tool to be able to uncover new attacks, from
static or symbolic source code analysis or from dynamic
trace analysis, while also being able to detect abnormal
behavior on a real SoC which could hide undocumented
security features [17].

It is worth mentioning that the virtual platform can be used
in combination with existing security evaluation tools: for
example, a vulnerability identification step can be performed
by static and symbolic analysis of source code [9], [42], which
are functionalities embedded in the Catalyzr™ tool developed
by Secure-IC. The found vulnerabilities may then be analyzed
in depth with the virtual platform. Ultimately, the usage of
the platform within global security assessment tools would
enable a better coverage of threats and better understanding
of vulnerabilities when using such tools in the industry.

B. gem5

We build our virtual environment on gem5, which is a
state-of-the-art cycle-accurate SoCs/system simulator that is
developed and supported by CPU founders and computer
engineering researchers [7]. Developed in C++ and using a
Python interface to easily configure architectures (as shown
in Figure 1), gem5 provides a platform to develop microar-
chitecture and an API implementation in a controlled and
highly instrumented environment. Our goal is to use this
environment to analyze and monitor data leakage through
hardware weaknesses (e.g., Spectre) using visualization to help
tuning the attack to the target simulated library on a specific
microarchitecture. The simulator accuracy regarding ARMv8
security-sensitive features and behavior is one of our focuses
as we are checking whether an attack working on the simulator
will also work on real hardware and vice versa.

1) gem5 features: A gem5 simulation is divided between
the Python configuration files and the C++ files, which are
compiled inside the gem5 binary, behaving like a Python
interpreter. The configuration file connects Python objects
which are either other Python objects or gem5 primitives
representing hardware modules, through port generally using

3



Fig. 1. How a gem5 simulation model is laid out between C++ files and
Python files.

a gem5 memory packet protocol which is similar to AXI. This
hardware primitive can be configured using parameters directly
in the Python configuration file. gem5 also provides a config-
urable Python file that includes primitive and interconnects
them in a specific way (e.g., a cache system made of caches
and controllers).

2) Advantages of using gem5: gem5 enables unlimited non-
intrusive instrumentation. For instance, the ARM CoreSight
allows the designer to have a full trace of execution, informa-
tion about cache state and MMU/TLB state. gem5 simulates
CoreSight but in addition, it allows to know information from
every module inside the architecture even if they are not con-
nected to the CoreSight module, e.g., providing information
about the state and building statistics for branch prediction
(Konata [40]). This allows the debugging of attacks and their
customization against a specific library or program, shortening
the development time for adapting an attack to a new target.

Because gem5 can also integrate FPGA (using a Sys-
temVerilog simulator) or GPU (with a precise emulation)
architectures, it is also possible to realistically experiment
attacks on such accelerators.

Additionally, we can use the same disk image to compare
with real hardware, while keeping the same binaries and
libraries between the real world and the simulated world.
This makes testing attacks and ensuring simulation of security
features and side-channel sources (e.g., caches, DVFS) more
reproducible and easier than with a real platform.

3) Limitations of gem5: Microarchitecture characteristics
of the CPU, GPU, FPGA, interconnect, and cache emulation
are key for ensuring that we are building actual attacks that
work on real hardware. However, these are often black-boxes
and we cannot be reasonably sure that they behave exactly
like the gem5’s version. Some CPU likes the Apple-M1
are even providing new undocumented ISA extensions [24]
which would require modification inside gem5 core to be
correctly implemented. Moreover, some key features, for in-

stance, TrustZone or Qualcomm Secure Processor Unit, rely
on dedicated hardware (like the TZC-400) which is not yet
implemented in gem5 while being ubiquitous in off-the-shelf
devices. This hinders our possibility to test for weaknesses
in current security frameworks since it is not completely
implemented, and therefore the simulated behavior may not
exhibit the same key vulnerabilities as the real hardware.
Finally, the gem5 memory subsystem is not always precise
with the information that is passed to devices. For instance,
gem5 is not an emulator of the AXI protocol which would
allow differentiating between privileged and unprivileged ac-
cesses. This is especially the case with an FPGA that would
host Hardware Trojans Horses and send forged unauthorized
requests.

IV. PRACTICE AND EXAMPLES OF ATTACKS WITH GEM5
A. Bare-metal and OS platform

To have low-level access to all the CPU and OS features to
test countermeasures and demonstrate attacks at a theoretical
level, we developed a bare-metal system. This allowed us to
study how SoC configuration, hardware-wise and software-
wise, influences the success and effectiveness of an attack. We
designed a tool for developers to have the same environment
as a traditional platform (e.g., ARM DS-5 or Xilinx xSDK).
This tool provides:

• Basic libc functions, e.g., malloc, printf.
• Maximum platform compatibility (resilient to SoC mod-

ification in gem5).
• Cleaner execution traces (instructions, cache events, . . . ):

bare-metal provides a tighter integration.
• Simple implementation of security features, e.g., System

Management Controller (SMC), secure page tables.
This tool ensures that code working on gem5 also works on
the real platform.

This platform could also be used to detect hidden features
by comparing behavior between the real platform and the
virtual. The real hardware could provide some undocumented
assistance to the OS to avoid side-channel leakage, such
feature would only lead to a difference in behavior in a bare-
metal execution.

For example, we have re-implemented a Flush+Reload
cache side-channel attack to demonstrate the compatibility
between our gem5 platform (gem5 + micro-kernel) and a hard-
ware platform, a Raspberry Pi 3 B+ (BCM2837B0: 4×Cortex-
A53) which supports aarch64 and launches code at the highest
exception level. At the same time, we are also testing attacks
on Linux (incorporating our previous work [3]) using all of
this to verify emulation and attack model accuracy.

B. Side-channel attack from a secure environment

ARMv8a, along with other ISAs such as RISC-V or x86,
provides a secure environment with controlled access to mem-
ory resources and seclusion from classical user code, allowing
user applications to run without leaking information through
unsanitized memory, cache, or other shared resources, even
from code that shares the same address space (e.g., inside

4



a web browser). This feature that allows building a Trusted
Environment is called TrustZone on ARM. It is built using
dedicated hardware device and dedicated instructions. There
are already several attacks on TrustZone [36], [50] using
both intrinsic weaknesses and oversights from the secure
environment.

We want to reproduce such attacks on gem5 to serve both as
a demonstration that gem5 SoC emulation correctly reproduces
TrustZone features, and as a threat model to propose new
countermeasures to mitigate this kind of threat.

We set up OP-TEE on gem5 using the recent ”TF-A on
gem5” ARM tutorial [22] and we plan to demonstrate side-
channel attacks from the secure world to the unsecured world
using both Spectre and Prime+Probe attacks like in [36]. We
also plan to provide an accurate model for the TZC-400 or
TZC-380 to have a representative environment when we will
have chosen which real platform to compare with gem5 for
this attack. Indeed, the Raspberry Pi 3 B+ does not have a
TrustZone Space Controller, even though we can set up a TEE
on it.

C. Covert channel communication using DVFS

With gem5, one challenge is to reproduce an attack like [5].
It is possible by using the following components: SimObject,
EnergyCtrl, DVFSHandler and ClockDomain. The software
component SimObject allows to define a clock domain with a
specific number of frequencies and to connect one of several
CPUs of the SoC model to this domain. In simulation time,
the CPU selects a performance level by using the CPUfreq
driver which conduces to a frequency selection by the Clock-
Domain through the EnergyCtrl, DVFSHandler components as
presented in Figure 2.

We have implemented these components to perform CPU
to CPU covert channel communication exploiting the DVFS.
Moreover, we have managed the DVFS from a hardware
accelerator if this component has a DMA access and then
perform hardware IP to CPU covert channel communication.
To conclude, with gem5 we are able to perform all the attacks
proposed in [5].

D. Rowhammer on gem5 and Ramulator

We plan to reproduce Rowhammer effects which require
an accurate simulation of the main memory. On gem5, main
memory management is not native. So, we added a fast
and extensible DRAM simulator called Ramulator [27]. This
open source simulator provides out-of-the-box timing-accurate
models for DRAM standards (DDR3/4, LPDDR3/4. . . ) and
allows to easily add new ones. By design, gem5 and Ramulator
do not include the management of Rowhammer effects, so we
developed a dedicated memory corruption module and updated
some existing components.

The modifications allow to:
• Store an associative map to maintain the link between vir-

tual and physical addresses. It determines the neighbors
of each row and establish the affected ones.

Fig. 2. Possible DVFS covert channel on gem5.

• Count the number of activations in each row since the
last refresh.

• Affect one bit-flip threshold to each row.
• Establish if one bit-flip occurs and modify the affected

cells in consequence.
This modification will make it possible to successfully run

existing Rowhammer attacks on x86 platform associated with
classical DRAM. However, our approach can only model the
currently known attack surface of the Rowhammer effect. As
researchers keep on challenging the newest DRAM technol-
ogy, this attack surface will expand (e.g., the recent half-
double effect reported recently by Google [37]). Accordingly,
our gem5 model will need to be upgraded every time a
new vulnerability that expands the known Rowhammer attack
surface is discovered.

Machine learning was used to develop a detection mecha-
nism (at it was already shown in [16]). The introduction of
memory corruption in gem5 will allow us to train and test the
detection mechanism with datasets created with attacks that
need to witness corruption to work properly.

V. ON-GOING WORK AND PERSPECTIVES

Figure 3 describes the structure of the current work which
addresses all the parts of a SoC. The main task is to develop the
virtual platform relying on gem5 and real hardware platforms.
A study will cover all types of cache timing attacks for
different configurations of protections and microarchitectures.
The capability to simulate heterogeneous SoC allows to tackle
the vulnerabilities coming from the accelerators and emerging
technologies as Non Volatile RAM (NVM). The main expected
outcomes of this project are:

• An open environment to speed up the security study of
microarchitectural attacks.

• An anticipation of attacks and validation on both the
gem5 virtual platform and a real platform.

• A security analysis in numerous architecture configura-
tions as: multicores, protection levels, accelerators, new
memory technologies...

5



Fig. 3. Target architecture of the project.

• Tools to monitor side channel leaking or fault injection.

VI. CONCLUSION

We presented a work-in-progress aiming at analyzing the
security at microarchitecture level of CPU and SoC with
a virtual platform. It relies on the gem5 simulator whose
versatility and accuracy allow designers to find vulnerabilities
and attacks exploiting them. The practice of gem5, including
its advantages and limitations, and some examples of attacks
are given. Among them, a cache timing attack on unprotected
and protected environment are presented, along with the de-
velopment of a Bare Metal system and its validation on a real
hardware platform. We also show that DVFS and Rowhammer
attack can be accurately simulated with gem5. The work is
currently on-going and aims at providing to the community an
open platform for the security analysis of microarchitectures.

ACKNOWLEDGEMENTS

The work presented in this paper was realized in the frame-
work of the ARCHI-SEC project number ANR-19-CE39-
0008-03 supported by the French “Agence Nationale de la
Recherche”.

REFERENCES

[1] O. Aciiçmez, Ç. K. Koç, and J. Seifert, “Predicting secret keys via
branch prediction,” in CT-RSA, 2007.

[2] M. Alagappan, J. Rajendran, M. Doroslovački, and G. Venkataramani,
“Dfs covert channels on multi-core platforms,” in IFIP/IEEE Interna-
tional Conference on Very Large Scale Integration (VLSI-SoC), 2017.

[3] P. Ayoub and C. Maurice, “Reproducing spectre attack with gem5:
How to do it right?” in 14th European Workshop on Systems Security
(EuroSec), 2021.

[4] E. M. Benhani, L. Bossuet, and A. Aubert, “The Security of ARM
TrustZone in a FPGA-based SoC,” IEEE Transactions on Computers,
pp. 1–1, 2019.

[5] E. M. Benhani and L. Bossuet, “Dvfs as a security failure of trustzone-
enabled heterogeneous soc,” in 2018 25th IEEE International Confer-
ence on Electronics, Circuits and Systems (ICECS), 2018, pp. 489–492.

[6] E. M. Benhani, C. Marchand, A. Aubert, and L. Bossuet, “On the
security evaluation of the ARM trustzone extension in a heterogeneous
soc,” in International System-on-Chip Conference (SOCC), 2017.

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[8] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses,” in USENIX Security Sympo-
sium, 2019.

[9] S. Carré, A. Facon, S. Guilley, S. Takarabt, A. Schaub, and Y. Souissi,
“Cache-timing Attack Detection and Prevention — Application to
Crypto Libs and PQC,” in COSADE, ser. LNCS, vol. 11421. Springer,
April 4-5 2019, Darmstadt, Germany.

[10] P. Carru, “Attack arm trustzone using rowhammer,” in GreHack, 2017,
2017.

[11] S. Chaudhuri, “Cache Timing Attacks from The SoCFPGA Coherency
Port (Abstract Only),” in ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA), 2017.

[12] ——, “A Security Vulnerability Analysis of SoCFPGA Architecture,”
in DAC, 2018, pp. 120–125.

[13] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke, “Cacheaudit: A
tool for the static analysis of cache side channels,” ACM Trans. Inf. Syst.
Secur., vol. 18, no. 1, pp. 4:1–4:32, 2015.

[14] L. Duflot, Y.-A. Perez, and B. Morin, “What if you can’t trust your
network card?” in RAID, 2011.

[15] D. Evtyushkin, R. Riley, N. B. Abu-Ghazaleh, and D. Ponomarev,
“Branchscope: A new side-channel attack on directional branch pre-
dictor,” in ASPLOS, 2018.

[16] L. France, M. Mushtaq, F. Bruguier, D. Novo, and P. Benoit, “Vulnera-
bility assessment of the rowhammer attack using machine learning and
the gem5 simulator-work in progress,” in Proceedings of the 2021 ACM
Workshop on Secure and Trustworthy Cyber-Physical Systems, 2021.

[17] M. Green, L. Rodrigues-Lima, A. Zankl, G. Irazoqui, J. Heyszl, and
T. Eisenbarth, “Autolock: Why cache attacks on ARM are harder than
you think,” in USENIX Security Symposium, 2017.

[18] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
Side-Channel Attacks: Bypassing SMAP and Kernel ASLR,” in CCS,
2016.

[19] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote
software-induced fault attack in javascript,” in DIMVA, 2016.

[20] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A fast
and stealthy cache attack,” in DIMVA, 2016.

[21] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches,” in USENIX Security
Symposium, 2015.

[22] A. Herrera, “Running trusted firmware-a on gem5,”
2020, [Online; accessed 17-May-2021]. [Online]. Available:
https://community.arm.com/developer/research/b/articles/posts/running-
trusted-firmware-a-on-gem5

[23] N. Jacob, C. Rolfes, A. Zankl, J. Heyszl, and G. Sigl, “Compromising
FPGA SoCs using malicious hardware blocks,” in DATE, 2017.

[24] D. Johnson, “Undocumented arm64 isa extension present on the
apple m1,” 2021, [Online; accessed 17-May-2021]. [Online]. Available:
https://gist.github.com/dougallj/7a75a3be1ec69ca550e7c36dc75e0d6f

6



[25] M. Kim, S. Kong, B. Hong, L. Xu, W. Shi, and T. Suh, “Evaluating
coherence-exploiting hardware Trojan,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2017, 2017, pp. 157–162.

[26] Y. Kim, R. Daly, J. S. Kim, C. Fallin, J. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” in ISCA, 2014.

[27] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible dram
simulator,” IEEE Computer architecture letters, 2015.

[28] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” in S&P, 2019.

[29] E. Ladakis, L. Koromilas, G. Vasiliadis, M. Polychronakis, and S. Ioan-
nidis, “You can type, but you can’t hide: A stealthy gpu-based keylog-
ger,” in 6th European Workshop on System Security (EuroSec), 2013.

[30] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “Armaged-
don: Cache attacks on mobile devices,” in USENIX Security Symposium,
2016.

[31] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in USENIX
Security Symposium, 2018.

[32] M. Lipp, M. Schwarz, L. Raab, L. Lamster, M. T. Aga, C. Maurice, and
D. Gruss, “Nethammer: Inducing rowhammer faults through network
requests,” in Proceedings of EuroS&PW, 2020.

[33] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in S&P, 2015.

[34] G. Provelengios, D. Holcomb, and R. Tessier, “Power Wasting Circuits
for Cloud FPGA Attacks,” in 2020 30th International Conference on
Field-Programmable Logic and Applications (FPL), 2020, pp. 231–235.

[35] C. Ramesh, S. B. Patil, S. N. Dhanuskodi, G. Provelengios, S. Pillement,
D. Holcomb, and R. Tessier, “Fpga side channel attacks without physical
access,” in 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2018, pp. 45–52.

[36] K. Ryan, “Hardware-backed heist: Extracting ECDSA keys from qual-
comm’s trustzone,” in CCS, 2019.

[37] Q. Salman, K. Yoongu, B. Nicolas, S. Eric,
and N. Mattias, “Half-double: Next-row-over as-
sisted rowhammer,” https://github.com/google/hammer-
kit/blob/main/20210525 half double.pdf, 2021.

[38] F. Schellenberg, D. R. E. Gnad, A. Moradi, and M. B. Tahoori, “An
inside job: Remote power analysis attacks on FPGAs,” in DATE, 2018.

[39] M. Seaborn and T. Dullien, “Exploiting the
dram rowhammer bug to gain kernel privileges,”
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-
rowhammer-bug-to-gain.html, 2015.

[40] R. Shioya, “Visualizing the out-of-order cpu model.”
2018, [Online; accessed 17-May-2021]. [Online]. Available:
http://learning.gem5.org/tutorial/presentations/vis-o3-gem5.pdf

[41] P. Stewin and I. Bystrov, “Understanding DMA malware,” in DIMVA,
2012.

[42] S. Takarabt, A. Schaub, A. Facon, S. Guilley, L. Sauvage, Y. Souissi,
and Y. Mathieu, Cache-Timing Attacks Still Threaten IoT Devices, 03
2019, pp. 13–30.

[43] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Clkscrew: exposing the
perils of security-oblivious energy management,” in USENIX Security
Symposium, 2017.

[44] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic
rowhammer attacks on mobile platforms,” in CCS, 2016.

[45] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “Gpu-assisted mal-
ware,” Int. J. Inf. Sec., vol. 14, no. 3, pp. 289–297, 2015.

[46] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “Cached: Identify-
ing cache-based timing channels in production software,” in USENIX
Security Symposium,, 2017.

[47] S. Weiser, A. Zankl, R. Spreitzer, K. Miller, S. Mangard, and G. Sigl,
“DATA - differential address trace analysis: Finding address-based side-
channels in binaries,” in USENIX Security Symposium, 2018.

[48] Y. Yarom, “Mastik: A micro-architectural side-channel toolkit,” 2016.
[Online]. Available: https://cs.adelaide.edu.au/ yval/Mastik/

[49] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack,” in USENIX Security Symposium,
2014.

[50] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “Truspy: Cache
side-channel information leakage from the secure world on arm devices,”
IACR Cryptol. ePrint Arch., vol. 2016, p. 980, 2016.

[51] M. Zhao and G. E. Suh, “FPGA-Based Remote Power Side-Channel
Attacks,” in S&P, 2018.

7


