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A beam finite element model is proposed for the static and free vibration analyses of FGM sandwich beams with viscoelastic nonlinear material behavior. In the analysis, zigzag theory is adopted for the displacement fields. The damping results from the shear properties of the viscoelastic layer and its low stiffness. Timoshenko 1 st order and Reddy's higher order shear models are implemented for static and vibration behaviors. Various viscoelastic frequencydependent laws are considered. The resulting stiffness matrix is nonlinear and is frequency dependent. Solutions are possible according to a powerful asymptotic method combined with recent method for the power series terms. The efficiency of the present model is proven through simulations using 3D volume elements of Abaqus code, where new module for viscoelastic FGM materials is now available. The effects of power law index and boundary conditions on static, vibration and the damping properties of the viscoelastic sandwich FGM beam are investigated successfully. It is shown that the beam behavior is very sensitive on the loss factor. In vibration, the damping properties are nonlinearly power law index dependent.

The boundary conditions have an incidence on the vibration modes. The cantilever case is particular and interesting that needs an optimization process.

Introduction

Multilayer composite structures have been often used to satisfy lightness and high performance strength demands. Moreover, these structures are subject to many problems as stress discontinuities and residual stresses at the different interfaces. For these reasons, local buckling and delamination phenomena are always present in the interlayer area. In presence of dynamic and excessive cyclic loads, micro cracks develop and increase consequently failure by fatigue can reduce the life serviceability. In order to increase the development of composite structures and improve their thermic performances, the idea today is to move towards new materials that overcome the presence of these problems. By the help of additive manufacturing and 3D printing, a new material called Functionally Graded Material (FGM) has been developed [START_REF] Schneider-Maunoury | Application de l'injection différentielle au procédé de fabrication additive DED-CLAD® pour la réalisation d'alliages de titane à gradients de compositions chimiques[END_REF]. They have a particular microstructure that allows them to considerably reduce the presence of residual stresses and resulting problems. Functionally Graded Material are very interesting due to their super heat and strength resistant. The concept of FGM was introduced by Koizumi [START_REF] Koizumi | FGM activities in Japan[END_REF] as part of his research works on thermal barrier and strength resistant materials. These materials are characterized by a continuous variation of their properties over one or more thickness directions. Many engineering fields such as aerospace, automotive and nuclear are showing a strong interest to FGM materials in structural engineering design applications. The sensitivity of certain fields of application, such as nuclear reactors where they are used as a thermal barrier, requires prior control of their behaviors with regard to static and vibratory instabilities. Therefore, a numerical model for the vibration control and prediction of FGM structures becomes a major issue for economic and safety needs. In recent years, many research works in FGM beam structures have been carried out in static and vibration analyses. Some researchers proposed models based on the Classical Beam Theory (CBT) in 2D context [START_REF] Aydogdu | Free vibration analysis of functionally graded beams with simply supported edges[END_REF][START_REF] Khdeir | Dynamic response of antisymmetric cross-ply laminated composite beams with arbitrary boundary conditions[END_REF][START_REF] Lee | Free vibration analysis of functionally graded Bernoulli-Euler beams using an exact transfer matrix expression[END_REF][START_REF] Şimşek | Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories[END_REF].

The shear is ignored in these studies. Some other works follow and take into account the shear effect by using Timoshenko beam theory (FOST), Higher Order Shear Theory (HOST) and other shear theories. In these models, the shear rotation is included in addition to slope through linear and nonlinear shear functions [START_REF] Aydogdu | Free vibration analysis of functionally graded beams with simply supported edges[END_REF][START_REF] Şimşek | Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories[END_REF][START_REF] Khdeir | Free vibration of cross-ply laminated beams with arbitrary boundary conditions[END_REF][START_REF] Pradhan | Effects of different shear deformation theories on free vibration of functionally graded beams[END_REF][START_REF] Su | Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams[END_REF][START_REF] Thai | Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories[END_REF]. The dynamic and static analysis of multilayer FGM beams (sandwich beams) with constant elastic modulus have been proposed in several research works [START_REF] Li | A higher-order shear deformable mixed beam element model for accurate analysis of functionally graded sandwich beams[END_REF][START_REF] Nguyen | Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory[END_REF][START_REF] Trinh | Fundamental frequency analysis of functionally graded sandwich beams based on the state space approach[END_REF][START_REF] Bui | Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method[END_REF][START_REF] Amirani | Free vibration analysis of sandwich beam with FG core using the element free Galerkin method[END_REF][START_REF] Vo | Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory[END_REF]. Advanced models for the FGM beams using Carrera Unified Formulation (CUF) are available in [START_REF] Filippi | Static analyses of FGM beams by various theories and finite elements[END_REF][START_REF] Giunta | Analysis of FGM Beams by Means of Classical and Advanced Theories[END_REF][START_REF] Mashat | Free vibration of FGM layered beams by various theories and finite elements[END_REF].

It is important to mention, that most of the previous studies either with or without shear applied to beams, plates or shell structures present similar material constituents. This means, that the ratio of the elastic constants is low and averages 5, as in presence of ceramic and aluminum materials. The damping capacity is then not important and always negligible. Classically, the passive damping structures are sandwich structures with soft viscoelastic core insert between elastic layers. These structures are widely used in many engineering fields such as automotive, aerospace, nuclear, human security, and civil engineering, for vibration control and noise reduction in lightweight and flexible structures.

The ratio modulus of the elastic layers and the viscoelastic core is more important than in the classical composite and FGM materials and always higher than 100. The damping capacity is more efficient in these structures. It results from the shearing of the viscoelastic core induced by the difference between the in-plane displacements of the external layers. From engineering point of view, the most relevant quantity of the damping capacity is the equivalent frequency and the loss factor of the vibration modes. To model the viscoelastic behavior of sandwich structures, it is important to define a comprehensive kinematic fields for the constituent's layers with different material behaviors. From the various kinematics and theories used for sandwich composite modeling in the literature, it can be found the Equivalent Single Layer (ESL) theory and the zig-zig distribution model (Milazzo [20], Tornabene [START_REF] Tornabene | General higher-order equivalent single layer theory for free vibrations of doubly-curved laminated composite shells and panels[END_REF]).

Yasin and S. Kapuria [START_REF] Yasin | An efficient layerwise finite element for shallow composite and sandwich shells[END_REF] proposed a finite element model based on zigzag theory and compared their simulations to the ESL theory. The limits of the ESL model in presence of sandwich shell material are outlined. Detailed comparisons of sandwich composite theories such as classical laminate, as well as the shear and zig-zag theories have been considered in [START_REF] Hu | Review and assessment of various theories for modeling sandwich composites[END_REF]. For the sake of accuracy, several authors have adopted the zig-zag kinematics in the dynamic analysis of sandwich viscoelastic structures with isotropic layers. The behavior of a viscoelastic material is characterized by an elastic properties frequency dependent. The resulting stiffness is then nonlinearly dependent on the frequency. The dynamic behavior in both free and force vibration is then nonlinear. Specific methods must be followed in solution.

Nonlinear forced responses analysis of viscoelastic sandwich beams has been investigated theoretically and experimentally by Hyer et al. [START_REF] Hyer | Non-linear vibrations of three-layer beams with viscoelastic core I. theory[END_REF][START_REF] Hyer | Non-linear vibrations of three-layer beams with viscoelastic cores, II: Experiment[END_REF] and Kovac [START_REF] Kovac | Forced non-linear vibrations of a damped sandwich beam[END_REF]. Iu et al. [START_REF] Iu | Non-linear vibration analysis of multilayer beams by incremental finite elements, Part I: Theory and numerical formulation[END_REF] presented a finite element model for nonlinear free vibration of multilayered sandwich beams with soft core where the incremental harmonic balance method is used for solution procedure.

In literature, solutions of the nonlinear system are made possible by the classical Newton-Raphson iterative methods with a control parameter. An advanced numerical method based on homotopy and asymptotic numerical techniques with Taylor series was proposed by Daya et al. [START_REF] Daya | A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures[END_REF] for solution of the nonlinear eigenvalue problem of viscoelastic sandwich structures.

Bilasse et al. [START_REF] Bilasse | Linear and nonlinear vibrations analysis of viscoelastic sandwich beams[END_REF] proposed a numerical model for the linear and nonlinear dynamic analysis of viscoelastic sandwich beams. In solution, an improved method is followed in order to compute automatically the Taylor series terms according to Automatic Differentiation technique [START_REF] Koutsawa | A generic approach for the solution of nonlinear residual equations. Part I: The Diamant toolbox[END_REF][START_REF] Bischof | Advances in automatic differentiation[END_REF]. Considering FGM sandwich structures with viscoelastic core, until now, scant studies are available in the literature. Moita et al. [START_REF] Moita | Vibration analysis of functionally graded material sandwich structures with passive damping[END_REF] developed a finite element model for the vibration analysis of FGM sandwich plate with viscoelastic core. Yang et al. [START_REF] Yang | A modified Fourier-Ritz solution for vibration and damping analysis of sandwich plates with viscoelastic and functionally graded materials[END_REF] investigated the analysis of damped FGM sandwich plates.

The previous works have certainly contributed to a comprehensive assessment in the modeling of damped FGM structures. Moreover, most of these studies are limited to isotropic layers. Specifically, for damped FGM sandwich structures, plate and shell models are the most studied and the viscoelastic law with Module Complex Constant (MCC) is adopted in the applications. To our knowledge, simulation of the viscoelastic structures in the commercial codes is not possible. In the last version of Abaqus, the dynamic behavior of viscoelastic structures is implemented in the case of 3D volume elements and exclusively with the MCC behavior.

In the present work, a numerical model for static and free vibration analysis of FGM sandwich beam with nonlinear viscoelastic material core is investigated. 1 st order shear and Higher order shear models are possible in the viscoelastic core where the zig-zag kinematics is followed. In addition to the MCC model, various frequency dependent viscoelastic laws are implemented and tested. In application, the static and vibration behavior are studied in detail and compared to some benchmark solutions available in literature or to 3D volume elements of Abaqus. The effects of the power law index on the damping property are investigated.

Different boundary conditions and geometric properties are possible.

Basics theories

Kinematics

Consider a functionally graded sandwich beam with viscoelastic core insert between two FGM layers as presented in Fig 1 . The loads are applied in 2D conditions in xz plane. Since the plane behavior are studied, only the axial and deflection in the vertical direction are computable. One denotes by z1, zv and z3 the middle plane coordinates of respectively the bottom (1), the core (v) and the top (3) layer. The cross-section considered is symmetric (zv=0). The thickness of the external layers and the viscoelastic core are respectively denoted by hf and hv and the total cross section height is h. For the viscoelastic sandwich beam modeling, zigzag kinematic theory is adopted in the present model. By static and dynamic test Hu et al. [START_REF] Hu | Review and assessment of various theories for modeling sandwich composites[END_REF] proved that this model is effective when the following conditions are satisfied: 10 ; 100 Where Ev and Ef are the elastic modulus of the viscoelastic and the elastic layers respectively.

f f v v h E h E ≥ ≥ z,
Applying the zigzag kinematic, the Euler-Bernoulli theory is adopted for the FGM external layers and shear models are considered in the viscoelastic core modeling. The displacements of any arbitrary point M of the FGM cross section at the coordinates (x, z) obey:

' ( , , ) ( , ) ( ) ( , ) ( , , ) ( , ) 
i i i i i i U x z t u x t z z w x t W x z t w x t  = --   =   i=1,3 (1a- b)
Where ui (x, t) and wi (x, t) are the axial and transverse displacement respectively of any point on the reference axis of the i layer. (.)' denotes the x-derivative. In the core, the displacement fields are based on Timoshenko theory and high shear deformation theories and are given by.

' v v ( , , ) ( , ) ( , ) ( ) ( , ) ( , , ) ( , ) 
U x z t u x t zw x t f z x t W x z t w x t φ  = - +   =   (2a-b)
Where u(x,t) and w(x,t) are the axial and the vertical displacement respectively, of the core layer.φ is the shear rotation and f(z) is the shear function. Different relationships are adopted in literature for the shear function according the different beam model theories (Table1).

These functions have been tested in previous author's paper [START_REF] Li | A higher-order shear deformable mixed beam element model for accurate analysis of functionally graded sandwich beams[END_REF][START_REF] Nguyen | Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory[END_REF]. In FGM beams, the shear effects [START_REF] Trinh | Fundamental frequency analysis of functionally graded sandwich beams based on the state space approach[END_REF][START_REF] Koutoati | Finite element approach of axial bending coupling on static and vibration behaviors of functionally graded material sandwich beams[END_REF] control the behavior in presence of short beams.

Model

Shear function f(z) Euler-Bernoulli (CBT) [START_REF] Şimşek | Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories[END_REF] ( ) 0 f z = Timoshenko (FOBT) [START_REF] Şimşek | Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories[END_REF] ( )

f z z = Reddy (HOST) [35] 2 2 4 ( ) (1 ) 3 z f z z h = - Afaq (ESDT) [6] 2 2 ( ) z h f z ze   -    = Touratier (SSDT) [36] ( ) sin h z f z h π π   =    
Table 1: shear function relationships f(z).

In beam theory, the transverse displacement of the cross-section is constant in the thickness direction (wi (x, t) =w (x, t)). Considering the exact continuity of the displacement fields at each layer's interfaces, the displacement of any point can be expressed in terms of the displacement field of the core layer (u (x, t), w (x, t) and φ (x, t)). Therefore, all degrees of freedom are reduced to the core's degrees of freedom. For this outlook, the following conditions are written at each interfaces: 

v v v v v v v v h h h z U x t U x t h h h z U x t U x t - - - = = + + + = = (3a-b)
By introducing the conditions (3a. b) in Eq. 1, one obtains for the top and the bottom FGM layers, the following displacement fields:

' ( , , ) ( , ) ( , ) ( , ) ( , , ) ( , ) 
i i i U x z t u x t zw x t c x t W x z t w x t φ  = - +   =   i=1,3 (4a- b)
Where ci are the constants given by: c1=f(-hv/2) and c3= f(+hv/2). Hence the number of general displacement is reduced to 4, namely u, w, w ' and φ. Kinematics (4) permits us simplify the finite element implementation without loss of accuracy. The strain resultants related to the displacement fields of the external elastic layers (Eq. 4) can be expressed as follow.

( )

' '' ' ( , , ) ( , ) ( , ) ( , 
)
xx i i x z t u x t zw x t c x t ε φ = - + i=1,3 (5) 
In the viscoelastic core the shear is important. Thus, the strain resultants to the displacement fields (Eq. 2) are expressed in terms of axial and shear component:

( ) ( , , ) ( , ) ( , ) ( ) ( , ) ( ) ( ) ( , , ) ( , ) xx v xz v x z t u x t zw x t f z x t df z x z t x t dz ε φ ε φ  = - +   =   (6a-b)
For the FGM layer, the elastic constitutive equations are used:

( ) ( ) ( ) ( ) xx i xx i i z E z σ ε = i=1,3 (7) 
Where Ei (z) is the z-dependent elastic modulus of the FGM i-layer. For the viscoelastic core the material behavior is nonlinearly frequency dependent. The constitutive equation adopted is written in terms of frequency-dependent shear and elastic modulus given as follow.

* * v v ( ) 0 0 ( ) xx xx xz xz E G σ ε ω σ ε ω       =             (8) 
E * and G * are respectively elastic and shear moduli. They are linked by the relation:

* * v ( ) ( ) 2 (1 ) 
E G ω ω ν = +
. ω is the Eigen frequency of the beam and νc is the Poisson's ratio of the core. In this formulation, the Poisson's ratio will be assumed constant both in FGM and viscoelastic layer. The modeling of the z-dependent FGM properties is detailed in the next section.

FGM material properties

Classically the FGM materials are manufactured by the mixtures of two basic isotropic materials. In this work we considered two types of FGM materials. One is made by aluminum and ceramic and the other one is made by the mixtures of glass and ceramic. In each model the volume fraction of the constituents is assumed z-dependent. The material effective properties including the elastic constants (E(z), G(z)) and mass density ρ(z) are obtained by homogenization procedure obeying to a power-law relationship [START_REF] Lee | Free vibration analysis of functionally graded Bernoulli-Euler beams using an exact transfer matrix expression[END_REF]:

z FGM (i=3) FGM (i=1) ( ) ( ) ( ) m c m c P z P P V z P = - + (9) 
P(z) is the homogenized property obtained from the basic constituent's properties Pc (ceramic)

and Pm (metal or glass). Vm is the volume fraction of the metal or the glass material (0 ≤ Vm ≤ 1). For the bottom and the top FGM layer of the sandwich beam, this function is given by the following expressions.

1 3 1 / 2 / 2 ( ) 2 / 2 / 2 Viscoelastic core 1 / 2 / 2 ( ) 2 k v m f v v k v m f z z h z h V z h h z h z z h z h V z h    -  - ≤ ≤ - = +         - ≤ ≤     -  ≤ ≤ = -         (10a-c)
Where k is the power-law index coefficient (k ≥ 0). Let us remind that by putting k=0, one gets an isotropic material at the sandwich faces with constant material constants P(z) =Pm= cte (Full aluminum or full glass). The variation of the volume fraction Vm in the thickness of the cross-section are represented in Fig. 2 

for height ratio hv/ h=2%

Top FGM layer Bottom FGM layer In what follows, the dynamic motion equations and static equilibrium equations of the FGM sandwich beam with viscoelastic core are derived in the case of 2D behavior.

These equations are first derived in the context of continuous media and a finite element approach is adopted in solution.

Variational formulation of the dynamic motion and static equilibrium equation

The governing dynamic equations of FGM sandwich beam with viscoelastic core are derived from Hamilton's principle as follow:

( )

2 1 0 t t U T W d t δ -- = ∫ (11a)
U, T and W denote the strain energy, the kinematic energy and the external load work. δ is the variational quantity. Under static loads, the equilibrium equations are derived from the stationarity conditions of the potential given by. 

The equilibrium and motion equations are derived in matrix formulation. For this outlook, the following work vectors are defined and will be used along this section.

{ } { } { } { } { } { } { } { } ' " ' ' ' , , t t t t y z u w e u w w q u w w S N M M V φ γ φ φ φ = = = = (12a- d)
The strain energy U is calculated from each layer's kinematics. For the FGM layers the deformation energy is obtained using the elastic constitutive relation (Eq. 7) and for the viscoelastic core the frequency dependent constitutive equations (Eq. 8) are considered. The variation of the deformation energy is given by:

v v v v /2 ' '' ' 1 1 /2 /2 ' '' ' /2 /2 ' '' ' 3 3 /2 ( ) { } ( ) ( ) { ( ) } ( ) ( ) { } h xx L h h xx v xz v L h h xx L h U b u z w c dz dx df z b u z w f z dz dx dz b u z w c dz dx δ σ δ δ δφ σ δ δ δφ σ φ σ δ δ δφ - - -   = - + +           - + + +             - +       ∫ ∫ ∫ ∫ ∫ ∫ (13) 
By the integration procedures in the cross section the variation of the strain energy can be expressed as follows:

( )

' '' ' 1 3 1 3 1 1 3 3 ( ) ( ) ( ) V V f z L U N N N u M M M w c N c N M V dx δ δ δ δφ φ = + + - + + + + + + ∫ ( 14 
)
Where N1, Nv, N3 are the axial forces; M1, Mv, M3 the bending moments; Mf the shear moment and Vz the shear force. They are numerically computed using the constitutive equations:

/ 2 / 2 1 1 1 1 / 2 / 2 ( ) , ( ) v v h h xx xx h h N b dz M b zdz σ σ - - - - = = ∫ ∫ / 2 / 2 3 3 3 3 / 2 / 2 ( ) , ( ) h h xx xx h h N b dz M b zdz ν ν σ σ = = ∫ ∫ (15a-h) / 2 / 2 / 2 / 2 v v / 2 / 2 / 2 / 2 ( ) ( ) , ( ) , ( ) 

( ) , ( )

h h h h xx v xx v f xx v z xz v h h h h df z N b dz M b z dz M b f z dz V b dz dx ν ν ν ν ν ν ν ν σ σ σ σ - - - - = = = = ∫ ∫ ∫ ∫
This permits us to get the following matrix formulation of the strain energy variation:

{ } { } t L U S dx δ δγ = ∫ (16) 
Where {γ} and {S} are respectively displacements gradient vector and the cross section stress resultant vector defined in Eq. 12. Taking into account for the constitutive material equation (Eq. 7-8) the stress resultant components obtained in Eq. 16 can be derived in terms of displacements gradient:

{ } ( ) ( ) ( ) 2 (1) * (2) (3) (3) (1) * (2) (1) (3) 
* (2) ' 0 0 0 1 1 1 1 0 3 0 (1) (3) * (2) (1) (3) * (2) ' ' 2 2 2 1 1 3 1 2 (1) 2 (3) * (2) ' 1 0 3 0 * (2) ( ) ( ) ( ) 0 ( ( ) ) ( ( ) ) 0 ( ( ) ) 0 Sym ( ) f zf f v A E A A A A E A c A c A E A u A A E A c A c A E A w S c A c A E A E A ω ω ω ω ω ω φ φ ω φ   + + - + + + +    -+ + + +   =    + +       [ ]{ } ( ) Dω γ      =        (17)
Where [D (ω)] is the material behavior matrix depending in frequency due to the viscoelastic behavior. The coefficients of the D-matrix are computed by integration over the FGM cross section as given as:

( ) / 2 (1) (1) (1) 2 0 1 2 1 / 2 ( , , ) ( ) 1, , v h h A A A b E z z z dz - - = ∫ ( ) / 2 (3) (3) (3) 2 0 1 2 3 / 2 ( , , ) ( ) 1, , v h h A A A b E z z z dz = ∫ (18a-c) ( ) 2 2 /2 (2) (2) (2) (2) (2) (2) (2) 2 2 0 1 2 /2 1 ( ) , , , , , , 1, , , ( ), ( ), ( ), 2(1 ) 
h f zf v f c h df z A A A A A A A b z z f z zf z f z dz dx ν ν υ -     =       +     ∫
In the integration, finite approach will be adopted. In order to take into account, the material nonlinearity, the D-matrix are computed in terms of elastic part and frequency dependent part as written in follow:

[ ] [ ] [ ] * 0 v ( ) ( ) D D E D ω ω = + (19) 
Where [D 0] and [D v] are constant matrix defined by:

[ ] ( ) ( ) ( ) (1) (3) (3) (1) (1) (3) 0 0 1 1 1 0 3 0 (1) (3) (1) (3) (1) (3) 1 1 2 2 1 1 3 1 0 (1) (3) (1) (3) 2 (1) 2 (3) 1 0 3 0 1 1 3 1 1 0 3 0 0 0 , 0 0 0 0 0   + - + +     + - + + =     + - + +       A A A A c A c A A A A A c A c A D c A c A c A c A c A c A [ ] 2 (2) (2) (2) 0 1 (2) (2) (2) 1 2 (2) (2) (2) v (2) 0 0 0 0 0 0       =         f zf f zf f v A A A A A A D A A A A (20a-b)
From Eq. 19 one gets the following expression of the strain energy variation:

{ } [ ] [ ] { } * 0 v ( ( ) ) t L U D E D dx δ δη ω γ = + ∫ (21) 
The kinematic energy T of the damped sandwich beam is obtained by the integration of the mass density over the cross-section. We admit that in the viscoelastic layer the mass density (ρ v) is constant but in the FGM layers it is z-dependent (ρ i (z)). After integration procedures, the variation of the kinematic energy can be expressed in matrix formulation:

{ } [ ]{ } t e L T q M q d x δ δ = ∫ & & ( 22 
)
Where {q} is the displacement gradient vector defined in (Eq. 12). The operator .

( . ) denotes the t-derivative and Me is the constant mass matrix given by: [ ]

(1) (2) (3) (1) (2) (3) (1) (2) (3) 0 0 0 1 1 1 1 0 3 0 (1) (3) (2) 0 0 0 (1) (2) (3) (1) (2) (3) (1) (2) (3) 1 1 1 2 2 2 1 1 1 3 (1) (2) (3) (1) (2) (3) 1 0 3 0 1 1 1 ( ) 0 ( ) ( ) 0 ( ) 0 0 ( ) 0 ( ) ( ) ( ) 0 ( f e zf f zf B B B B B B c B B c B B B B M B B B B B B B c B B c c B B c B B c B B c + + - + + + + + + = - + + + + - + + + + - + + 2 2 (1) (2) 2 (3) 3 1 0 3 0 ) ( ) f c B B c B           + +     (23) 
The coefficients of the Me matrix are obtained by integration of mass density of each layer over the cross-section. There expressions can be found in follow:

( ) v / 2 (1) (1) (1) 2 0 1 2 1 / 2 ( , B , ) ( ) 1, , h h B B b z z z dz ρ - - = ∫ ( ) v / 2 (3) (3) (3) 2 0 1 2 3 / 2 ( , B , ) ( ) 1, , h h B B b z z z dz ρ = ∫ (24a-c) ( ) v 2 v / 2 (2) ( 2) (2) (2) (2) (2) 2 2 0 1 2 v / 2 ( , B , , , , ) 1, , , ( ), ( ), ( ) 
h f zf f h B B B B B b z z f z f z zf z dz ρ - = ∫
By part integration in time one gets the virtual variation {δq} and the kinematic variation becomes:

{ } [ ]{ } t e L T q M q d x δ δ = -∫ && (25) 
In static analysis, external loads are applied. The corresponding virtual work δW is given by:

( ) { } { } ' ( ) ( ) ( ) ( , ) t xe ze ye L L W f x u f x w m x w dx e f x t dx δ δ δ δ δ = + + = ∫ ∫ (26)
Where {e} is work vector defined in Eq. 12 and {f(x)} is the load vector with its axial, vertical and bending moment, given by:

{ } { } ( , ) ( , ) ( , ) ( , ) t xe ze ye f x t f x t f x t m x t = (27)
Based on equation ( 21), ( 25) and ( 26), one gets the following matrix formulation of the governing equations of motion:

{ } [ ] [ ] { } { } [ ]{ } { } { } { } { } { } 2 * 0 v 1 ( ( ) ) ( , ) 0 
, and

t t t t e t L L L D E D dx q M q dx e f x t dx dt q e δγ ω γ δ δ δ δγ δ   + + - =     ∀ ∫ ∫ ∫ ∫ && (28) 
This system is carried out for static and dynamic loads. Under static loads, the inertia term is disregarded. The stiffness matrix part depending in frequency is vanished (

* * ( ) (0) E E ω = ),
the equilibrium system is then straightforward:

{ } [ ] [ ] { } { } { } { } { } * 0 v ( (0) ) ( ) 0 and t t L L D E D dx e f x dx e δγ γ δ δγ δ + - = ∀ ∫ ∫ (29) 
Only constant viscoelastic law (MCC) can be computed in this case. In free vibration analyses, the vibration modes are obtained under vanished external loads in the system (28):

{ } [ ] [ ] ( ){ } { } [ ]{ } { } { } 2 * 0 v 1 ( ) 0 , , δγ ω γ δ δ δγ   + + = ∀     ∫ ∫ ∫ && t t t e t L L D E D dx q M q dx dt q (30)
The solutions of the problem are harmonic and obey to:

( , ) ( ) ( , ) ( ) ( , ) ( ) i t i t i t u x t u x e w x t w x e x t x e ω ω ω φ φ = = = (31)
Where ω is the eigen-frequency of the beam. By substituting Eq. ( 31) into Eq. ( 30), one gets the following differential system:

{ } [ ] [ ] { } { } [ ]{ } ( ) { } { } * 2 0 v ( ( ) ) 0 , t t e L D E D q M q dx q δγ ω γ ω δ δ δγ + - = ∀ ∫ (32) 
By this way, the continuous motion equation of the FGM sandwich beam is carried out both in static and free vibration behaviors. The obtained system is nonlinear frequency dependent.

This system is not classical in vibration analysis, since the elastic part is not constant. A particular attention has to be done in the solution of the problem. The followed method is described after the finite element approach section.

Finite element approach of the motion equations

To discretize the problem ( 29) and ( 32), the finite element method is applied. Two dimensional two nodes element is used in this paper. In mesh process, each node has four degrees of freedom (DOF) from which it is possible to get displacement in axial and vertical directions combined with slope and shear rotation. Thus, for each element boundary by two nodes (1,2), one gets the following nodal displacements vector:

{ } { } ' ' 1 1 1 1 2 2 2 2 t e r u w w u w w φ φ = (33) 
Linear shape functions are adopted for axial displacement and the rotational angle (i.e. u, φ) and Hermit's cubic functions are adopted for the transversal displacements. The displacement and displacement gradient vectors and their variations are expressed in terms of the nodal vector by:

{ } [ ]{ } ( ) q n r ξ = , { } [ ]{ } ( ) e v r ξ = , { } [ ]{ } ( ) g r γ ξ = (34a- c) [n(ξ)], [v(ξ)
] and [g(ξ)] are respectively the shape functions and gradient matrices. ξ is local element coordinate (-1≤ ξ ≤1). Inserting Eq. ( 34) into Eq. ( 29) and Eq. ( 32) one gets the following motion equations of the problem:

-In statics:

[ ] [ ] [ ] ( )[ ]{ } [ ] { } 1 1 * 0 v 1 1 ( ) (0) ( ) ( ) ( ) 0 2 2 t t e e l l g D E D g r d f d ξ ξ ξ ξ ξ ξ - - + - = ∑ ∑ ∫ ∫ v (35a) 
-In free vibration:

[ ] [ ] [ ] ( )[ ]{ } ( ) [ ] [ ][ ]{ } 1 1 * 2 0 v 1 1 ( ) ( ) ( ) ( ) ( ) 0 2 2 t t e e e l l g D E D g r d n M n r d ξ ω ξ ξ ω ξ ξ ξ - - + - = ∑ ∑ ∫ ∫ (35b) 
e ∑ denotes the assembling process over basic elements.

In this work the viscoelastic behavior is frequency-dependent. This induces nonlinear stiffness matrix. In what follow detailed of the frequency dependence accounted in the solution's procedure are given.

Effects of the viscoelastic behavior on stiffness matrix 20

For the numerical integration, the nonlinear complex modulus is split in two terms

( * 0 ( ) ( ) E E E ω ω = +
). Where E0 and E (ω) are respectively the delayed elastic modulus and the frequency dependent modulus [START_REF] Daya | A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures[END_REF][START_REF] Bilasse | Modélisation numérique des vibrations linéaires et non linéaires des structures sandwichs à âme viscoélastique[END_REF]. This decomposition allows us to write the static and the free vibration systems as follow:

In statics behavior:

[ ] [ ] ( ){ } { } 0 v (0) K E K d F + = (36a) 
In free vibration analysis:

[ ] [ ] [ ] { } 2 0 v ( ( ) ) 0 K E K M d ω ω + - = (36b)
Where {F} is the force vectors and {d} the vector of degree of freedom associate to each node displacement.

[K0] represents the delayed elasticity stiffness.

[Kv] is the viscoelastic stiffness part and [M] the mass matrix. They are defined by:

[ ] [ ] [ ] [ ] [ ] ( ) 
1 0 0 0 1 ( ) ( ) ( ) 2 ξ ξ ξ - = + ∑ ∫ t v e l K g D E D g d , [ ] [ ] [ ][ ] 1 v v 1 ( ) ( ) 2 ξ ξ ξ - = ∑ ∫ t e l K g D g d (37a-d) [ ] [ ] [ ][ ] 1 1 ( ) ( ) 2 ξ ξ ξ - = ∑ ∫ t e e l M n M n d { } [ ] { } 1 1 ( ) ( ) 2 v ξ ξ ξ - = ∑ ∫ t e l F f d
In the present analysis, all the matrices of systems [START_REF] Touratier | An efficient standard plate theory[END_REF] are computed by numerical integration. The Gauss method is applied for the purpose. Moreover, to get an accurate solution of the systems, an efficient numerical methods are needed particularly for the non-constant viscoelastic laws. The different viscoelastic laws considered in this work and the numerical methods used to get the solutions are detailed in the next section.

Viscoelastic models

The viscoelastic layer has a non-constant elastic modulus. It is composed of a real part and an imaginary part. In the literature, two models are used. In the first one called 'Constant Complex Model'(MCC), the real and the imaginary parts are constants (Rao [START_REF] Rao | Finite element analysis of viscoelastically damped composite structures[END_REF]). The second model is nonlinearly frequency dependent. In this work two frequency-dependent models are studied. Naturally, the resolution method varies from one viscoelastic model to another depending on the induced nonlinearity.

• Constant Complex Model (MCC)

For the MCC model, the properties of the viscoelastic core are introduced by elastic modulus assumed to be complex constant: * 0 (1 )

c E E iη = + (38) 
Where E0 denotes the Young's modulus of the delayed elasticity and η c the core's loss factor.

This model is classical model used in the literature to modeling polymer materials [START_REF] Bilasse | Modélisation numérique des vibrations linéaires et non linéaires des structures sandwichs à âme viscoélastique[END_REF][START_REF] Rao | Finite element analysis of viscoelastically damped composite structures[END_REF].

Considering this law, the relations (36) can be written as:

In statics:

[ ] [ ] ( ){ } 0 0 { } c v K iE K d F η + = (39a) 
In free vibration:

[ ] [ ] [ ] ( ){ } 2 0 0 0 c v K iE K M d η ω + - = (39b) 
The equivalent systems are complex linear and can easily solved by classical method used for eigenvalue and eigenvector problems as Lanczos method [START_REF] Lanczos | An iteration method for the solution of the eigenvalue problem of linear differential and integral operators[END_REF]. For this models the core's loss factor η c certainly has an incident on the beam behavior. This effect little carries out in the literature, has been investigated in this work.

• Frequency dependent viscoelastic models

The modeling of the viscoelastic behavior in free vibration are carrying out using frequency depending viscoelastic law. In this work 3M ISD112 and the Poly-Vinyl-Butyral (PVB) are selected for the sandwich core layer. By fitting the master curve at 27°C and 20°C [START_REF] Trindade | Modeling of Frequency-Dependent Viscoelastic Materials for Active-Passive Vibration Damping[END_REF], the frequency dependent shear modulus of the 3M ISD112 can be expressed in the general Maxwell model based [START_REF] Bilasse | Linear and nonlinear vibrations analysis of viscoelastic sandwich beams[END_REF] as follow:

3 0 1 ( ) 1 j j j G G i ω ω ω =   ∆ = +     -Ω   ∑ ( 40 
)
Where G0 is the delayed elasticity shear modulus and (∆ j, Ω j) are the curve fitted-parameters given in Table 2 according to [START_REF] Bilasse | Linear and nonlinear vibrations analysis of viscoelastic sandwich beams[END_REF][START_REF] Trindade | Modeling of Frequency-Dependent Viscoelastic Materials for Active-Passive Vibration Damping[END_REF]. The PVB viscoelastic material is represented at 20°C by a power law given by [START_REF] Koutsawa | A generic approach for the solution of nonlinear residual equations. Part I: The Diamant toolbox[END_REF][START_REF] Haberman | Design of high loss viscoelastic composites through micromechanical modeling and decision based material by design[END_REF]:

20°C 27°C j G0 (MPa) j ∆ j Ω (rad/s) G0(MPa) j ∆ j Ω 1 
1 0 ( ) + ( )[1 ( ) ] G G G G i α χ ω ωτ -- ∞ ∞ = - + (41) 
Where G0 is the delayed elasticity shear modulus and G∞, α, τ and χ are the materials parameters with (G0=479 10 3 Pa ; G∞=2. 35 10 8 Pa ; τ =0.3979 ; α=0.46 ;β=0.1946).

For the nonlinear vibration analysis of viscoelastic sandwich beams, different approaches have been proposed in the literature.

Numerical solution procedure

Nonlinear equations in mechanics can be solved by classical iterative methods under different parameter controls (force, displacement controls or arclength methods). These methods are available and implemented in most of the commercial codes. In solution of the nonlinear eigenvalue problem of viscoelastic beams, authors of the present manuscript adopt the Asymptotic Numerical Method (ANM). This algorithm connects perturbation techniques with a discretization principle and a continuation procedure without the use of a correction process. The method is then not iterative. This method has been applied successfully in many fields of solid and fluid mechanics and other mechanics area [START_REF] Daya | A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures[END_REF][START_REF] Cochelin | Méthode asymptotique numérique[END_REF]. The efficiency of the method with comparison to the Newton-Raphson method is studied in [START_REF] Ed-Dinari | Large torsion analysis of thin-walled open sections beams by the Asymptotic Numerical Method[END_REF][START_REF] Elkaimbillah | A one-dimensional model for computing forced nonlinear vibration of thin-walled composite beams with open variable crosssections[END_REF]. The principle of the ANM is simply to expand the unknown of the discretized nonlinear problem in power series with respect to a unique path parameter transforming the nonlinear problem into a succession of linear ones. In solutions, all the unknowns are written in a power series of the path parameter. In order to make the method more attractive, some automatic differentiation tools (Diamand box) have been recently added to the algorithm [START_REF] Koutsawa | A generic approach for the solution of nonlinear residual equations. Part I: The Diamant toolbox[END_REF].

In dynamics, the ANM and Diamand box tools have been used in solutions of isotropic elastic sandwich structures with viscoelastic core. Applications have been then limited to isotropic materials. Shear effect has not been considered. In the present work, the algorithms are extended to the FGM sandwich beams with viscoelastic core with material properties frequency dependant. Different shear models are implemented in the study (Timoshenko, Reddy's models). The method is also used successfully in forced vibration in Kouami [START_REF] Koutoati | Modélisation numérique du comportement statique et vibratoire des poutres sandwich viscoélastiques à gradient de propriétés[END_REF]. The ANM method is summarized below.

In the first step of the resolution procedure, the nonlinear equation is written as a generic nonlinear residual equation:

[ ] [ ] [ ] { } { } 2 0 v ( , ) ( ( ) ) d K E K M d F ω ω ω ℜ = + - -
Where ℜ is the residual vector depending on the unknown vector {d} and Eigen-frequency ω. In ANM the solution is searching by part (d(a), ω (a)) in the neighborhood of a starting point (d0, ω0) using Taylor power series with respect to a path parameter "a" : Where dm and ωm are the Taylor series components of d and ω at order m given by :

1 1 ( ); ( ) ! ! m m m m d d a a m a m a ω ω ∂ ∂ = = ∂ ∂
. The new unknowns (dm, ωm) have to be computed at each order m (m=1,2…. N). For the numerical resolution, the system ( 43) is completed by a path parameter "a" defined as the projection of the frequency increment and the displacement increment on the tangent vector (u1 ω1) as:

[ ] [ ] ( ) (0) (0) ( ) (0) (0) u a d a d a a a ω ω ω ∂ ∂ = - + - ∂ ∂ (44) 
Introduced (Eq. 43) in the residual equation (Eq. 42) and in (Eq. 44), we obtained a sequence of N-linear systems with identical stiffness matrix:

( , ) t m m m L d F λ = ( 45 
)
Where Lt is the tangent linear operator and Fm the right-hand terms. The Eq. 45 is solved for each order m by considering the additional condition [START_REF] Elkaimbillah | A one-dimensional model for computing forced nonlinear vibration of thin-walled composite beams with open variable crosssections[END_REF]. In the Diamant approach, the Taylor series components in the right-hand of the Eq. 45 are evaluated using Automatic differential computed-based detailed in [START_REF] Koutsawa | A generic approach for the solution of nonlinear residual equations. Part I: The Diamant toolbox[END_REF].

Results and discussions

The finite element approaches of the 2D damped FGM sandwich beams have been investigated above. The shear effects are accounted to modelling the viscoelastic behavior.

Then different shear models have been investigated according to Timoshenko's First-Order Shear Theory (FOST), Reddy's Higher Order Shear Theory (HOST) and other higher shear models (SSDT, ESDT). These models were presented in Table 1. The finite element approach has been implemented in Matlab interface. In the present study, FGM sandwich beams with viscoelastic core are considered. Different viscoelastic laws are adopted in the applications: Constant complex law (MCC) and frequency-dependent one (PVB, 3M ISD112). Several combinations of boundary conditions are possible in the analysis. Clamped end (C), Free end (F), Pinned support with free axial displacement (P), Simply supported node with the axial displacement locked (S). The different studied beams are illustrated in Fig. 3. In the first and the second model the FGM material consists of ceramic and aluminum. For the core the MCC and the 3M ISD112 viscoelastic model described previously are adopted.

The properties of the materials involved in these sandwich beam models are given in Table .3

for FGM/MCC/FGM and in Table. Poisson's ratio νm=0,3 νc=0,3 νv=0,3

Mass density (kg/m 3 ) ρt=2766 ρb=3960 ρv=968.1 (Glass/PVB/ Glass) is commonly adopted in engineering for car windscreen modeling [START_REF] Bilasse | Modélisation numérique des vibrations linéaires et non linéaires des structures sandwichs à âme viscoélastique[END_REF].

The materials properties involving in this sandwich beam model are detailed in Table 5.

Properties FGM layers

Viscoelastic layer Glass Ceramic Young's Modulus (GPa) Em= 64.5 Ec= 380 E0=1. 34 10 -3 Poisson's ratio νm=0.22 νc=0.3 νc=0.4

Mass density (kg/m 3 ) ρm=2737 ρc=3960 ρc=999

Table 5: Material properties of FGM /PVB / FGM viscoelastic sandwich beams

In the literature, scant researches are devoted for the damping FGM beam. The existing works are mainly focused on plate structures. The frequency-dependent of the viscoelastic laws is not accounted in the numerical solutions. In the present work, a finite element approach is proposed for static and free vibration analysis of the damped FGM sandwich beam. FGM Beam with different nonlinear viscoelastic laws are then considered for the purpose.

4-1 Numerical simulations of viscoelastic sandwich beams

The results of the present 2D approach are compared to the numerical simulations results

obtained with Abaqus software. The modelling of FGM materials in this software is possible due to new modules introduced in recent versions (Abaqus/CAE, version 6.18 and 6.19).

In Finite element codes, only 3D volume elements are actually possible in simulation of the FGM sandwich viscoelastic beams. The beam is discretized by 3D brick elements over the FGM cross section layers and along the axial axis. Due to the nonlinear variation of the material properties over the cross section, the bottom and top FGM layers are discretized in more layers in order to capture the material properties in terms of the z axis for any power index 'k'. The followed procedure is reported in Appendix A and B.

The variation of the Young's modulus and mass density in the case of the cross section of The present 2D beam model leads to the same accuracy with a minimum degrees of freedom since all the material properties are computed in the reference line of the beam by integration over the cross section. The material properties and mass matrices are then computed according to systems [START_REF] Filippi | Static analyses of FGM beams by various theories and finite elements[END_REF] and [START_REF] Hu | Review and assessment of various theories for modeling sandwich composites[END_REF].

The adopted mesh of the beam using 3D brick elements is shown in 
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In the static study, the power index k and the structural loss factor ηc effects on the behavior are investigated. For this reason, let us consider the behavior of a clamped free beam under uniformly distributed load (qz=5 kN/m). The FGM/MCC/FGM sandwich beam model described above with structural loss factor ηc=0 is adopted. In this study, the deflection of the beam along its longitudinal axis and the variations of the axial strain, axial stress cross the thickness direction are depicted in terms of the power law index k (k=0, 1, 5 and 10). The geometric properties of the considered beam and cross section are shown in Fig. 4. Remember that for the present models very few elements are sufficient to achieve convergence (100 elements, 300 DOF) with a significant saving in time consuming.

Figure 5: CF beam deflection with FGM/MCC/FGM (ηc=0) in terms of some power index k (k=0;1;5 and 10).

The study of the stress distribution in the structures is essential for failure's phenomena prediction which are in most cases related to residual stresses concentrations at the layer's interfaces. For this purpose, the axial strain, the axial stress variations at the beam clamped support have been investigated. The axial strain and the axial stress variations are shown respectively in Fig. 6 and Fig. 7 with respect to power law index values. The shear is vanished in the FGM layer and varies linearly or nonlinearly in the core depending on the adopted shear function. In Fig. 6 one remarks that, on the upper and lower faces of the beam, the deformations obtained in terms of power index k are ordered from the highest to the lowest as:

k=0 > k=1> k=5 > k=10.
At the layer interfaces this same order is also observed. On other hand, due to the non-isotropic properties of FGM materials, the order of the axial stresses on the faces is not the same observed on the layer's interfaces (Fig. 7). Indeed, on the beam faces we note the following increasing order of the axial stresses: k=1> k=5 > k=10 >k=0 when on the interfaces the increasing order of the observed stresses is: k=0 > k=1> k=5>k=10. In Fig. 7 we can remark also the abrupt change of the stress variation at layer's interfaces in case of isotropic sandwich beam (k=0). That will probably lead to a stress concentration in the structure. Considering pure FGM sandwich beam (k>0), the stress variations are quasi continuous in the thickness direction of the structure and in this case lower stresses are observed at the interfaces. This shows that, FGM composites are effective to reduce stress concentration and avoid failure phenomena. For the validation purpose, the axial stresses obtained are compared to Abaqus simulation and it can be noted a good correlation (Fig. 8). By analyzing these curves, one can note that the deflection of the beam decreases with the structural loss factor. From this analysis, we are able to affirm that the structural loss factor has an incidence on the static behavior of FGM sandwich viscoelastic beams for the complex constant law. 

Benchmark solution comparisons

In the previous sections, the behavior of the FGM sandwich viscoelastic beam have been investigated static loads. The displacement, strain and stress variations have been obtained and the effect of the structural loss factor on the behavior have been studied.

Moreover, in engineering application, damped properties in vibration behavior must be known accurately. In this section, the free vibration analysis of FGM sandwich beams with viscoelastic core is studied. In the analysis, the vibration modes, the loss factor and the Eigen frequencies are obtained by solutions of the nonlinear Eigen problem (36b). For validation study, only isotropic damping beam models are available in the literature. Pure FGM sandwich beams with viscoelastic core are practically non-existent. For this reason, the results of the present approach are compared to literature [START_REF] Bilasse | Modélisation numérique des vibrations linéaires et non linéaires des structures sandwichs à âme viscoélastique[END_REF][START_REF] Rao | Finite element analysis of viscoelastically damped composite structures[END_REF] in case of isotropic layers (k=0)

and for the pure FGM beam (k >0), recourse to Abaqus simulations is followed. Then, the effect of the power law index on the damping properties is investigated in practical example.

For the literature validations, the tree viscoelastic laws detailed below are considered. In the first stage the FGM/MCC/FGM and FGM/3M ISD112/FGM clamped-free beams are studied.

The geometric properties depicted on Fig. 10 are adopted. For MMC viscoelastic law different structural loss factor values have been considered (ηc= 0.1 ;0.6 ;1 ;1.5). In the applications, the damping-properties namely Eigen-frequency and loss factor of the first five modes are carried out in Table 6 for MMC model and in The Eigen-frequencies and loss factors of the first 5 modes are also investigated in case of FGM/PVB/FGM always in isotropic study (k=0). In this case one considered clampedclamped beam with geometric properties given in Fig. 11. The obtained results are compared to the literature results and given in Table 8. One remarks that the results obtained with the present approach considering the tree viscoelastic laws descried above are in line with the literature results [START_REF] Bilasse | Linear and nonlinear vibrations analysis of viscoelastic sandwich beams[END_REF][START_REF] Bilasse | Modélisation numérique des vibrations linéaires et non linéaires des structures sandwichs à âme viscoélastique[END_REF] in the case of FOST. The HOST model leads to improved vibration behavior. The frequency and damping are higher. In the MCC and 3M ISD112 models (Table 6 and7), the HOST model offers the more relevant damping properties. These comparisons confirm the efficiency of the present finite element models for the free vibration analysis of isotropic viscoelastic sandwich beams. 

Finite element Abaqus comparisons

For the validation of the present approach in case pure FGM layers, we considered FGM/MCC/FGM beam model for ηc=1.5 with a geometric properties given in Fig. 12. Two boundary conditions are adopted (CF and CC).

The free vibration analysis is done through the computing of the first tree Eigen frequencies and loss factors in terms of the power law index k. The results obtained are compared to Abaqus volume element C3D20R. Let's us remember that the exact modeling of FGM materials in Abaqus is possible with the version 6.18 and 6.19. However, its need out calculated of the elastic properties before their introduction in Abaqus which increases the computation time. In this example, more than (800 elements, more than 15000 DOF) are needed for solution convergence, while for the present reduced beam models, 100 elements and 400 DOF are sufficient to achieve similar results with good accuracy. The simulation results are depicted in Table 9 for the clamped-free beam and in The vibration modes are also carried out and compare to Abaqus in case of CF beam (Fig. 13) and CC beam (Fig. 14) where wm denotes the maximal deflection. One can remark that our results are in good agreement with Abaqus simulations results both in case of CF and CC beam. That confirms the efficiency of the present approach for FGM damping analysis.

Furthermore, the present finite element models are convenient for FGM modeling with significant saving in time when compared to Abaqus volume element. The effect of the power index k on the damping properties are also investigated in this section.

The variations of the loss factor in terms of the power index k are carried out and depicted in can affirms that the loss factor is nonlinearly k-variation. A particular case is observed with CF FGM/ MCC /FGM beam considering the first mode. One remarks that the nonlinear curve have a maximum reached for k value close to "1". That is confirms by Abaqus (Fig. 15). The search of this value is necessary for the manufacturing process optimization. 
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 1 Figure 1: 2D FGM viscoelastic sandwich beam element and multilayer cross-section

Figure 2 :

 2 Figure 2: Variation of the volume fraction Vm through the FGM layer height ratio (z/h) in terms of the power-law index k.

Figure 3 :

 3 Figure 3: Beams with different boundary conditions

  4 for FGM/3M ISD112/FGM. By putting k=0 one gets (b): SS (a): SP (e): CP (d): CF (c): CC isotropic beam models with pure aluminum external layers widely reviewed in the literature [

Fig. 4 (

 4 reminded in Fig. A.1 for clarity) are depicted in Fig. A.2. These curves are reported for the power index k=5. The tabular values resulting for this power index are defined in Abaqus model as data in preparation of the material properties (Table A.1). Similar tables are needed for all the other values of power index k considered in the present study.

  Fig. B.1. The model needs more than 800 C3D20R brick elements. In 2D beam model, only the reference line is discretized (Fig. B.2). The boundary conditions investigated in the comparison examples concern the Clamped-Free (CF, cantilever) and the clamped-clamped (CC) beams. In 3D model, the clamped boundary conditions are obtained when all the displacements of one face of the CF beam and the 2 faces of CC beam are prescribed to zero (Fig. B.1). In 2D model, only displacements of DOF of the reference line are prescribed at one end for the CF beam and at the two ends for the CC beam (i.e u=w=θ=0, Fig. B.2). In the present model 50 elements (150 DOF) are needed in mesh process of the beams. In 3D model, the computational time includes the time needed in the preparation of the geometry, material data, mesh (pre-processing), solution of the problem under study, and results investigation (post-processing). More than 1h time is necessary at minimum for static and free vibration behaviors. Similar computations need less than 10 min in the present model. One concludes that with the present model data preparation is needed and an impressive time economy is gained compared to full 3D model. Nevertheless, the robustness and the efficiency of the commercial codes is recognized in other simulations fields where powerful tools are available in the preparation data and for the results comprehension. Some comparison examples are investigated below.

Figure 4 :

 4 Figure 4: Clamped-Free beam and multilayers cross-section

Figure 6 :Figure 7 :

 67 Figure 6: Axial strain variations over the section height in clamped side of the

Figure 8 :

 8 Figure 8: Axial stress variations over the sandwich cross section FGM/MCC/FGM.

  . (39. a) the behavior is loss factor dependent. This problem is very little aborted in literature. The structural loss factor effects on the behavior are very sensitive the beam geometric properties. For study the same sandwich beam model (FGM/MCC/FGM) studied previously is considered but with a height ratio hv/h=0.5%. In this study the power law index is putted to one (k=1). The deflection curves are depicted in terms of structural loss factors η c (η c = 0.1, 0.6, 1and 1.5) in Fig.9.
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 9 Figure 9: CF beam deflection with FGM/MCC/FGM ( k = 1 and η c = 0.1 , 0.6, 1.0, 1.5).

Figure

  Figure 11: CC beam with FGM/PVB/FGM geometric properties
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 10 CC Beam with FGM/MCC/FGM: frequency and damping ratios of the 1 st modes in terms of k (ηc=1.5).

Figure 13 :

 13 Figure 13: First tree flexural modes of FGM/MCC/FGM clamped-free beam with ηc=1.5.
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 145 Figure 14: First tree flexural modes of FGM/MCC/FGM clamped-clamped beam with ηc=1.5

Fig. 15 -

 15 Fig. 15-17 for respectively FGM/MCC/FGM, FGM/3M ISD112/FGM and FGM/PVB/FGM

Figure 15 :Figure 16 :Figure 17 :

 151617 Figure 15: Variation of the loss factor in terms of the power law index k for FGM/MCC/FGM CF and CC beams with ηc=1.5

Table 2 :

 2 3M ISD112 curve-fitted parameters

			0.746	468.7		2.8164	31.1176
	2	0.50	3.265	4742.4	0,05	13.1162	446.4542
	3		43.284	71532.5		45.4655	5502.5318

Table 3 :

 3 Material properties of FGM / MCC / FGM viscoelastic sandwich beams

	Properties	FGM layers 3M ISD112 Ceramic	Viscoelastic layer
	Young's Modulus (GPa)	Em= 69	Ec= 380	E0=1.5 10 -3
	Poisson's ratio	νt=0.3	νm=0.3	νv=0.5
	Mass density (kg/m 3 )	ρm=2766	ρc=3960	ρv=1600

Table 4 :

 4 

Material properties of FGM / 3M ISD112 / FGM viscoelastic sandwich beams

For the third model FGM/PVB/FGM, the FGM material consists of ceramic and glass. The PVB materials is used for the core. The isotropic sandwich model obtained by putting k=0

Table 7

 7 

	for the 3M ISD112 model for isotropic

Table 6 :

 6 CF Beam with FGM/MCC/FGM: frequency and damping values of the 1 st modes

						h=3.175 mm
				hf3	FGM	hf1=hf3=1.524 mm
		CF beam				hc=0.127 mm
			h	hc		b=12.7 mm
		L		hf1	FGM	L=177.8 mm k=0
					b	MCC inter-layer
		Present (HOST)	Present (FOST)	
	ηc	f(Hz)	η/ηc	f(Hz)	η/ηc	f(Hz)	η∕ηc
		65.8	0.27	64,1	0,28	64,1	0,28
		303.5	0.26	296,7	0,24	296,7	0,24
	0.1	755.5	0.17	744,3	0,15	744,5	0,15
		1407.3	0.10	1395,0	0,09	1395,7	0,09
		2275.8	0.07	2262,9	0,06	2265,2	0,06
		67.2	0.23	65.5		0.25	65.5	0.25
		306.3	0.25	299.1	0.23	299.2	0.23
	0.6	757.8	0.17	746.1	0.15	746.3	0.15
		1408.5	0.10	1396.0	0.09	1396.6	0.09
		2276.6	0.07	2263.6	0.06	2265.2	0,06
		69.1	0.187	67.5		0.202	67.5	0.202
	1	310.7 761.9	0.229 0.168	303.0 749.2	0.218 0.150	303.1 749.4	0.218 0.150
		1410.8	0.102	1397.7	0.088	1398.3	0.088
		2278.2	0.067	2264.7	0.057	2266.3	0.057
		71.5	0.140	69.9		0.153	69.9	0.153
	1.5	317.6 769.4	0.206 0.162	309.1 755.1	0.197 0.146	309.1 755.2	0.198 0.146
		1415	0.101	1400.8	0.087	1401.4	0.087
		2281.1	0.066	2266.9	0.057	2268.5	0.057
				(k=0)		

Table 7 :

 7 CF Beam with FGM/3M ISD112/FGM: frequency and damping values of the 1 st

	modes (k=0)

Table 8 :

 8 11: CC beam with FGM/PVB/FGM geometric properties CC Beam with FGM/PVB/FGM: frequency and damping values of the 1 st modes

		Present HOST	Present FOST	[37]	
	Mode	f(Hz)	η	f(Hz)	η	f(Hz)	η
	1	67.00	0.16	65.23	0.17	65.23	0.17
	2	333.99	0.32	323.24	0.30	323.30	0.30
	3	875.73	0.35	846.58	0.33	846.82	0.33
	4	1598.91	0.35	1554.49	0.32	1555.29	0.32
	5	2548.99	0.34	2488.35	0.30	2490.27	0.30

Table 10

 10 

	for the clamped-

Table 9 :

 9 CF Beam with FGM/MCC/FGM: frequency and damping ratios of the 1 st modes in terms of k (ηc=1.5).

Table A .

 A 1: Material properties values of the Young's modulus and mass density (E(z), ρ(z)) through the Top and the Bottom FGM layers with k=5. Values for 20 layers for the top and the bottom FGM parts. These tabular values are defined in Abaqus model as data in material properties.

				z	E(z)	ρ(z)
				mm	GPa	kg/m 3
	-100	380,00	3960,00	5	69,00 2766,00
	-95	380,00	3960,00	10	142,67 3048,83
	-90	380,00	3959,98	15	201,66 3275,33
	-85	379,97	3959,88	20	248,30 3454,37
	-80	379,87	3959,51	25	284,62 3593,82
	-75	379,61	3958,49	30	312,45 3700,66
	-70	379,02	3956,25	35	333,37 3780,96
	-65	377,89	3951,90	40	348,75 3840,01
	-60	375,88	3944,20	45	359,77 3882,34
	-55	372,58	3931,53	50	367,44 3911,78
	-50	367,44	3911,78	55	372,58 3931,53
	-45	359,77	3882,34	60	375,88 3944,20
	-40	348,75	3840,01	65	377,89 3951,90
	-35	333,37	3780,96	70	379,02 3956,25
	-30	312,45	3700,66	75	379,61 3958,49
	-25	284,62	3593,82	80	379,87 3959,51
	-20	248,30	3454,37	85	379,97 3959,88
	-15	201,66	3275,33	90	380,00 3959,98
	-10	142,67	3048,83	95	380,00 3960,00
	-5	69,00	2766,00	100	380,00 3960,00

[START_REF] Cochelin | Méthode asymptotique numérique[END_REF] 

Conclusion

In the present work, 2D beam finite element models have been investigated for the behavior and free vibration of the Functionally Graded Materials (FGM) sandwich beams with viscoelastic core. Shear is included according to Timoshenko FOST and Reddy's HOST models in the viscoelastic layer core. Classical Beam Theory model is adopted in the FGM layers. The governing equation of motion derives from Hamilton's principle in free vibration and from stationary conditions of the potential in static. Three viscoelastic laws are studied: A constant complex law and two frequency-dependent laws. Considering the constant law, the obtained problem is linear and can be solved by classical methods used for eigenvalue and eigenvector problems. For frequency-dependent viscoelastic behavior, the eigenvalue problem obtained is nonlinear and requires a powerful numerical method. In the present model, solutions of the problem have been possible by the help of the Asymptotic Numerical Method (ANM) and the Automatic Differentiation. The damping properties of the beam are sought through the computing of the Eigen frequency and the loss factor of each vibration mode. The efficiency and the accuracy of the proposed models are proven through the comparison to some benchmark solutions available in the literature for isotropic layers. The FGM viscoelastic sandwich beam model are little studied in the literature in case of pure FGM.

Therefore, the model proposed in this work is validated by numerical simulations obtained with the volume element of Abaqus. The FGM modeling with this software is complex and very expensive in computing time when compared to the present approach. In this work, it is proven that the damping properties are nonlinearly power law index dependent. The structural loss factor has incident not only in dynamic but also in static behavior. The study of stresses and deformations shows the advantage of using FGM to minimize the presence of residual stresses at layer's interfaces. Important gains are attended in design. Since stress concentration are avoided, interlayer local buckling micro crack and delamination problems can be limited. life serviceability is then improved. 

Appendix A: Material properties tabulation and preparation data