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Behavioral/Cognitive

Frequency Selectivity of Persistent Cortical Oscillatory
Responses to Auditory Rhythmic Stimulation

Jacques Pesnot Lerousseau,1 Agnès Trébuchon,1,2 Benjamin Morillon,1p and Daniele Schön1p
1Inserm, Inst Neurosci Syst, Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France, and 2APHM, Hôpital de la Timone, Service de
Neurophysiologie Clinique, Marseille 13005, France

Cortical oscillations have been proposed to play a functional role in speech and music perception, attentional
selection, and working memory, via the mechanism of neural entrainment. One of the properties of neural entrain-
ment that is often taken for granted is that its modulatory effect on ongoing oscillations outlasts rhythmic stimula-
tion. We tested the existence of this phenomenon by studying cortical neural oscillations during and after
presentation of melodic stimuli in a passive perception paradigm. Melodies were composed of ;60 and ;80 Hz
tones embedded in a 2.5 Hz stream. Using intracranial and surface recordings in male and female humans, we reveal
persistent oscillatory activity in the high-c band in response to the tones throughout the cortex, well beyond audi-
tory regions. By contrast, in response to the 2.5 Hz stream, no persistent activity in any frequency band was
observed. We further show that our data are well captured by a model of damped harmonic oscillator and can be
classified into three classes of neural dynamics, with distinct damping properties and eigenfrequencies. This model
provides a mechanistic and quantitative explanation of the frequency selectivity of auditory neural entrainment in
the human cortex.
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Significance Statement

It has been proposed that the functional role of cortical oscillations is subtended by a mechanism of entrainment,
the synchronization in phase or amplitude of neural oscillations to a periodic stimulation. One of the properties
of neural entrainment that is often taken for granted is that its modulatory effect on ongoing oscillations outlasts
rhythmic stimulation. Using intracranial and surface recordings of humans passively listening to rhythmic audi-
tory stimuli, we reveal consistent oscillatory responses throughout the cortex, with persistent activity of high-g
oscillations. On the contrary, neural oscillations do not outlast low-frequency acoustic dynamics. We interpret
our results as reflecting harmonic oscillator properties, a model ubiquitous in physics but rarely used in
neuroscience.

Introduction
Cognitive neuroscience aims to determine the nature of the
basic computations underlying cognition and how they are
implemented (Marr, 2010; Jonas and Kording, 2017; Krakauer
et al., 2017). Neural oscillations are an emergent property
of a population of interacting neurons that can be de-
scribed by few phenomenological parameters, such as
phase, amplitude, and frequency (Sejnowski, 1976; Izhikevich,
2006; Deco et al., 2008). According to recent theories, neu-
ral oscillatory activity plays a crucial role in the implemen-
tation of elemental computations (Buzsáki, 2010; Bastos et
al., 2012; Womelsdorf et al., 2014). Indeed, oscillations
have the powerful property of implementing algorithms,
such as hierarchical parsing (Giraud and Poeppel, 2012),
chunking (VanRullen and Koch, 2003), and clocking
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(Kösem et al., 2014), while being easy to describe mecha-
nistically. From a cognitive neuroscience angle, they con-
stitute an important interface between algorithmic and
implementational levels of analyses (Giraud and Arnal,
2018).

Rhythmic stimulation, either sensory or electrical, can be
used to modulate neural oscillatory activity, to reveal or optimize
brain functions (Thut et al., 2012; Romei et al., 2016). Such mod-
ulation is believed to be realized through neural entrainment,
defined here as the synchronization in phase or amplitude of
neural oscillatory activity to a periodic stimulation (Lakatos et
al., 2019; Obleser and Kayser, 2019). At the algorithmic level,
entrainment phenomena have been proposed to account for seg-
mentation of speech (Zoefel and VanRullen, 2016; Meyer et al.,
2017; Riecke et al., 2018; Wilsch et al., 2018; Zoefel, 2018; Zoefel
et al., 2018a), attentional selection during visual or auditory per-
ception (Lakatos et al., 2008; Schroeder and Lakatos, 2009;
Mathewson et al., 2012; de Graaf et al., 2013; Spaak et al., 2014;
Keitel et al., 2019), perception of the musical beat (Large and
Jones, 1999; Fujioka et al., 2012; Lenc et al., 2018), and au-
ditory working memory performance (Albouy et al., 2017).
At the implementational level, however, entrainment can
occur only if the stimulation is applied at a frequency
close to an eigenfrequency of the targeted cell assembly
(Izhikevich, 2001; Izhikevich et al., 2003). Thus, depending
on whether it is applied at or away from a network’s eigenfre-
quency and whether neural oscillations are self-sustained or
not, a rhythmic stimulation will induce oscillatory entrain-
ment, oscillatory resonance, or a superposition of transient
event-related potentials. This distinction is at the heart of a
vibrant debate concerning the nature of neurophysiological
responses, such as steady-state (Nozaradan et al., 2011;
Keitel et al., 2019), frequency-following (FFR, response to
the fundamental frequency or fine structure of the sound)
(Musacchia et al., 2007; Coffey et al., 2016a,b), or envelope-
following (EFR, response to the amplitude modulations of
the sound) responses (Capilla et al., 2011; Haegens and Zion
Golumbic, 2018; Zoefel et al., 2018b; Doelling et al., 2019;
Helfrich et al., 2019).

One of the properties of entrainment that is often taken for
granted is that its modulatory effect on ongoing oscillations out-
lasts rhythmic stimulation (Lakatos et al., 2013). In dynamical
systems approaches, it corresponds to the fundamental property
of underdamping (damping ratio z , 1), that is, the ability for a
system to maintain a long-lasting oscillation, echo, or reverbera-
tion, whose amplitude exponentially decreases toward baseline
after the stimulation ends (Pikovsky et al., 2002; Hanslmayr et
al., 2019; Helfrich et al., 2019). Strikingly, this property has never
been systematically investigated despite being considered as a
possible mechanism underlying temporal predictions in multiple
cognitive theories, in particular at low (,10Hz) frequencies:
dynamic attending theory (Large and Jones, 1999), multisensory
integration (Kösem and van Wassenhove, 2012; Grabot et al.,
2017), timing (Kösem et al., 2014), or interpersonal interaction
(Hove and Risen, 2009). In the auditory domain especially,
where the temporal structure of sound streams is highly informa-
tional, either for speech comprehension (Shannon et al., 1995;
Zatorre and Belin, 2001; Giraud and Poeppel, 2012) or musical-
beat perception (Large and Jones, 1999; Nozaradan et al., 2011;
Fujioka et al., 2012; Haegens and Zion Golumbic, 2018), under-
damping is believed to be the property that allows the brain
to anticipate the sounds. While neural entrainment has
been conceptualized as a mechanism of attentional sensory

selection (Large and Jones, 1999; Lakatos et al., 2008, 2019;
Schroeder and Lakatos, 2009; Obleser and Kayser, 2019), it
has also been argued to be automatic, and to occur in pas-
sive listening contexts (Fujioka et al., 2012; Henry and
Obleser, 2012; Ding and Simon, 2014; Cirelli et al., 2016;
Molinaro et al., 2016). Currently, there is no clear evidence
(by observation of underdamping of frequency specificity)
in favor or against the fact that entrainment can be
observed in a passive listening context.

To investigate the damping properties of cortical oscilla-
tions during auditory rhythmic stimulation, we recorded
whole-brain cortical neurophysiological activity with either
stereotactic EEG (sEEG) on epileptic patients implanted for
clinical evaluation or magnetoencephalography (MEG) on
healthy participants. While sEEG provides the best spatio-
temporal resolution and signal-to-noise ratio of human corti-
cal recordings (Parvizi and Kastner, 2018), optimizing our
chances to detect long-lasting oscillations, it does not provide
a full cortical coverage, which is afforded by the complemen-
tary MEG recordings (Baillet, 2017). Participants passively
and repetitively listened to a 6 s auditory stream composed of high-
frequency tones (;80 or ;60Hz) presented at a rate of 2.5Hz.
Periods of silence separated both successive tones and streams, to
allow investigating the damping properties of neural oscillatory
responses. We explored the occurrence of cortical neural oscilla-
tions during and after presentation of melodic stimuli at both tones
(high,;80/60Hz) and stream (low, 2.5Hz) frequencies.

Based on the auditory literature, we hypothesized that
neural underdamping would be selective to low-frequency
stimulation and would mainly occur in auditory, but also
motor cortical regions (Fujioka et al., 2012; Morillon and
Baillet, 2017). Hence, while each tone would evoke a high-g
(;60/80 Hz) neural response that would end at stimulus off-
set, the underlying rhythm would entrain d (2.5 Hz) neural
oscillations, characterized with underdamping (i.e., long-last-
ing activity). In addition to these phase-locked responses, we
expected to observe an induced response in the b range (15-
30Hz), whose amplitude would be entrained at the stream rate
through a mechanism of phase-amplitude coupling (Fujioka et al.,
2012; Cirelli et al., 2014; Chang et al., 2016). We then fitted a
damped harmonic oscillator model (Freeman, 1961, 1972), the
standard model in physics to study oscillatory phenomena,
to the data. We made the hypothesis that this model will
allow capturing key aspects of the data, that is, reducing the
complexity of the neural response to three interpretable pa-
rameters (eigenfrequency, time delay, and damping ratio).
We made the hypothesis that this simplification would
allow differentiating neural populations based on their dy-
namics and revealing whether the damping property is
region- and frequency-specific.

We thus investigated many possible forms of phase and am-
plitude synchronization, at both low and high frequencies and in
a wide range of cortical regions, in response to our composite au-
ditory rhythmic stimulation. Hence, we investigated the follow-
ing: (1) whether underdamping occurs at all after passive
auditory rhythmic stimulation; (2) if so, whether it depends on
the frequency of stimulation; and (3) whether it is region- and/or
frequency-specific.

Materials and Methods
Experimental design

Stimulus. The auditory stimulus was a bass riff designed to embed
both high- (;60/80Hz) and low- (2.5Hz) frequency acoustic
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modulations, thereby allowing to study properties of both high- and
low-frequency neural oscillations. For a total duration of 6.24 s, it was
composed of 16 tones, each lasting 170ms, presented at a regular pace of
2.56Hz (i.e., with an interonset interval of 390ms). The first eight tones
had a fundamental frequency of 83Hz lasting 14 cycles. The last eight
tones had a fundamental frequency of 62Hz lasting 11 cycles. The two
series of eight tones were identical repetition of two complex sounds
recorded from an acoustic bass guitar. The acoustic envelope was
extracted by computing the absolute value of the Hilbert transform of
the signal filtered between 50 and 90Hz, which captures the fundamen-
tal frequencies of both sounds. The interstimulus interval was randomly
chosen between 2.92, 3.12, and 3.32 s. MEG participants listened to 300
stimuli and sEEG patients 100 stimuli.

Stimulus presentation. The stimuli were presented binaurally to par-
ticipants at an adjusted comfortable level (;70dB) using loudspeakers
for sEEG patients and Etymotic insert earphones with foam tips
(Etymotic Research) for MEG participants. Presentation was controlled
with E-prime 1.1 (Psychology Software Tools). sEEG patients were pas-
sively listening. MEG participants were passively listening and simulta-
neously watching a silent movie. The whole experiment lasted ;45min
for MEG participants and;15min for sEEG patients.

Common analyses between MEG and sEEG datasets
Software. All analyses were done using MNE-Python (Gramfort et

al., 2014), FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) and custom
scripts written in Python.

Statistical analysis. Analyses of sEEG data were done following a
fixed effect strategy, that is, considering all patients’ electrodes collec-
tively in an average brain. Individual differences of brain morphology
and connectivity were therefore neglected. This strategy was chosen as
each patient had a unique electrode implantation map, thus rendering
group statistics inappropriate. For MEG data, the strategy was to reduce
the normalized signal estimated at the source-level (vertex) to a statistics
across participants before subsequent analyses, typically a t computed
from a one-sample t test against 0 across participants. Most of the

analyses were thereafter consistent between sEEG andMEG data, as hav-
ing a single average brain with multiple electrodes is similar to having a
single average brain with multiple vertices. The only difference was that
the sEEG metrics corresponded to z values, and the MEG metrics to
t values. The fixed-effect strategy we used for the sEEG data has a
low generalization power alone. However, replicating the effects in
the MEG-independent dataset and using a random-effect strategy
for the MEG data greatly strengthen our confidence in the general-
ization of the results.

Align-bin-and-count (ABC) pipeline: estimation of the duration of a
cyclic activity. We developed a method to estimate the number of cycles
of oscillatory activity present in a neural signal, relative to the number of
cycles present in the stimulus. The same procedure has been used exten-
sively throughout the paper, for high- and low-frequency envelope of the
evoked response and intertrial phase coherence (ITPC). This method
has two objectives: find, if any, all responsive sources (sEEG channels or
MEG vertices) and estimate the number of activity cycles they exhibit at
a specific oscillatory frequency. Persistent activity was defined as.1 os-
cillatory cycle after stimulus offset. It can be decomposed in six steps
(Fig. 1). The advantage of ABC over more conventional approaches,
such as testing ITPC compared with a surrogate distribution, is that it
accounts for three potential sources of artifact: (1) the overall power of
each source, which can vary greatly (Step 1); (2) the lag between stimulus
and neural response onsets (Steps 2 and 3); and (3) the spurious oscilla-
tory activity (smearing) generated by the filtering process (Step 5).
Moreover, it is adapted to any kind of signal (evoked response, ITPC, or
spectral power) and computationally efficient. The six steps are as
follows:

1. z score the activity of each source across time relative to its prestimu-
lus baseline.

2. Find across all sources the lowest threshold such that none shows onset
activity before stimulus onset (data-driven threshold estimation). The
threshold is the same for all considered sources, and corresponds to the
peak of activity observed during the baseline across all sources.

Figure 1. The ABC methodology. A, Signal of interest, here an evoked response. B, Impulse response of the one-pass, zero-phase, noncausal bandpass FIR filter with a hamming window.
C, Filtered signal at the frequency of interest, here 62 Hz. D, Extraction of the envelope of the signal, as the absolute value of the Hilbert transform. E, Onset detection. The threshold is chosen
such that no channel/vertice shows activity before stimulus onset. F, Signal realignment. G, Binning of activity at the relevant window size (here 1/62= 16ms). H, Consecutive significant cycles
count. Another threshold is chosen such that no bin of any channel/vertice is significant before onset. I, Comparison between the stimulus number of cycles and the signal number of cycles.
Here, the evoked activity shows 6 cycles of activity more than the stimulus.
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3. Align each source activity such that time 0 corresponds to the
moment where its activity crosses the defined threshold.

4. Discretize the continuous activity in time bins, whose duration
depends on the acoustic modulation of interest, for example, 1/83
Hz = 12 ms for the 83 Hz tones; 1/2.5 Hz = 390 ms for the 2.5 Hz
stimulus presentation rate.

5. Find across all sources the lowest threshold such that none shows an
active bin onset before their onset. We need to define another threshold
for the bins because binning implies averaging, rendering the value
defined in Step 3 irrelevant. Once again, the threshold is the same for all
considered sources. This step solves the problem of the smearing
induced by the filter: because the filter is symmetric and noncausal, it
produces the same artifact before the onset and after the offset.
Thresholding to remove spurious activity before the onset also removes
spurious activity after the offset.

6. Count the number of consecutive cycles above the threshold defined
in Step 5.

During Steps 3 and 6, some sources never met the required criterion
and are therefore removed from the analyses. These steps thereby induce
a selection of the responsive sources. To validate this procedure, we
applied it to the acoustic signal itself and confirmed that it correctly
identifies the number of cycles actually present in the stimulus (e.g., 11
cycles were estimated for the 62Hz tones). As the wavelet length
decreases with the frequency of interest and as the ABC method uses a
binning strategy, all the results are scale free. Therefore, the period dura-
tion does not matter for the analysis, as we are counting numbers of
cycles and not durations. In this context, there is no specificity of the
analysis at 2.6Hz compared with the analyses at 62 and 83Hz.

Anatomical MRI acquisition and segmentation. The T1-weighted
anatomic MRI (aMRI) was recorded using a 3T Siemens Trio MRI scan-
ner. Cortical reconstruction and volumetric segmentation of partici-
pants’ T1-weighted aMRI were performed with FreeSurfer (http://surfer.
nmr.mgh.harvard.edu/). This includes the following: motion correction,
average of multiple volumetric T1-weighted images, removal of non-
brain tissue, automated Talairach transformation, intensity normaliza-
tion, tessellation of the gray matter white matter boundary, automated
topology correction, and surface deformation following intensity gra-
dients. Once cortical models were complete, deformable procedures
could be performed, including surface inflation and registration to a
spherical atlas. These procedures were used to morph current source
estimates of each individual for MEG and channel location for sEEG
onto the FreeSurfer average brain for group analysis.

sEEG
Participants. Sixteen patients (5 females, mean age 26.9 years, range 9-

46 years; see Table 1) with pharmaco-resistant epilepsy took part in the
study. They were implanted with depth electrodes for clinical purposes at
the Hôpital de La Timone (Marseille, France). Neuropsychological assess-
ments conducted before sEEG recordings indicated that all participants had
intact language functions and met the criteria for normal hearing. None of
them had their epileptogenic zone, including the auditory areas as identified
by experienced epileptologists. Patients provided informed consent before
the experimental session, and the study was approved by the Institutional
Review Board of the French Institute of Health (IRB00003888).

Data acquisition. Depth electrodes (0.8 mm, Alcis) containing 10-15
contacts were used to perform the functional stereotactic exploration.
Contacts were 2 mm long and spaced from each other by 1.5 mm. The
locations of the electrode implantations were determined solely on clini-
cal grounds. During the recording session, participants lay comfortably

in a chair in a sound-attenuated room. sEEG signals were recorded at a
sampling rate of 1000Hz using a 256 channel BrainAmp amplifier sys-
tem (Brain Products) and bandpass filtered between 0.3 and 500Hz. A
scalp electrode placed in Fz was used as the recording reference.

Anatomical localization of electrodes. Anatomical localization of
electrodes was performed using a local software developed at the Hôpital
de La Timone (Medina Villalon et al., 2018). First, an automatic proce-
dure coregistered electrode location on the scanner and the patient’s
MRI. Second, the morphing matrix computed by Freesurfer used to pro-
ject one individual’s brain onto the average brain was applied directly on
these locations.

Preprocessing. In order to remove power line artifacts, we first
applied a notch filter at 50 Hz and harmonics up to 300 Hz. The sig-
nal was then rereference using a bipolar montage; that is, activity of
each channel was subtracted from its following neighbor on the
electrode. The continuous signal was then epoched from �1 to 9 s
relative to the onset of each stimulus. Such long epochs allow to
study both the response during the stimulus, from 0 to 6.24 s, and
the silence directly following stimulus offset, from 6.24 up to 9 s. No
baseline correction was applied, as effects potentially present in the
silence can leak to the baseline of the next trial and therefore be
removed by any process of baseline correction. For each source,
epochs with 6500 mV peak-to-peak amplitude artifacts were
rejected. Sources with. 70% rejected epochs were entirely removed,
as they most likely contained epileptic discharges. Finally, sources
showing low voltage epileptic activity were removed based on visual
inspection. Overall, 2648 of 3139 sources were kept, with on average
82 of 100 epochs (Table 1).

Time-frequency decomposition. Trial-by-trial time-frequency decom-
position was conducted in a range of 100 frequencies, logarithmically
ranging from 2 to 150Hz. Morlet wavelet transform was applied to the
data using the MNE-python function time_frequency.tfr_morlet, with
parameter n_cycles = 6. From the resulting complex representation, both
ITPC and power were extracted as follows:

ITCt;f
j ¼

����
1
N

XN
n¼0

ei:arg zt;fj;n

� �����

Powert;fj ¼ 1
N

XN
n¼0

���� zt;fj;n
� �����

2

where zt;fj;n designates the complex time-frequency representation
of source j at trial n over N, frequency f and time t. Similarly,

ITPCt;f
j designates the ITPC of source j at frequency f and time t, and

Powert;fj its power.
Frequency following response analysis. In order to study the FFR, we

re-epoched the signal from �0.05 to 0.35 s relative to the onset of each
tone. We computed the evoked activity as the mean across epochs. In
order to study only the high-frequency component of the evoked
response, we filtered it between 82 and 84Hz for the 83Hz tones and
between 61 and 63Hz for the 62Hz tones, using a one-pass, zero-phase,
noncausal bandpass FIR filter with a hamming window (for the impulse
response of the filter, see Fig. 1B). We then extracted the envelope as
the absolute value of the Hilbert transform, and applied our ABC pipe-
line (see Common analyses) to select the responsive sources and estimate
the duration of their activity relative to the number of cycles present in

Table 1. sEEG patient’s data

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Total channels 189 224 189 249 206 150 189 224 189 214 184 160 209 192 180 191
Analyzed channels 185 218 183 219 198 139 188 102 188 186 176 158 127 41 152 188
% of analyzed epochs 93 95 97 83 92 68 99 69 92 85 82 86 58 68 53 92
Right PAC 1 SAC 2 2 1 0 1 1 1 1 0 2 0 0 0 0 2 0
Left PAC 1 SAC 0 2 0 2 0 0 0 0 2 2 1 1 0 2 0 0
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the stimuli (14 for the 83Hz tones and 11 for the 62Hz tones). The auto-
matically selected thresholds for the onsets (Step 3) were 5.0 z score for
the 83Hz tones and 4.9 for the 62Hz tones. The automatically selected
thresholds for the bin activity (Step 5) were 5.1 for the 83Hz tones and
4.8 for the 62Hz.

EFR analysis. We apply the same line of reasoning to investigate the
EFR at 2.5Hz. We computed the evoked activity as the mean across all
epochs. We filtered this activity between 1.6 and 3.6Hz and extracted
the envelope. We then apply ABC on this envelope signal (see Common
analyses). The selected thresholds were 5.4 for the onsets (Step 3) and
4.3 for the bins (Step 5).

Definition of canonical frequency bands based on auditory cortex ac-
tivity. Localization of the auditory cortex was based on functional crite-
ria, including latencies and shape of the auditory evoked potentials to
pure tones, tested on an independent session. Primary auditory cortex
(PAC) was defined by the presence of a P20/N30 complex, and second-
ary auditory cortex (SAC) by the presence of a P40/N50 complex
(Liégeois-Chauvel et al., 1991, 1994). Responses of PAC and SAC were
averaged, as no main differences were found in any of our analyses.
Definition of canonical frequency bands was then based on the profile of
the spectrum of ITPC and power (averaged across time during the stim-
ulus duration, from 0 to 6.24 s). It resulted in an empirical definition
of d (2-3.5Hz), u (4-7Hz), a (8-11Hz), and g bands (50-110Hz).
Although not prominent in either the sEEG dataset or in the MEG data-
set, we added a b band (12-22Hz) based on existing literature. Indeed,
previous works have shown coupling of the beta band power with the
phase of the stimulus envelope at similar paces (Fujioka et al., 2012;
Morillon and Baillet, 2017).

ITPC fluctuations at 2.5Hz. ITPC was first averaged across frequen-
cies inside each frequency band (d , u , a, b , and g ). For each band, we
then applied the ABC pipeline (see Common analyses) to estimate re-
sponsive sources as well as the duration of significant oscillatory activity.
Thresholds for onsets (Step 3) were 3.4 (d ), 4.2 (u ), 5.4 (a), 6.3 (b ), and
8.2 (g ). Thresholds for the bins (Step 5) were 3.2, 3.7, 3.8, 3.4, and 3.6,
respectively.

Temporal response function (TRF) analysis. To analyze power signals,
we relied on a recently developed powerful methodology that estimates
TRFs by relying on encoding/decoding models of electrophysiological ac-
tivity (Crosse et al., 2016). TRFs rely on the assumption that the activity
can be expressed as a linear convolution between the input stimulus and a
filter. The filter is typically unknown and therefore estimated by a least-
square ridge regression. We reasoned as follows: if the power is modulated
by the envelope of the auditory stimulus, then these fluctuations are in-
formative about the stimulus dynamics. We should therefore be able to
train a TRF to decode the envelope based on the power information. If the
power continues to exhibit these fluctuations in the silence directly follow-
ing the offset of the stimulus, we should still be able to decode the enve-
lope oscillations during this post-stimulus period. Furthermore, and
contrary to the ABC method, the TRF would reveal effects that are sup-
pressed by baseline correction, as it does not involve baseline correction.
We trained a TRF on all available power information, namely, power in
all epochs, sources, frequencies, and time points, to decode the envelope
of the auditory stimulus. We trained the model on the second part of the
auditory stimulus, from 3.12 to 5.85 s after stimulus onset (which corre-
sponds to the presentation of the six 62Hz tones), and evaluated it on the
first part of the stimulus from 0.39 to 2.73 s (which corresponds to the pre-
sentation of the six 83Hz tones), and on the silence directly following,
from 6.24 to 8.58 s. The time windows were chosen to have the same
length, and to avoid the strong evoked activity present for the first tone
and the changing tone. Performance was defined as the coefficient of
determination (R2) between the predicted envelope and the actual enve-
lope. The ridge parameter (a = 1000) was chosen to maximize the per-
formance of the TRF on the signal during the first part of the stimulus. In
order to reduce dimensionality and improve computational speed, we fit-
ted a principal components analysis (PCA) before the TRF training. To
avoid confounds because of this PCA procedure, we fitted it on the power
in the second part of the stimulus and applied it without any further
adjustments on the power in the first part and in the silence. We kept 60
components, explaining 99% of the total variance.

Damped harmonic oscillator model. We fitted the sEEG data to a
damped harmonic oscillator model. The model is described by the fol-
lowing linear differential equation:

dx2

dt
¼ Fðt � DtÞ � z v 0

dx
dt

� v 2
0x

We used a grid search approach to find optimal parameters. For each
set of parameters, we simulated 100 epochs of the harmonic oscillator
time course with random initial conditions, with F being our auditory
stimulus. Although analytically solved for any function F, we used a nu-
merical solution (Euler’s method with a time step of 1/40,000 s) because
our stimulus has no simple functional form. In order to compare model
time courses and sEEG data, we apply the same processing steps: band-
pass filter, resampling at 1000Hz, Morlet wavelet transform, extraction
of power, and ITPC. Goodness of fit was then measured as the coeffi-
cient of determination (R2) of the linear regression between the model
ITPC (or power) and the sEEG data ITPC (or power). The grid search
explored a wide range of values: z logarithmically spaced values between
0.01 and 100 in 25 steps, 2pv0 logarithmically spaced values between
0.1 and 100Hz in 25 steps, Dt linearly spaced values between 0 and
400ms in 20 steps. This procedure was used to fit all sEEG channels and
output a parameters matrix of size n_channels � 3. This matrix was
used to cluster the electrodes using the k-means algorithm. The optimal
number of clusters (k=3) was selected using the silhouette index, a
standard measure that compares the mean intracluster distance and the
mean nearest-cluster distance for each sample. Contrary to the ABC
method, this modeling approach would reveal effects that are suppressed
by baseline correction, as it does not involve baseline correction.

MEG
Participants. We collected data from 15 participants (8 females, me-

dian age 27 years, age range 23-40 years) after providing informed con-
sent. All had normal hearing, reported no neurologic deficits, and
received 40 euros for their time. The experiment was approved by the
National Ethics Committee on research on human subjects.

Data acquisition. MEG data were recorded with a whole-head 4D-
neuroimaging system with 248 magnetometers. Participants were lying
in horizontal position under the MEG dewar, facing a screen displaying
a silent movie. MEG recordings were sampled at 678Hz and bandpass
filtered between 0.3 and 500Hz. Four head position coils (HPI) meas-
ured the head position of participants before each block. Before the ses-
sion, 2min of empty room recordings was acquired for the computation
of the noise covariance matrix.

Preprocessing. In order to remove power line artifacts, we first
applied a notch filter at 50Hz and harmonics up to 300Hz. We further
low-pass filtered the signal below 150Hz and resampled it at 500Hz. An
independent components analysis was performed on the bandpass signal
between 1 and 30Hz, and components exhibiting topographical and
time courses signatures of eye blinks or cardiac artifacts were removed
from the data. The continuous signal was then epoched from �1 to 9 s
relative to the onset of each stimulus. No baseline correction was applied.
Epochs with 65 pT peak-to-peak amplitude artifacts were rejected (on
average 4.6%).

MRI-MEG coregistration and source reconstruction. The coregistra-
tion of MEG data with the individual’s structural MRI was conducted by
realigning the digitized fiducial points with MRI slices. Using MRILAB
(Neuromag-Elekta), fiducials were aligned manually on the MRI slice.
Individual forward solutions for all source reconstructions located on
the cortical sheet were next computed using a 3 layer boundary element
model (Hamalainen and Sarvas, 1989; Mosher et al., 1999) constrained
by the individual aMRI. Cortical surfaces were extracted with FreeSurfer
and decimated to;10,240 sources per hemisphere with 4.9 mm spacing.
The forward solution, noise, and source covariance matrices were used
to calculate the depth-weighted (default parameter g = 0.8) and noise-
normalized dynamic statistical parametric mapping (Dale et al., 2000)
inverse operator. This unitless inverse operator was applied using a loose
orientation constraint on individuals’ brain data by setting the transverse
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component of the source covariance matrix to 0.2 (default value). The
reconstructed current orientations were pooled by taking the norm,
resulting in manipulating only positive values. The reconstructed
dynamic statistical parametric mapping estimates time series and time-
frequency plane were morphed onto the FreeSurfer average brain for
group analysis and common referencing.

Time-frequency decomposition. Trial � trial time-frequency decom-
position was performed using the same procedure and same parameters
as for the sEEG.

Frequency following response analysis. As for sEEG, we epoched
data, computed the evoked response, filtered it at the stimulus funda-
mental frequency, extracted the envelope, and applied a z score normal-
ization. We applied a t test against 0 across participants at each time
point and each source. We then applied the ABC pipeline (see Common
analyses) to select the responsive sources and estimate the duration of
their activity. Thresholds for MEG were manually fixed, and corre-
sponded to p, 0.01 (t statistic;2.7, df = 14).

Low-frequency amplitude analysis. As for sEEG, we computed the
evoked response, filtered it at the stimulus fundamental frequency,
extracted the envelope, and applied a z score normalization. Then, we
applied a t test against 0 across participants at each time point and each
source. We then followed the ABC pipeline (see Common analyses) with
a p, 0.01 threshold.

Anatomical localization of the auditory cortex. We relied on an
anatomic criterion to localize the auditory cortex. We used the
Destrieux atlas (Destrieux et al., 2010), labeled temporal transverse,
comprising primary and secondary auditory cortices (left hemi-
sphere “S_temporal_transverse-lh”: 564 vertices, right hemisphere
“S_temporal_transverse-rh” 413 vertices). We first applied a sin-
gular value decomposition to the time courses of each source
within the label and used the scaled and sign-flipped first right-
singular vector as the label time course. The scaling was performed
such that the power of the label time course was the same as the av-
erage per-vertex time course power within the label.

ITPC fluctuations at 2.5Hz. Similarly to sEEG, ITPC was first aver-
aged across frequencies inside each frequency band, for each participant,
source, frequency band, and time point. We z scored the signal across
time compared with its baseline. We then applied a t test against 0 across
participants. We used the ABC pipeline (see Common analyses) as previ-
ously, with a p, 0.01 threshold.

TRF analysis. The TRF model was fitted on sensor space in MEG to
reduce computational load. Furthermore, sensors contain the same
amount of information as sources, thus estimating TRF on sensors or on
sources is theoretically equivalent. We therefore trained the model on all
available power information, namely, power in all participants, sensors,
epochs, frequencies, and time points, to decode the envelope of the audi-
tory stimulus. The ridge parameter (a = 1.0� 108) was chosen to maxi-
mize the performance of the TRF on the signal during the first part of
the stimulus (as for sEEG). In order to reduce dimensionality and
improve computational speed, we fitted a PCA before the TRF training.
We kept 101 components, explaining 99% of the total variance.

Results
High-frequency acoustic modulations (;60/80Hz) induce
long-lasting neural FFRs
We first investigated the FFR (i.e., the neural evoked response at
the fundamental frequency of the tones). The main goal of this
analysis was to identify sEEG/MEG sources for which an FFR
was observed and then to estimate whether this activity outlasted
the duration of the stimulus. For this purpose, we developed
a method that we refer to as ABC (see Materials and Methods;
Fig. 1), in which we treat each oscillatory cycle as a bin of activity
and estimate how many consecutive active bins are present in
the neural signal. This method accounts for differences in power
between sources, lag between stimulus and neural response and
spurious oscillations arising from filtering smearing (see
Materials and Methods). This allows us to accurately estimate

the duration of each significant neural response and infer
whether it outlasts stimulus duration or not. In order to study
the FFR, we applied ABC to the envelope of narrow-band filtered
signals (83 or 62Hz). Importantly, we confirmed the validity of
this method by applying the filter and ABC to the sound stimuli
themselves, which yielded an accurate estimate of their number
of cycles. Long-lasting activity duration could therefore not arise
from spurious filtering smearing (de Cheveigné and Nelken,
2019).

Analyses of sEEG recordings first reveal that FFRs are present
in a wide cortical network, extending well beyond auditory cortex
(13% of all recorded sites for 83Hz, 21% for 62Hz; Fig. 2J,K, white
and colored dots). This network comprises auditory regions
(Heschl gyrus and planum temporale bilaterally, extending to
superior and middle temporal gyri) and also comprises premotor
and motor regions (bilateral precentral gyrus and right premotor
cortex) as well as associative regions involved in higher-level audi-
tory processing (bilateral inferior parietal lobule and left inferior
frontal gyrus). The FFR persists beyond stimulus duration in a
substantial proportion of the responding sEEG sources (118 of
424 corresponding to 28% at 83Hz and 232 of 669 corresponding
to 35% at 62Hz). The number of cycles of oscillatory activity can
exceed that of the stimulus by up to 11 cycles at 83Hz and 8 cycles
at 62Hz (;180% of stimulus duration; Fig. 2H,I). The anatomic
location of sEEG sources whose activity outlasts stimulus duration
is also comprised within the entire dual-stream auditory cortical
processing pathway (Rauschecker and Scott, 2009) (Fig. 2J,K): in
the anteroventral stream, from auditory to inferior frontal cortex
(auditory cortex, medial part of the superior temporal gyrus, mid-
dle temporal gyrus, and left pars triangularis of the inferior frontal
gyrus) and in the postero-dorsal stream, from auditory to motor
cortex (posterior part of the superior temporal gyrus, inferior pari-
etal lobule, precentral gyrus, and right premotor cortex).

We ran supplementary analyses to further control for the pres-
ence of artifacts that could arise from spurious filtering smearing.
First, persistent FFR can be seen clearly in unfiltered evoked
responses (examples are presented in Fig. 2D,E). Second, instead
of applying the relevant filter (centered around the frequency of
stimulation), we applied an irrelevant filter (centered around the
frequency of the other stimulus; e.g., 83Hz filter to the 62Hz stim-
ulus response). Our rationale was that, if the result is spurious, the
frequency of the narrow-band filter will not impact the result.
Using “irrelevant” filters, the proportion of electrodes that show a
persistent activity dramatically drops to 5% after the 83Hz audi-
tory stimulus and to 3% after the 62Hz auditory stimulus. This
demonstrates that artifacts that could arise from spurious filtering
smearing did not contaminate the analyses.

MEG data substantiate the sEEG results, revealing FFR in
superior and inferior temporal gyri, precentral gyrus, and supra-
marginal gyrus. Again, the FFR persists beyond stimulus dura-
tion (24 of 395 corresponding to 6% at 83Hz and 212 of 858
corresponding to 25% at 62Hz). The number of cycles of oscilla-
tory activity can exceed that of the stimulus by up to 12 cycles at
83Hz and 8 cycles at 62Hz (;180% of stimulus duration; Fig.
2L,M). Similarly, the localization of the MEG sources whose ac-
tivity outlasts stimulus duration comprises regions of the audi-
tory network (superior temporal gyrus, inferior parietal lobule,
and right precentral gyrus).

Low-frequency acoustic modulations (2.5Hz) do not induce
long-lasting neural EFRs
We used the same approach to investigate the neural
response to the low-frequency amplitude modulations of
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the auditory stream, known as EFR. Each tone of sequence
was separated by a fixed interonset interval of 390 ms,
resulting in a 2.5 Hz amplitude-modulated temporal enve-
lope (Fig. 3B). We applied ABC to the envelope of the
2.5 Hz narrow-band filtered signals (Fig. 3C).

sEEG recordings analyses reveal that, similarly to FFR, a wide
cortical network presents an EFR (Fig. 3E). It comprises auditory
regions (bilateral Heschl gyrus, planum temporale, and middle
temporal gyrus), motor regions (bilateral precentral gyrus), and
associative regions (left inferior frontal gyrus). However, unlike

Figure 2. Estimation of FFR duration (83 and 62 Hz). A, Auditory stimulus of 8 tones with high-frequency carriers at 83 Hz followed by 8 tones at 62 Hz presented at a 2.5 Hz rate (envelope).
B, C, Waveform of the 83 and 62 Hz tones, made up of 14 and 11 oscillatory cycles, respectively. D, E, Evoked unfiltered response of 8 example sEEG channels, from different participants and
different brain regions (Heschl’s gyrus, motor cortex, and superior temporal sulcus). After a small delay, the neural response contains more cycles than the stimuli (highlighted in red arrows,
141 8 = 22 cycles in this example). F, G, Survival distribution of sEEG channels with consecutive significant activity after onset; 118 and 232 channels outlast the 0.170 s duration of the 83
and 62 Hz stimuli, respectively. H, I, Localization of sEEG channels showing an FFR during the stimulus. Channels with activity outlasting stimulus duration are circled. Color intensity indicates
the number of cycles outlasting stimulus duration. J, K, Survival distribution of MEG vertices activity showing consecutive significant activity after onset. L, M, Localization of MEG vertices show-
ing an FFR. Color intensity indicates the number of cycles outlasting stimulus duration.
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FFR, no long-lasting EFRs were observed. Only one (/40 responsive)
sEEG source has a response that outlasts stimulus offset, and only by
a single cycle (Fig. 3E). Similarly, MEG results did not reveal outlast-
ing EFR (Fig. 3G), except for one source (/32) exceeding by a single

cycle the stimulus duration. Thus, low-frequency acoustic modula-
tions do not induce outlasting EFRs.

The two previous analyses investigated the N-to-N relation-
ship between the stimulus frequency and the brain oscillatory ac-
tivity: a frequency-specific neural oscillation (62, 83, or 2.5Hz) in
response to a frequency-specific oscillating stimulus. However,
nesting (e.g., cross-frequency phase-phase or phase-amplitude
coupling) phenomena exist and play an important role in shap-
ing brain dynamics (Buzsáki, 2006; Canolty et al., 2006; Jensen
and Colgin, 2007; Canolty and Knight, 2010). We therefore
broadened our analysis to all neural activity phase-locked to the
stimulus. These N-to-M components were revealed by a time-
frequency decomposition, using the ITPC, a measure that quantifies
the amount of phase consistency across trials for each frequency
and time bin. A high ITPC is indicative of strong phase-locking to
the stimulus for a particular frequency and a particular time point.

In order to investigate whether low-frequency (2.5Hz) acous-
tic stimulation induces any long-lasting ITPC, we thus decom-
posed the neural activity into five frequency bands of interest,
defined based on the response of the auditory cortex. We esti-
mated both the power time-frequency plane, quantifying the
trial-averaged response amplitude of each frequency in time
(induced activity), and the ITPC plane (phase-locked activity).
We then computed the mean and variance across time of both
power and ITPC of each frequency during the presentation of
the stimulus (for sEEG, see Fig. 4; for MEG, see Fig. 5). This
resulted in five spectral distributions, revealing clear and recur-
ring spectral peaks and troughs (Fig. 4C,E) at which neural activ-
ity was modulated during stimulus presentation, in the d (2-
3.5Hz), u (4-7Hz), a (8-11Hz), b (12-22Hz), and g bands (50-
110Hz). In particular, we chose to investigate the b band (12-
22Hz), as existing literature reports the implication of beta activ-
ity in the encoding of the temporal structure of acoustic stimuli
(Fujioka et al., 2012; Cirelli et al., 2014; Chang et al., 2016).

We then applied the ABC procedure on all sEEG/MEG sour-
ces and all frequency bands ITPC to identify active sources and
estimate their activity duration. sEEG and MEG recordings con-
sistently reveal the spatial extent of the neural response for each
defined frequency band. Stimulation induces a large-scale evoked
response, encompassing auditory, motor, and associative regions
in the d and g bands. On the contrary, a, b , and g responses
are more focal, in the bilateral superior temporal gyrus, and, for
a and g responses, also in the precentral gyrus. Critically, none
of these evoked responses outlasts significantly the stimulus du-
ration. In the d band only, a tiny proportion of channels (1% in
sEEG, 6 of 531, ,0.1% in MEG, 4 of 5124) outlasts the stimulus
by one cycle.

The neural response can be split into phase-locked activity,
revealed by ITPC, and induced activity, revealed by power aver-
aging across trials (Tallon-Baudry and Bertrand, 1999). If the
low-frequency auditory modulation does not probe a long-last-
ing phase-locked response, effects could still be present in the
induced activity. For completeness, we therefore tested this hy-
pothesis. We used machine learning to train a model (TRF)
(Crosse et al., 2016) to decode the stimulus with a linear combi-
nation of induced power in all sources and all frequencies
delayed in time. We reasoned as follows: if power is modulated
by the envelope of the auditory stimulus, then these fluctuations
are informative about the stimulus. We should therefore be able
to train a TRF model to decode the envelope based on power
data. If power continues to exhibit these fluctuations during the
silent period directly following the offset of the stimulus, we
should still be able to decode the envelope oscillations (see

Figure 3. Estimation of EFR duration (2.5 Hz). A, Auditory stimulus. B, Waveform of the enve-
lope fluctuation at 2.5 Hz. C, Evoked unfiltered response of two example sEEG channels, from differ-
ent participants, both in Heschl’s gyrus. D, Survival distribution of sEEG channels with consecutive
significant activity after onset. Channels whose activity lasts.16 cycles outlast the duration of the
stimulus (N=1 channel). E, Localization of sEEG channels having an EFR. The channel with long-last-
ing activity is circled. Color intensity indicates the number of cycles of post-stimulus activity (1).
F, Survival distribution of MEG vertices activity showing consecutive significant activity after onset.
G, Localization of MEG vertices that have an EFR. Color intensity indicates the number of cycles of
post-stimulus activity (no vertex shows persistent activity except one with one cycle).
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Figure 5. Detailed EFR in the auditory cortex recorded with MEG. A, Localization of the MEG vertices located in bilateral auditory cortices. B, Evoked response. Gray shaded
area represents the SEM across participants. Vertical plain and dotted lines, respectively, indicate the onset of each tone and their theoretical continuation in the silence.
C, Left, Average and (right) SD of power over time during stimulus presentation (0-6.2 s). Selected frequency bands are indicated by colored shaded areas (d : 2-3.5 Hz;
u : 4-7 Hz; a: 8-11 Hz; b : 12-22 Hz; g : 50-110 Hz). D, Power, averaged across participants, in dB relative to baseline. E, Left, Average and (right) SD of ITPC over time during
the presentation of the stimulus. F, ITPC, averaged across participants.

Figure 4. Detailed EFR in auditory cortex recorded with sEEG. A, Localization of the sEEG channels located in bilateral auditory cortices. B, Evoked response, averaged across
channels. Gray shaded area represents the SEM across sources. Vertical plain and dotted lines, respectively, indicate the onset of each tone and their theoretical continuation
in the silence. C, Left, Average and (right) SD of power over time during stimulus presentation (0-6.2 s). Selected frequency bands are indicated by colored shaded areas (d :
2-3.5 Hz; u : 4-7 Hz; a: 8-11 Hz; b : 12-22 Hz; g : 50-110 Hz). D, Power, averaged across channels, in dB relative to baseline. E, Left, Average and (right) SD of ITPC over time
during the presentation of the stimulus. F, ITPC, averaged across channels. Note the presence of the FFR first at 80 Hz and then at 60 Hz both in power and ITPC, reflecting
the change of tone fundamental frequency at ;3 s.
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Materials and Methods). In sEEG (Fig. 6A,B), the model per-
forms remarkably well, predicting the stimulus envelope in the
trained set with a coefficient of determination R2 of 0.97 (z=22,
p, 0.001 compared with surrogate distribution), and with an
R2 of 0.71 in the testing set (z = 16, p, 0.001). When applied
on the power directly following stimulus offset, the TRF per-
formances drop to chance, with an R2 of �0.03 (z = �0.09,
p = 0.57). Similar results were found in MEG (Fig. 6C,D),
where the model predicts the stimulus envelope in the
trained set with a coefficient of determination R2 of 0.97
(z = 18, p, 0.001 compared with surrogate distribution), and
with an R2 of 0.40 in the testing set (z = 7.4, p, 0.001). When
applied on the power directly following the stimulus offset,
performance drops to chance, with an R2 of 0.03 (z = 0.43,
p = 0.19). Thus, even when combining activity from all fre-
quencies and sources, we are unable to detect information
linked to the 2.5 Hz envelope modulation.

Amodel of damped harmonic oscillator captures the
dissociation between high- and low-frequency responses
Oscillatory phenomena are common in nature. The damped
harmonic oscillator, used to describe very different systems
(e.g., spring/mass systems, pendulums, torques, and electrical
circuits), is the standard model in physics. Despite being sim-
ple, powerful, and well suited to the description of neural
mass dynamics (Freeman, 1961, 1972), this model has
received little attention in the cognitive neuroscience commu-
nity. By analogy to a spring/mass system (Fig. 7A), it is
described by the canonical differential equation for linear os-
cillation as follows:

dx2

dt
¼ F t−Δtð Þ−ζω0

dx
dy

−ω2
0x

λ ¼ 1
ζω0

where x is the amplitude of the neural activity, z is the damping
ratio, F is the stimulus amplitude, Dt is a time delay to account
for transmission delays in the peripheral auditory system, and

2pv 0 is the eigenfrequency of the system. The damping ratio
z is a key latent variable, as it constrains the activity of the
system after the end of the stimulation. Overdamped systems
(z . 1) show no oscillation after the end of the stimulation,
whereas underdamped systems (z , 1) show oscillatory
behavior with an amplitude decaying at an exponential decay
of time constant l . For example, a system with z = 0.1 and
eigenfrequency 2pv0 = 1Hz will take l ln2� 7 s to return to
half of its activity (i.e., ; 7 cycles after the end of the stimula-
tion). This goes beyond the debate on “self-sustained oscilla-
tors versus superposition of transient event-related potentials”
insofar, as damping is a general property encompassing both
interpretations. From a functional point of view, underdamp-
ing is the property that matters. The damped harmonic oscil-
lator is thus a good model to clarify and quantify this
question.

The three free parameters of this model (z , 2pv 0, and Dt)
were fitted on the average power and ITPC time-frequency
responses of the auditory cortex (see Materials and Methods).
The model performs remarkably well, explaining 38% of the
power variance and 78% of the ITPC variance. We next focused
on ITPC data. Although linear and simple, the model captures
key aspects of the auditory cortex response (Fig. 7D,E): clear fre-
quency following responses at 83 and 62Hz, stronger responses
to 62 than 83Hz tones, onset and offset responses to each tone in
all frequencies, strong phase coherence at 2.5Hz, and harmonics
at 5 and 10Hz. The best fitting model has parameters z = 13,
2pv 0 = 2.1Hz and Dt = 40ms (Fig. 7B). Its damping ratio z �
1 indicates strong overdamping (i.e., absence of oscillatory dy-
namics after the end of the stimulation), thus reproducing our
previous results.

In order to differentiate neural populations with different dy-
namics, we fitted the harmonic oscillator model to each sEEG
channel (Fig. 8). After thresholding unexplained data (R2 , 5%,
257 channels survived), a clustering algorithm (k-means, optimal
silhouette index at k= 3; see Materials and Methods) yielded
three clusters. Each cluster consists of a set of parameters and an
associated topography. The first two clusters have a relatively low
eigenfrequency 2pv 0 (0.73Hz [first decile: 0.43, ninth decile:
2.1] and 2.1Hz [1.3, 7.5]). Importantly and confirming our pre-
vious analyses, these two classes have a high damping ratio z

Figure 6. Decoding of the stimulus envelope in sEEG and MEG power data. A, Performance of the decoding model (TRF), trained on the power signal (2-150 Hz) of sEEG data recorded during
presentation of the second half of the stimulus (62 Hz tones) and generalized to the first half of the stimulus (83 Hz) tones and the post-stimulus silence. Performance is assessed by the coeffi-
cient of determination R2 obtained between the envelope reconstructed from the neural data and the actual stimulus envelope. Gray distribution indicates performance of TRF model on surro-
gate data. B, Marginal distributions of TRF weights (in absolute value) of sEEG data. Values are averaged in the sEEG channels (left), time (middle), and frequencies (right). C, Performance of
the decoding model trained on MEG data. D, Marginal distributions TRF weights (in absolute value) of MEG data.
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(1.6 [1.0, 13] and 4.6 [0.6, 100]). Again replicating the model-free
analyses for ITPC in the d and u band, the low-frequency clus-
ters comprise bilateral auditory regions, but also associative
regions situated along the two auditory pathways (superior and
medial temporal gyrus, precentral gyrus, and bilateral inferior
frontal gyrus). Conversely, the third cluster has radically different
dynamics: a relatively high eigenfrequency 2pv 0 (60Hz [27,
100]) and low damping ratio (0.08 [0.03, 0.6]). These parameters
indicate an exponential decay of the amplitude of the oscillation
after the end of the stimulation of time constant (l = 0.9 s [0.12,
2.2]). The sEEG channels constituting this cluster are located in
auditory cortices, precentral gyrus, medial temporal gyrus, and
right inferior frontal gyrus. Overall, these three clusters confirm
the dissociation between high- and low-frequency damping
properties: the low-frequency clusters (0.7 and 2Hz) show over-
damping, whereas the high-frequency cluster (60Hz) shows
strong underdamping.

Discussion
During passive listening of a rhythmic stream of tones, the
human brain exhibits two types of neural responses: (1) a high-g
oscillatory response, phase-locked to the fundamental frequency
of the tones, that persists up to 10 cycles after stimulus offset;
and (2) a complex set of responses encompassing all frequencies,
evoked or induced by tones onset, offset, and the low-frequency
acoustic rhythm, that does not persist long after stimulus offset
(�1 oscillatory cycle). These two responses are well captured by
three classes of damped harmonic oscillators: two with a low
eigenfrequency (0.7 and 2Hz) and a high damping ratio (z . 1),
and one with a high eigenfrequency (60Hz) and a low damping
ratio (z , 1).

Absence of persistent low-frequency neural oscillations
during passive auditory perception
Current theories of speech (Giraud and Poeppel, 2012) and mu-
sical-beat (Large and Jones, 1999) perception capitalize on dy-
namical system theories to describe the interplay between neural
and acoustic dynamics. Before estimating the capacity of neural
oscillations to entrain to sensory stimulations, a clear under-
standing of the nature of the neural oscillations at play during
auditory processing is mandatory. Previous findings have
emphasized that rhythmic auditory stimuli principally drive ac-
tivity at the rate of stimulation, typically in the d -u (,8Hz)
range, (Luo and Poeppel, 2007; Ghitza, 2013; Doelling et al.,
2014) and also induce beta band (;20Hz) power modulations
(Fujioka et al., 2012; Cirelli et al., 2014; Chang et al., 2016). Using
precise stereotactic recordings, we show that rhythmic stimula-
tion induces a complex response at the level of the auditory cor-
tex composed of the following: (1) evoked activity at the low
(;2.5 and ;5Hz harmonic) and high (;60/80Hz) rates of
acoustic stimulation, combined with transient bursts at tones
onset and offset, visible across all frequencies; and (2) induced
deactivation in the a and b ranges (7-30Hz; Figs. 4 and 5). Of
note, these results, obtained with high-quality sEEG recordings
(Parvizi and Kastner, 2018) and straightforward time-frequency
analyses are not subjected to spurious oscillatory artifacts, typi-
cally observed after complex signal processing, such as epochs
oversampling or phase-amplitude coupling (Lozano-Soldevilla et
al., 2016).

Next, we investigated whether any of the neural responses
recorded throughout the cortex present the underdamping prop-
erty considered as one of the most compelling arguments for
entrainment (Lakatos et al., 2013). Radically, we found that, across
frequencies and cortical regions, none of the responses evoked or

Figure 7. The auditory cortex as a damped harmonic oscillator. A, By analogy to a spring/mass system, the model is composed of the trajectory of a center of mass (neural amplitude; black),
a spring (a force pushing the system toward a fixed point, or baseline; blue), a damper (dissipation of energy, phase dispersion, negative feedback; green), and a driving force (the auditory
stimulus amplitude; red). B, Fit quality (R2) of the harmonic oscillator to the auditory cortex ITPC as a function of model parameters. Models with z , 1 are underdamped; models with z .
1 are overdamped. The best fitting model, highlighted in red (z= 13, 2pv 0= 2.1 Hz, Dt = 40ms), explains 78% of the ITPC variance. C, Evoked activity of the best fitting model. D, Power
of the best fitting model. E, ITPC of the best fitting model.
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induced by low-frequency (2.5Hz) auditory stimulation outlasts
the stimulus duration. Model-based analyses confirmed that an
overdamped oscillator was the best fitting model (i.e., an oscillator
with no oscillatory behavior after the end of the stimulus), thereby
confirming the conclusions of the model-free analyses.

Different models of neural entrainment describe it either as
resulting from the passive mechanistic coupling of neural oscilla-
tors with a rhythmic stimulation (Large and Jones, 1999;
Obleser and Kayser, 2019) or as an attentional mechanism
of sensory selection that involves network-level interactions
between higher-order (motor or attentional) regions and sensory
cortices (Lakatos et al., 2008, 2019; Schroeder and Lakatos, 2009;
Haegens and Zion Golumbic, 2018; Rimmele et al., 2018). Our
results are thus incompatible with the idea that the auditory cor-
tex can be modeled as an isolated underdamped harmonic low-
frequency (d ) oscillator (Large and Jones, 1999; Doelling et al.,
2019). They are also inconsistent with the idea that beta band-
induced activity entrains at the beat rate during passive listening
(Fujioka et al., 2012). However, recent studies have shown low-
frequency entrainment in auditory or visual regions in task-
specific contexts, in particular, in tasks that involve selective
attention to one of two presented rhythmic streams (Lakatos et
al., 2013; Spaak et al., 2014), attention to the moment of occur-
rence of a target (Mathewson et al., 2012), or attention to the
rhythm of a speech stream (Kösem et al., 2018; van Bree et al.,

2021). Behavioral studies have also revealed improvements in au-
ditory detection when targets are presented in phase with a
rhythmic stimulus, even after several cycles of silence (Large and
Jones, 1999; Hickok et al., 2015). Here, we reveal that such a
mechanism does not occur during passive perception. To explain
the divergence between our results and previous papers that have
reported entrainment, we can hypothesize that low-frequency neu-
ral entrainment is an active, task-dependent phenomenon.
Mechanistic explanations are still lacking, although our results are
in line with recent proposals linking entrainment and attention, in
which low-order input regions depend on top-down weighting to
exhibit neural entrainment to input streams (Barczak et al., 2018;
Rimmele et al., 2018; Lakatos et al., 2019). In such integrative mod-
els, top-down systems modulate sensory processing in a proactive
and temporally flexible manner to enact entrainment phenomena.
Thus, entrainment could reflect selective attention: rhythmic input
streams are differentially prioritized, and only the attended stream,
being weighted by top-downmodulation, entrains oscillations.

A first limitation of this interpretation is that a weak oscilla-
tory response at low frequency could be masked by a strong
omission response elicited at the end of the stimulus. However,
we do not see any omission response, probably because we
repeated the same auditory stream throughout the experiment,
which was hence fully predictable. A second limitation is that we
have used simple stimuli, with a small informational content. In

Figure 8. Clustering of electrodes based on best fitting parameters. A, Coefficient of determination of the linear regression between ITPC of the best fitting model and ITPC of the data. B,
Damping ratio z of the best fitting model. C, Eigenfrequency 2pv 0 of the best fitting model. D, Time delay Dt of the best fitting model. E, Cluster 1. Left, Average fit quality (R

2) as a func-
tion of model parameters. The best fitting model is highlighted in red. Right, Topography of the sEEG channels included in the cluster. Bottom left, Power and ITPC of the best fitting model for
this cluster. Bottom right, Average power and ITPC of the sEEG channels included in the cluster. F, Cluster 2. G, Cluster 3. Only channels with R2 . 5% are shown.
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studies using more complex stimuli, such as speech, the richer
temporal structure and the fact that some events carry informa-
tion about future events (predictive events) could trigger auto-
matically the underdamping of low-frequency oscillations.
However, other studies have reported underdamping of low-fre-
quency oscillations using simple stimuli, such as pure tones
(Lakatos et al., 2013; Spaak et al., 2014), making the choice of
simple stimuli less critical. A third limitation is that low frequen-
cies were carried by the envelope of the stimulus, whereas high
frequencies were carried by the fundamental frequency of the
stimuli. This confounding factor cannot be excluded. However,
it is known that amplitude-modulated sounds at;60/80Hz pro-
duce the same phase-locked evoked responses in the high-g
range (Liégeois-Chauvel et al., 2004) as the one we observe.
Furthermore, amplitude-modulated sounds give rise to a percep-
tion of pitch similar to complex tones (Walker et al., 2011).
Thus, it is most probable that the frequency range is the key pa-
rameter to explain the damping differences we observe between
low and high neural oscillations. These results are actually com-
patible with dynamical system approaches, which model neural
population behaviors and provide important insights on the
nature of neural oscillations. For example, fundamental dif-
ferences between high- and low-frequency oscillations have
been described. High-frequency oscillations are used in the con-
text of small neural ensembles, such as populations of coupled
excitatory and inhibitory neurons (pyramidal interneuronal g or
PING networks), whereas low-frequency oscillations usually
involve coupled nodes in a network, global ensembles, and long-
range connections (Buzsáki and Draguhn, 2004). Underdamping
at such low frequencies is highly unexpected during passive stim-
ulation, whereas it is expected for higher-frequency regimens
(.40Hz).

Presence of persistent high-frequency neural oscillations
throughout the cortex
High-frequency phase-locked neural responses to auditory stim-
ulation have been mostly studied at the level of the brainstem
(Skoe and Kraus, 2010; Krizman and Kraus, 2019). Recordings
of the auditory brainstem responses have been developed to
assess the integrity of subcortical auditory relays via transient
responses to very short sounds (clicks). The use of complex
sounds of greater duration has allowed the analysis of a sustained
response named FFR mimicking the fundamental frequency
(and higher harmonics) of the auditory stimulus. Traditionally
assessed using a three-electrodes scalp EEG montage, the sources
of the auditory brainstem response, as their name suggests, were
considered to be of subcortical origin, notably in the inferior col-
liculi and medial geniculate bodies (Russo et al., 2004; Kraus and
Nicol, 2005; Chandrasekaran and Kraus, 2010; Skoe and Kraus,
2010; Tichko and Skoe, 2017; Bidelman, 2018; White-Schwoch et
al., 2019). However, the sources of the FFR have recently
been subject to intense debate. Three recent papers, using
MEG/EEG (Coffey et al., 2016a, 2021) and fMRI (Coffey et
al., 2016b), have convincingly demonstrated that cortical
sources, especially Heschl’s gyrus, also contribute to the
scalp-recorded FFR in passive listening contexts. In this
vein, our results confirm the presence of a high-g oscilla-
tory response phase-locked to the fundamental frequency of
the tones in the auditory cortex. Surprisingly, we also dem-
onstrate that the FFR is actually present in widespread cort-
ical regions, well beyond what was previously observed.
Our MEG results are confirmed by the highly spatially pre-
cise and localized sEEG data. The presence of the FFR in such

regions could be mediated by the white matter tracts that connect
the auditory cortex and different parts of the PFC along separate
anterior and posterior projection streams (Rauschecker and Scott,
2009). The fact that an FFR is also present in high-level, integrative
cortical regions, such as the motor cortex, supramarginal gyrus,
medial temporal lobe, or the inferior frontal gyrus, sheds a new
light on previous findings showing FFR differences across several
types of populations (musical experts, language experts, language
impaired populations). For instance, a larger FFR to the funda-
mental frequency of a sound may well be because of a greater
involvement of integrative cortical regions, and may not necessar-
ily imply modifications of subcortical activity via a corticofugal
pathway (Wong et al., 2007; Kraus and Chandrasekaran, 2010).
Nonetheless, subcortical specificity may be critical with high-fre-
quency features, such as harmonics or speech formants (Krizman
and Kraus, 2019).

The FFR at 62Hz appears to be more widespread on the cor-
tex and more persistent than the FFR at 83Hz. The model sug-
gests that this is because the 62Hz stimulation is closer to the
eigenfrequency of the oscillators (60Hz on average). However,
this could also be because of the presence of a 1/f noise, impact-
ing 83Hz responses.62Hz responses.

Crucially, we reveal that the FFR presents an underdamping
of up to 10 cycles (i.e., an oscillatory phase-locked response that
persists after stimulus offset). This reflects a passive mechanistic
coupling of neural oscillations with a rhythmic stimulation, and
is usually modeled with small neural ensembles, such as popula-
tions of coupled excitatory and inhibitory neurons (PING net-
works). Thus, the FFR is not only a one-to-one representation of
the stimulus, a succession of evoked potentials, but acts as a lin-
ear oscillatory filter. The functional role of this property is
unknown, but it has been suggested that “it could serve as a fine-
scale temporal predictor for frequency information, enhancing
stability and reducing susceptibility to degradation that could be
useful in real-life noisy environments” (Coffey et al., 2021).

The damped harmonic oscillator as a model of neural
oscillatory activity
The damped harmonic oscillator is standard in physics to study
oscillatory phenomena (e.g., spring/mass systems, pendulums,
torques, and electrical circuits). It is defined by a linear second-
order differential equation, derived from Newton’s second law.
Previous works have shown that this model is well suited to
study neural mass dynamics (Freeman, 1972), that is, spatial
averaging of thousands of neurons, in particular in modeling the
evoked response (Freeman, 1961). Although simple and power-
ful, this model has received little attention in cognitive neuro-
science. This lack of interest could arise from the fact that the
harmonic oscillator is a phenomenological model, as its parame-
ters capture properties of the neural ensemble and do not refer
to physical quantities of the individual neurons, such as excitabil-
ity or conductance (Hodgkin and Huxley, 1952; Wilson and
Cowan, 1973). However, disposing of these biological constraints
allows to model with very few parameters the emergent dynam-
ics of the local population, the neural mass (i.e., the sEEG signal
that we record). In our data, the apparent complexity of the neu-
ral response (multiple frequencies, onset and offset responses,
harmonics) is indeed reducible to the interaction between the
stimulus and a damped harmonic oscillator with three free
parameters (z , 2pv 0, and Dt). Furthermore, three clusters of
parameters are enough to describe the diversity of cortical
responses to a rhythmic auditory stimulation: two overdamped
low-frequency (0.7 and 2Hz) and one underdamped high-
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frequency (60Hz) oscillators. These three clusters show a topol-
ogy that is consistent with known cerebral networks, namely,
bilateral auditory cortices, ventral and dorsal auditory pathways
(Rauschecker and Scott, 2009). Given the very limited range of
frequencies presented (2.5, 62, and 83Hz), the interpretation of
the 2pv 0 eigenfrequency parameter is limited. The recovered val-
ues most probably reflect a mixture of the “true” eigenfrequencies
of the recorded neural populations and the stimulus frequencies.
The reported values should thus be taken as coarse indexes of
“low” versus “high” eigenfrequencies. Refining these values would
require presenting a wider range of frequencies.

Concerning the interpretation of the damping parameter,
the dichotomy “underdamping versus overdamping” is usu-
ally confounded with the dichotomy “self-sustained oscillator
versus superposition of transient event-related potentials.”
Indeed, evoked responses are also modeled with oscillators
(Jansen and Rit, 1995), and can either stop right after the end
of the stimulation (overdamping), because of strong energy
dissipation/phase dispersion, or continue to oscillate for a
while (underdamping). While damping is thus the property
that matters from a functional point of view, it can refer to
different physiological realities. In particular, two hypotheses
yet remain to be clarified: (1) If the neural response is linear,
the damping reflects energy dispersion. (2) If the response is
nonlinear, the damping could also reflect phase dispersion of
multiple sustained oscillators. The progressive desynchroni-
zation of their phase would induce on average a similar expo-
nential damping.

Finally, it should be noted that the harmonic oscillator is one
special case of the broader set of linear filters, widely used in engi-
neering of brain-computer interface. An important objective of this
field of research is to define the encoding/decoding function that
bridges the stimulus and the brain’s response. Popular models
(Crosse et al., 2016; de Cheveigné et al., 2018; Anumanchipalli et al.,
2019) are filters, usually approximated by linear regression with reg-
ularization because of the large number of fitted parameters. The
harmonic oscillator greatly simplifies the regularization problem, as
it constrains the space of solution to only three free parameters,
without losing explanatory power. Furthermore, analytical solutions
are known for any given driving force, which again simplifies the
problem by providing solutions with a very low computational cost.
Overall, this model is a promising candidate for brain-computer
interface engineering, by offering a simple, straightforward encod-
ing/decoding function.
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