
HAL Id: hal-03353815
https://hal.science/hal-03353815

Submitted on 24 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ARCHITECTURE AND EXPERIMENTS IN
NETWORKED 3D AUDIO/GRAPHIC RENDERING

WITH VIRTUAL CHOREOGRAPHER
Christian Jacquemin

To cite this version:
Christian Jacquemin. ARCHITECTURE AND EXPERIMENTS IN NETWORKED 3D AU-
DIO/GRAPHIC RENDERING WITH VIRTUAL CHOREOGRAPHER. Journées d’informatique
musicale, 2004, Paris, France. �hal-03353815�

https://hal.science/hal-03353815
https://hal.archives-ouvertes.fr


ARCHITECTURE AND EXPERIMENTS IN NETWORKED 3D
AUDIO/GRAPHIC RENDERING WITH VIRTUAL CHOREOGRAPHER

Christian Jacquemin
LIMSI-CNRS & University Paris 11

BP 133, 91403 ORSAY Cedex, France

ABSTRACT

The full integration and synchronization of 3D sound
and image requires a data model and an architecture
that allow for homogeneous description of geometri-
cal and sonic components, together with mechanisms
for distributed and synchronized rendering. First, sev-
eral modes of sound and graphic combination are exam-
ined, and the resulting constraints for the rendering tools
are detailed. Virtual Choreographer is then described
with a particular emphasis on its XML data model for
animation of spatialized geometrical and sonic compo-
nents. An architecture is proposed that relies on the net-
worked connection of Virtual Choreographer and a tool
for sound synthesis and event synchronization such as
Pure Data or Max/MSP + SPAT for sound spatialization.
Last several experiments that involve these tools for dif-
ferent artistic or technical purposes are presented.

1. INTRODUCTION

Convincing combination of sound and image is a key as-
pect in producing virtual environments. Sound spatial-
ization and 3D graphics real-time rendering are the two
base ingredients for building such environments. How-
ever, their successful combination can only be achieved
if they are correctly synchronized and interconnected:
any interaction on one of the media must be immedi-
ately and relevantly associated with a corresponding in-
teraction of the other one. In this paper, we focus on the
interdependence between musical and graphical render-
ing in a spatialized and interactive framework.

For the purpose of modeling and rendering interactive
3D audio/graphic scenes, we present Virtual Choreog-
rapher, an XML language and a browser that combine
scene component description, interaction, and interpro-
cess communication. After reviewing works in which
music and image are combined with various degrees of
dependency, we describe the architecture and the base
features of the tool. Then two modes of communication
between sound and image are presented through sample
environments.

2. SOME TRENDS IN GRAPHICS AND MUSIC
COMBINED RENDERING

In order to review some of the works in which sonic
and graphical components are combined to produce a
sonified visual environment (or a graphical sonic scene),
we will classify them by the relative influence of each
media on the output. We first consider tools in which
graphic output depends on an autonomous musical chan-
nel. Then we turn to graphically determined sound pro-
ductions. Last, we examine environments in which both
channels are mixed in a cohesive and holistic scene.

2.1. Music-driven Graphics

The most popular form of music-driven graphics is
implemented in visualizers for music players such as
WinAmp, iTunes, or even Xbox. These visualizers rely
on an analysis of the volume magnitudes of frequency
bands and their conversion into graphic parameters.
Zuma (3dMaxmedia) is a visualizer for the professional
world that offers a genuine interface to design attractive
visual scenes contrary to the preceding tools in which
visual scenes are predefined.

More complex dependencies of graphical output on mu-
sic can be obtained either through more complex audio
parameters than audio levels, or through more complex
graphical outputs. This is precisely the scope of plug-
ins of audio synthesis tools such as Gem for Pure Data
or Jitter for Max/MSP. Such plug-ins can access any
parameter used in the graph for music synthesis, and
they also can use complex OpenGL primitives and video
sources for elaborated graphic effects. Since Pure Data
and Max/MSP are basically dedicated to music synthe-
sis, they only have simple data structures (graphs and ta-
bles). For this reason, the design of complex geometrical
models with these two tools is difficult, if not impossible.

Sophisticated geometrical models can be obtained through
independent applications with real-time rendering. In
the case of simple input parameters, the scope of ob-
tained effects remains restricted. It can however have
interesting applications in context-sensitive augmented



reality in which simple correlations between music and
graphic rendering is acceptable [11]. Music has been
used as input stimulus of more elaborated models such
as emotion-sensitive face animation [8] or motion curve
modification in choreography inspired models [3]. In
Soundsculpt Toolkit, complex 3D scenes for Virtual Re-
ality can be entirely generated from synthetic music
through a patch bay that converts Midi parameters into
geometrical effects [9].

2.2. Graphics-driven Music

Graphical interfaces can be used at different levels of
music control. For instance, in interfaces for sound spa-
tialization such as MidiSpace [15] or VirtueString [4],
the graphical interface is used to control interactively the
parameters of a virtual sonic scene by modifying the lo-
cation of the sound sources and the sonic properties of
the scene components.

The coupling between the graphical interface and the
musical output is even stronger in the case of graphical
interfaces for musical composition. The interface has no
a priori aesthetic purpose, even though certain abstract
or algorithmic designs such as cellular automata may of-
fer interesting graphical schemes. The synthesis engine
generally involves complex internal processes that trans-
form the combination of input symbols into sounds.

Graphical interfaces for music composition can be cate-
gorized as symbolic in the case of IanniX in which cir-
cles and lines build the core elements [5], or algorith-
mic in the case of Elody [12] which relies on functional
programming, or Beyls’ automata [1] which use genetic
algorithms and rewriting systems for music synthesis.
Both types of interfaces involve computation, but the
composer plays a more important role in symbolic inter-
faces in which he has more direct control on the output
of the composition.

2.3. Audio-Visual Environments

Intermediate between the two preceding classes, audio-
visual environments correspond to systems in which mu-
sical and graphical expressions are more intricate, and in
which there is a bidirectional control between music and
graphics. Some of these environments can also be ded-
icated to musical composition, but contrary to the pre-
ceding category, the interface also constitutes a part of
the work of art. The notion of audio-visual performance
introduced by Levin [13] breaks the barriers between
graphical and musical designs. It may however be con-
fusing and not profitable to the artist to be confronted to
an environment in which an interface (a control device)
is mixed with its by-product (the work of art).

Clearly architectured applications require well-identified
components and means for controlling their interactions
and their synchronous evolution. For these reasons, en-
vironments in which sound, image, and user interact
must be implemented on appropriate distributed real-
time middleware with traceable data exchange between
distributed rendering components (such as Aura [7]). In
addition, the data models must allow for distributed com-
positing, interactivity on all the media, and animations.
MPEG-4 BIFS (BInary Format for Scene Description)
implements these functionalities and extends VRML’97
for multimedia streaming and encoding. X3D is also an
extension of VRML’97 in an XML format with a modu-
lar architecture. X3D is primarily dedicated to the mod-
eling of interactive 3D scenes, but also incorporates the
description of sound elements. In parallel other efforts
are made to enrich X3D with more complete interaction
facilities and enhanced audio components.

In the Contigra project, three separate data structures
are used to describe interactive 3D scenes for the World
Wide Web: graphical components, spatialized audio data
through Audio3D [10], and behavioral data with Behav-
ior3D [6]. In our approach described below, three types
of data are integrated into a single framework that en-
sures a strong cohesiveness to the application. This de-
sign choice restricts the reusability of the application
such as the association of similar control structures with
various geometries. It however facilitates the design of
interactive scenes by offering a unified framework for in-
teraction with spatialized sound and graphics. We now
turn to the description of the language and the browser
of Virtual Choreographer that we have developed for in-
teractive sound and graphic rendering.

3. A SPATIALIZED MULTIMEDIA
INTERACTIVE SYSTEM

Our purpose is to offer a generic system that can be used
to design an environment that belongs to any of the three
categories presented in the preceding section: one way
music-driven graphics or graphics-driven music, or bidi-
rectional audio-visual environments. In such a system, it
is expected that graphical and sonic rendering can con-
trol each other, and offer multiple modes of synchroniza-
tion.

3.1. Architecture

In order to ensure distributed and synchronized render-
ing, we have chosen an Ethernet network as the back-
bone of this architecture. Virtual Choreographer, Pure
Data, and multiple interfaces are connected through this
network and can exchange messages for parameter up-
dates and animation control (see Figure 1). This archi-



Interface(s)

Pure DataVirtual Choreographer

Messages

UDP Messages

UDP MessagesUDP Messages

Graphical ouput Sound ouput

Figure 1. Message passing between Virtual Choreogra-
pher and Pure Data.

tecture allows for separate sound and image rendering
on different machines with possibly different OSs.

3.2. Data Structure

Since message passing is also used inside Virtual Chore-
ographer for scene updating, the graphical output can be
made by compositing multiple scenes rendered on sev-
eral networked UCs. This a valuable convenience in the
case of distributed configurations such as virtual reality
environments or live performances. Firstly robustness
is ensured by replacing a possibly faulty graphical ren-
derer by another one with a copy of the scene. Secondly
heavy scenes can be distributed on several several ma-
chines and rendered separately.

Scene graphs, an already-established technique in in-
teractive graphics for spatialized data representation, is
the heart of Virtual Choreographer data structure, as it
is the case for X3D, and previously VRML’97. More
generally, Virtual Choreographer XML data representa-
tion bears many similarities with X3D. Most of it could
be easily transcoded from and to X3D syntax. It is
not our purpose, in this paper, to go into the details of
this representation. A full reference guide on Virtual
Choreographer syntax can be found on the project’s site
at SourceForge (http://virchor.sourceforge.net), together
with downloadable source files and sample audio-visual
scenes.

In order to illustrate the way in which audio-visual data
can be defined and interactively modified, we will first
detail a small sample scene. In the next section, more
elaborated projects will be presented without details on
their actual implementations. The structure below rep-
resents a sonified and textured sphere that is translated
by the vector ~v(5, 0, 0) (the interpolator is not active at
time 0):

<node id="node translation sphere 2">
<interpolator id="node translation

sphere 2" type="transformation" size="3">
<schedule begin="100000" dur=".2"

repeatCount="1" mode="sinus-periodic"/>
<transformation id="t2.1" geometry="translation"

x="5.0" y="0.0" z="0.0"/>
<transformation id="t2.2" geometry="translation"

x="5.0" y="10.0" z="0.0"/>

x

z

y

Elevation

Sound

Current Camera

Distance

Azimuth

Figure 2. Sound Localization in the Coordinate System
of the Current Camera.

<transformation id="t2.3" geometry="translation"
x="5.0" y="0.0" z="0.0"/>

</interpolator>
<node id="sphere 2">

<sound id="sound 1" xlink:href="Sounds/c4.wav"
type="soundloop" fade_distance="0.0"
fade_power="0" level="128" source="1"
head="2001" begin="25" end="100"
period="10.0" dur="10.0">

</sound>
<sphere id="sphere 2 nightsky" radius="0.6">
<texture encoding="jpeg"

xlink:href="textures/skyline.jpg" id="sky"/>
</sphere>

</node>
</node>

When this scene is loaded, it is rendered as a textured
sphere, and the visual aspect of the scene is modified ac-
cording to the user navigation. Since the sphere is soni-
fied, a sound associated with the file (Sounds/c4.wav) is
emitted from time 25 to time 100. The sound localiza-
tion is updated according to the camera displacements
in the scene by emitting messages that contain details
about the azimuth, elevation, and distance in the coordi-
nate system of the camera (see Figure 2). The emitted
messages can be caught by Max/MSP + SPAT for real-
time spatial sound processing.

3.3. Data Exchange and Interactive Rendering

Event processing is the primary mechanism for scene in-
teraction and animation, a classical solution for interac-
tive graphic environments such as Virtual Reality sys-
tems [2]. Virtual Choreographer has a single unified ap-
plication programmer interface (API) for data structure
and message definition. The typical structure of a com-
mand for message processing is

Trigger
(<action> Action_description (Target)+
</action>)+

Events are synchronous prescheduled events or ayn-
chronous commands from the user, from nodes in the
local or remote scenes, or from other applications on the



network such as Pure Data. Event processing by a node
does not differ whether the event is internal or not.

There are mainly two types of actions: XML data struc-
ture modifications, and event emissions towards internal
or remote nodes or applications. Actions that perform
data modifications are made of an identifier (the name of
the action), an operator, and a partial XML tag. The re-
sult of the action is to modify the values of the attributes
of the target nodes that are instantiated in the action.

<script id="script sphere">
<command>

<trigger type="message_event" value="click"
state="A" bool_operator="==" />

<action>
<set_sound_attribute_value operator="=">

<sound begin="now" end="(now + 100)"/>
</set_sound_attribute_value>
<target type="single_node" value="#sphere 2" />

</action>
</command>
<command>

<trigger type="keystroke" value="C" />
<action>

<set_schedule_attribute_value index="1"
operator="=">

<schedule begin="(now + 0.1)"/>
</set_schedule_attribute_value>
<target type="single_node"

value="#node transformed sphere 4" />
</action>

</command>
<command>

<trigger type="time_limit" value="7.0" />
<action>

<send_message_udp value="source 0 level 100" />
</action>

</command>
</script>

The first action above (set_sound_attribute_value) is
triggered by the event click. It replaces the begin and
end attributes of the sound tag of node sphere 2 by the
values of the current time t and t + 100, thus starting the
sound play for 100 time units.

The second action (set_schedule_attribute_value) trig-
gers the scheduler that controls the interpolated trans-
lation of sphere 2 and makes it jump and fall back to its
initial location. This action shows how event processing
is used to control animations. Any numerical attribute
in a tag can be animated through interpolation. There
are basically two types of interpolations: finite interpo-
lations that perform smooth transformations from a key
structure to the next one, and random walks that moves
through small random steps from an initial key structure.

The third action (send_message_udp) is a message
broadcast on the network. This event can be received by
Max/MSP + SPAT for opening a sound source; it is used
for controlling sound rendering by the graphic applica-
tion. Control can be performed in the reverse direction
through events or actions emitted by external applica-
tions. Figure 3 shows the subpart of a Pure Data patch
that is used to send an action: the modification of the x

coordinate of a transformation tag. In the next section

Figure 3. Message from Pure Data for Virtual Choreog-
rapher.

we show how such a bidirectional control can serve the
purpose of rich interactive 3D audio-visual animations.

4. SAMPLE AUDIO-VISUAL SCENES

This section reports on two experiments that combine
Virtual Choreographer as graphical rendering tool and
geometrical modeler, and Pure Data as an interface and
a sound synthesis tool. Data exchange between these
applications is performed through a bidirectional UDP
connection.

Virtual Choreographer receives from Pure Data either
events that trigger message passing chains from node to
node, or actions that modify part of an XML tag. If
this tag is associated with a geometry, it results in dy-
namic geometrical deformations; if it is associated with
a scheduler, it results in animation modification, launch-
ing, or interruption; if it is associated with a sound, it
results in sound characteristics modifications, etc.

Pure Data or Max/MSP + SPAT receive commands that
trigger, stop, or modify sound synthesis. The commands
that concern the relative position of the sound sources
with respect to the current camera are automatically gen-
erated. The other commands must be explicitly defined
in the scripts of the scene nodes and associated with
send_message_udp actions.

4.1. Spatialized Visualizer: Sonic Wall

The first environment, called Sonic Wall, is the metaphor
of a street bordered by two walls made of strips. The
architecture of the walls is inspired by the work of Zada
Hadid [14]. Walls are made of parallel strips that can
be freely curved and oriented by manipulating control
points and normals.

In this environment, the viewer perpetually follows this
street, and the appearance of the walls is correlated with
the ambient music. According to our previous classifica-
tion, this environment is music-driven graphics. The red,
blue, and green components of the wall color are corre-
lated with the amplitudes of high, medium, and bass fre-
quencies. It makes the wall look red at high frequencies,



Figure 4. Sonic Wall.

Figure 5. PolyRythms Rendering.

and green at low frequencies. The width of the strips
depends on the sound amplitude of the whole spectrum.
The wall is invisible in silence, it is made of thin strips
for low sounds, and it is a continuous surface during loud
parts. Last, the whole geometry (curves and normals)
is controlled by parameters that are extracted from the
different channels of the music pieces. The left part of
Figure 4 corresponds to a moderately high bass sound,
while the right part is produces by loud treble sounds.

4.2. Sonic and Human Interaction: PolyRythms

The second environment, called PolyRythms, has a
graphical interface made of four rows of spheres (Fig-
ure 5). Each sphere is associated with a sound sample so
that the sum of the sample lengths in each row is equal
to 1.2 seconds (Figure 6). Sound playing begins by trig-
gering the leftmost sphere in each row. When a sphere
is triggered for sound playing, an interpolation is started
for scaling up the sphere, and a message is sent to Pure
Data for playing the corresponding sound. When the
sound play is over, Pure Data sends a message back to
the sphere. The sphere launches the scale interpolation
that brings it back to its original dimension and sends a
message to the next sphere in the row.

The last sphere in the first row is in charge of resyn-
chronizing the first spheres. When it receives the ac-
knowledgement from Pure Data, it sends a message to
the first sphere of each row as indicated in Figure 7 in the
case of two rows. In order to introduce variations in the
production of the rhythms, each sphere can be activated
or deactivated by passing the mouse over it. When it is
deactivated (in blue in Figure 5), the sound is replaced
by a silence of exactly the same length. The combina-
tion of activated and deactivated spheres results in var-
ious rhythmic patterns on the same tempo. Because of

PD PD PD PD

PDPDPD

Synchronization

Sound play

First row

Second row

Figure 7. PolyRythms Event Passing.

the cross-control of image by sound through sound play
acknowledgement and sound by image through activa-
tion/deactivation and message passing, this environment
belongs to the class of audio-visual environments.

5. PERSPECTIVES

In addition to the preceding examples, other works in
progress that involve Virtual Choreographer suggest
several interesting issues for future developments in
audio-visual interactive rendering:

• Virtual Choreographer is currently used for en-
riching the IanniX system for musical composi-
tion [5] with a spatialized graphic output. As for
any XML data, the XML geometrical data of Vir-
tual Choreographer can be transformed through
XSL style sheets in order to produce variations in
the graphical output. Thus a single generic ge-
ometrical model can be used for various styles
of graphical outputs and adapt to the style of a
composer, to the environment of musical perfor-
mance...

• Virtual Choreographer is also used in a CNRS/EDF-
R&D collaboration for information visualization.
Numerical outputs are automatically transcoded
into geometrical scenes. Sounds are added in or-
der to produce a 3D sound and graphic environ-
ment for information browsing. Spatialized sound
output in information access is a useful medium
because it can draw the attention of the user to
pieces of information that are visually hidden.

• Last, 3D models have interesting applications
for audio spatialization without graphical output.
The 3D model of Virtual Choreographer and its
spatialized audio rendering is used for cognitive
experiments on spatialized sound perception by
blind people who move in a spatialized sound
landscape. A full 3D geometrical model is re-
quired for tracking the position of the user in her
environment and processing spatialized interac-
tions.



0 1 2 3 4 5 6 7 8 9 10 11 12

0.25 0.15 0.025 0.2 0.150.025 0.1 0.1 0.05 0.15

0.1 0.05 0.2 0.1 0.025 0.05 0.1 0.025 0.1 0.05

0.15 0.05 0.1 0.1 0.2 0.0250.025 0.1 0.05

0.15 0.05 0.05 0.05 0.025 0.150.025 0.1 0.1 0.05 0.15 0.05 0.05 0.050.025 0.1

1 2 3 4 5 6 7 8 9 10

0.250.15

0.2

1 2 3 4 5 6 7 8 9 10 11 12

0.2

0.025

0.2 0.150.25 0.1 0.05 0.025

31 2 4 5 6 7 8 9 1110

1 2 3 5 6 7 8 9 11 12 13 15 1614 17104

Elementary sound lengths

Front row

Back row

Figure 6. PolyRythms Rhythmic Composition.

6. THANKS

Many thanks to Serge Adam (Quoi de Neuf Docteur) for
his collaboration on Sonic Walls, to Alan Blum and Brian
Katz for sound spatialization, to Jean-Marc Vezien and
Damien Touraine for the VENISE project, to Thierry Co-
duys, Cyrille Henry, and Guillaume Ferry (La Kitchen).

7. REFERENCES

[1] Beyls, Peter. Selectionist musical automata inte-
grating explicit instruction and evolutionary algo-
rithms. In Proceedings of 6th Generative Art Con-
ference, GA, 2003.

[2] Burdea, G. and P. Coiffet. Virtual Reality Technol-
ogy - 2nd Edition. Wiley, New York, 2003.

[3] Cardle, M., L. Barthe, Stephen Brooks, and
P. Robinson. Music-driven motion editing: Lo-
cal motion transformations guided by music anal-
ysis. In Proceedings of Eurographics UK Chapter
- EGUK Conference. Eurographics, 2002.

[4] Chodura, Hartmut and Arnold Kaup. Virtual mu-
sic reproduction. In Proceedings of New Direc-
tions in Visual and Audio Expression, Sketches
and Applications, SIGGRAPH, 1999.

[5] Coduys, Thierry, Adrien Lefevre, and Gérard
Pape. IanniX. In Proceedings of 10ème Journées
d’Informatique Musicale JIM, 2003.

[6] Dachselt, Raimund and Enrico Rukzio. BEHAV-
IOR3D: An XML-based framework for 3D graph-
ics behavior. In Proceedings Web3D. W3C, 2003.

[7] Dannenberg, Roger. Aura as a platform for dis-
tributed sensing and control. In Proceedings of

Workshop/Symposium on Sensing and Input for
Media-centric Systems, SIMS ’02, pp. 49–57. Uni-
versity of California Santa Barbara Center for Re-
search in Electronic Art Technology, 2002.

[8] DiPaola, Steve and Ali Arya. Affective communi-
cation remapping in MusicFace system. In Pro-
ceedings of European Conference on Electronic
Imaging and the Visual Arts, EVA, 2004.

[9] Greuel, Christian, Mark T. Bolas, Niko Bolas,
and Ian E. McDowall. Sculpting 3D worlds
with music: advanced texturing techniques. In
Fisher, Scott S., John O. Merritt, and Mark T. Bo-
las, editors, Proceedings of Stereoscopic Displays
and Virtual Reality Systems III, SPIE Vol. 2653,
pp. 306–315. SPIE, 1996.

[10] Hoffmann, H., R. Dachselt, and K. Meissner. An
independent declarative 3D audio format on the
basis of XML. In Proc. ICAD, 2003.

[11] Johnson, A. and S.K. Semwal. Music as an input
device. In Proceedings of VR Workshop Beyond
Wand and Glove Based Interaction. IEEE, 2004.

[12] Letz, S., Y. Orlarey, and D. Fober. Real time func-
tional languages. In Proceedings of the Interna-
tional Computer Music Conference, pp. 549–552.
Computer Music Association, 1995.

[13] Levin, Golan. Painterly Interfaces for Audiovisual
Performance. Ph.D. diss., MIT Media Lab, 2000.

[14] Noever, Peter, editor. Zada Hadid architek-
tur//architecture. Mak/Hatje Kantz, Vienna, 2003.

[15] Pachet, F. and O. Delerue. Annotations for real
time music spatialization. In Proceedings of Inter-
national Workshop on Knowledge Representation
for Interactive Multimedia Systems, 1998.


	Texte2: 


