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Advanced Control for Real-Time Dynamic Traffic
Routing Problem

Hirsh Majid, Hassane Abouaı̈ssa, Daniel Jolly, Gildas Morvan

Abstract—The aim of this paper is to present a new algorithm
to deal with the real-time Dynamic Traffic Routing (DTR)
problem using a second order traffic flow model (METANET).
The proposed approach rests on the use of the concept of
differential flatness for which the structure of the trajectories
of the dynamics can be completely characterized, without inte-
gration of any differential equations. The objective is to achieve
user-equilibrium on alternate routes in a network setting. The
relevance of the algorithm is demonstrated via a set of numerical
simulations.

Keywords: Traffic modelling, Dynamic traffic assignment,
Flatness-based control.

I. INTRODUCTION

Traffic control represents the main way to improve the
freeway throughput and to ensure an efficient, safe and less
polluting transportation of goods and persons [8]. It also
contributes to a large reduction of direct and indirect costs.

Freeway traffic control can be achieved via a set of actions
and measurements such as: dynamic speed limits, route
guidance, dynamic assignment and dynamic traffic routing ,
ramp metering, ... etc.

Dynamic Traffic Assignment (DTA) and Dynamic Traffic
Routing (DTR) represents one of the most efficient solutions
to steer the congestion problems especially the no-recurrent
one. DTR/DTA or control of traffic diversion rests on the
determination of a time-dependent split variables at the
diversion point in order to achieve a user-equilibrium traffic
pattern [6]. Several algorithms have been developed for this
problem. Most of them rest on optimization approaches
such those proposed by [22]. As stated in [7], the proposed
optimization algorithm attempts to solve the DTR problem by
optimizing the objective functions for the nominal model over
the planning horizon and it is not adapted for on-line DTR
control. Papageorgiou [19] and Messmer & Papageorgiou [16]
have proposed algorithms for Dynamic Traffic Assignment
(DTA) based on the linear quadratic regulator, and nonlinear
optimization techniques. Other techniques use expert systems
to deal with the diversion problem [14]. Liu & al. [9] have
proposed a strategy based on a model reference adaptive
control in order to guide the real-world traffic flow to
evolve towards the desired states especially under emergency
evacuation. Kachroo & Özbay [5] have designed feedback
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and fuzzy control laws for an on-line diversion problem.
Another algorithm for DTR and DTA problems based on the
nonlinear H∞ was proposed in [4]. These algorithms are
based on a simple conservation law and a linear fundamental
diagram proposed by [2] that do not reflect all the traffic flow
phenomena.

In this paper, we use a specific class of complex sys-
tems called “Differentially flat systems” to solve the user-
equilibrium DTA/DTR. The main characteristics of flatness
is particularly well tuned for allowing one to solve inverse
dynamics problems and one builds off of that fundamental
solution in using the structure of flatness to solve more general
control problems [18]. A system is flat if it does exist a set of
variables called “flat outputs”, such that the system is (non-
differentially) algebraic over the differential field generated by
the set of flat outputs. In other words, a system is flat if we
can find a set of outputs (equal in number to the number of
inputs) such that all states and inputs can be determined from
these outputs without integration. Moreover, in this paper the
non-destination oriented METANET model [26] [1] is used
which is a second-order, deterministic, macroscopic traffic
flow model that consists of the Payne model [21] discretized in
both space and time with some model enhancements proposed
by Papageorgiou added.
The paper is organized as follows:
• Section II, presents the main principles of the DTR

problem and its mathematical formulation.
• Section III, recalls the main definitions of flat systems.
• Section IV shows the control design methodology using

the concept of flatness.
• Section V provides some numerical simulations for a

sample network.
• Section VI concludes the paper and outlines some tracks

for future developments.

II. DYNAMIC TRAFFIC ROUTING FORMULATION

In this section, we first present a mathematical formulation
which is usable for the design of DTA/DTR flat controller. We
expose a second order traffic flow model ( METANET). Notice
that there are two ways to describe the system dynamics for
DTA/DTR problems: the link-based model and the route-based
model. In this paper we focus on the route-based model.

A. DTR model

For the sake of simplicity, we consider the case of two
alternate routes divided into n1 and n2 sections respectively,
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Figure 1. Sample example of two alternate routes

depicted in Figure 1.
The METANET model is used to design the studied system;

The equation of dynamic density is:

ρ̇i,j(t) =
1

Li,j
[qi,j−1(t)− qi,j(t)] (1)

where;
(i, j) = ((1, 1), (1, 2), . . . , (1, n1), (2, 1), (2, 2), . . . , (2, n2)).
Li,j is the section length and ρi,j represents the traffic density
at section j of the route i.

The relationships between the traffic flow qi,j and the mean
speed vi,j is:

qi,j(t) = ρi,j(t)vi,j(t)λi,j (2)

λi,j is the number of lanes. vi,j is a dynamic mean speed of
section j on the route i.
The equation of dynamic mean speed is:

v̇i,j(t) = 1
τ (Vρi,j (t)− vi,j(t)) + 1

Li,j
vi,j(t)(vi,j−1(t)

−vi,j(t))− ν
τLi,j

ρi,j+1(t)−ρi,j(t)
ρi,j(t)+κ

(3)
Vρi,j is defined as a nonlinear expression (See [15]):

Vρi,j (t) = vfi,j exp

[(
−1

a

)(
ρi,j(t)

ρci,j

)a]
(4)

ρci,j represents the critical density and a, a model parameter.
vfi,j , the free-flow speed.

The control input α(t) ∈ [0, 1] is defined as an exogenous
variable of the system [20], it is a split rate which allows to
reach a user equilibrium traffic pattern: For the case of two
routes, the equations of entry flow in each route are:{

α(t)qe(t) = q1,in(t)
(1− α)qe(t) = q2,in(t)

(5)

qe(t) is the incoming measured flow. The control objective is
to find the split rates α in order to minimize the total travel
time TT .
Kachroo and Özbay [7] have formulates the DTR problem as
follow: find α0, the optimal α(t), which mininizes

J(α) =

∫ tf

0

[
m∑
i=1

TT (ρi)−
m+p∑
m+1

TT (ρi)

]2
dt (6)

where, TT is the travel time function and tf the final time.
In the general case, consider a traffic flow system

with n alternate routes. The system is described by the
same ordinary differential equation (1) where, (i, j) =
((1, 1), . . . , (1, n1), (2, 1), . . . , (2, n2), (n, 1), . . . , (n, nn)).
The problem consists then on finding a set of split variables,
αn−1, where,

∑n−1
i=1 α

i = 1 which minimize the total travel
time TT , (See [7], for optimal formulation of the DTR
problem for a general case)

α1(t)qe(t) = q1,in(t)
α2(t)qe(t) = q2,in(t)

...
(1− α1 − α2−, . . . ,−αn−1)qe(t) = qn,in(t)

(7)

Note that for such complex problem, an open loop control
structure is not sufficient [4], it calls for a more robust
feedback control one. In this context, we highlight the interest
of an attractive approach based on the concept of differential
flatness [11] [10]. The following section, recalls the main
definitions and principles of differentially flat systems.

III. DIFFERENTIALLY FLAT SYSTEMS

The DTR problem can be solved by a typical use of
control theory which consists the system dynamics inversion
to compute the required inputs to achieve a user-equilibrium
traffic pattern. As stated in [18], This inversion may involve
finding appropriate inputs to steer a control system from one
state to another or may imply to find inputs to follow a desired
trajectory for some or all of the state variables of the system.
Generally, if it does exist, the solution to such problems will
not be unique. In this case a trade off between the system
performance for the stability and actuation effort must be done.
Frequently, this trade off is described as in [6], as a cost
function balancing the desired performance objectives with
stability and actuation effort, resulting in an optimal control
problem as solved in [16].

The basic paradigm used in most, if not all, control tech-
niques is to exploit the mathematical structure of the system
to obtain solutions to the inverse dynamics and feedback
regulation problems. The most common structure to exploit
is linear structure, where one approximates the given system
by its linearization and then uses properties of linear control
systems combined with appropriate cost function to give
closed form (or at least numerically computable) solutions.
By using different linearizations around different operating
points, it is even possible to obtain good results when the
system is nonlinear by “scheduling” the gains depending on
the operating point. As the systems that we seek to control
become more complex, the use of linear structure alone is
often not sufficient to solve the control problems that are
arising in applications. This is especially true of inverse
dynamics problems, where the desired task may span multiple
operating regions and hence the use of a single linear system
is inappropriate.

In this paper, we concentrate on a specific class of systems,
called “differentially flat systems”, for which the structure of



the trajectories of the (nonlinear) dynamics can be completely
characterized.

The concept of Flat systems was first introduced by
Fliess and coworkers ([11] [10]). more than 10 years ago
using the formalism of differential algebra (See [13]) for
a slightly different approach of differentially flat systems).
This special class of non-linear control systems described
by ordinary differential equations: differentially flat systems
form a special class of nonlinear control systems for which
systematic control methods are available once a flat-output is
explicitly known. The flatness-based concept was developed
in a differentially algebraic context and was later expressed
using Lie-Bäcklund transformation [12].

The flatness-based control methods may be expected to
play a very significant role in high technology applications
in the next few years, similar to what happened for nonlinear
control in the last decade [25]. The main property of flat
systems is that all the state and input variables can be
expressed directly, without integration of any differential
equation, in term of the set of so-called ”flat output” and a
number of its time derivatives. More precisely, the entire
system behavior is determined by the trajectory of a finite
collection of quantities: flat outputs. This leads to a simple
and elegant trajectory design. For a given system, the number
of flat outputs is equal to the number of the system inputs.
The flatness concept is closely related to the state feedback
linearization.

A. Flat Systems Definition

In this section, We just sketch a tutorial definition of flatness
for state-space control system. Consider the smooth system
defined using the following equation:

ẋ = f(x, u); x ∈ Rn, u ∈ Rm (8)

where x = (x1, x2, ..., xn) vector of state variables and

u = (u1, u2, ..., um), m scalar control. The system (8)
is flat if and only if, there exist m real smooth functions
h = (h1, h2, ..., hm) depending on x and a finite number of u
derivatives, says β, such that, generically, the solution (x, u)
of the square differential-algebraic system (t 7→ y(t) is given)

ẋ = f(x, u), y(t) = h(x, u, u̇, ..., u(β)) (9)

does not involve any differential equation and thus is of the
form:

x = Φ(y, ẏ, ..., y(β)), u = Ψ(y, ẏ, ..., y(β+1)) (10)

where, Φ and Ψ are smooth functions, and β is some finite

number [23]. The quantity y is of fundamental importance:
it is called ”flat output” or linearizing output. In the control
language, the flat output y is such that, the inverse of ẋ =
f(x, u), y = h(x, u, u̇, ..., u(β)) has no dynamics ([17] [23]).

Differentially flat systems are very useful in situations where
the explicit generation of trajectories is required. Since the be-
havior of flat systems is determined by the flat outputs, one can
plan the trajectories in the outputs space and then connect these
to appropriate inputs. More precisely, from the trajectories of
the flat outputs y , we can deduce immediately the trajectories
of the state x and the input u variables. Applications of the
flatness concept to engineering problems field have grown
steadily in recent years and a variety of case studies have
been shown to be flat and flatness based controllers based
on trajectories generation by polynomial interpolation and
then closing the loop on the obtained trajectories have been
developed.

B. Trajectories planning for Flat systems

The main advantage of flat systems is there ability for
solving control problems. The synthesis of control laws
is divided into: ”trajectory planning” corresponding to the
open-loop control synthesis and ”trajectory tracking” which
corresponds to the closed-loop control design.

For flat systems, there is a systematic method for trajectory
planning (See [24]). Often these trajectories are required to
parameterize a finite time transition between two stationary
regimes. These equilibria can be computed (locally) from
relations such that:

u = Ψ(y, ẏ, ..., y(β+1))

by substituting y(i) = 0, i > 0. Thus, they are, specified by
constant values of the flat output.

The transition between two states is determined by choosing
a reference trajectory for the flat output, and y being differen-
tially independent. The trajectories of its components can be
chosen independently, and freely. In principle, any sufficiently
smooth curve t 7→ y∗i (t) may be used. A particularly simple
method uses polynomials to define reference trajectories. Then
the coefficients of the polynomials, follow from the initial
(t = 0) and final values (t = T ) of y by solving a
linear system of equations (See [24] for the exact method of
coefficients calculation).

IV. DIFFERENTIAL FLATNESS FOR THE DTR PROBLEM

In [3], authors introduce flatness-based control for dynamic
traffic routing for two alternate routes with a single section
using first order traffic flow model. Here we propose the same
type of control using the METANET model. Moreover, in
order to illustrate the relevance of the proposed algorithm, we
extend it to a case of two alternate routes with two sections.
The simulated freeway portion is shown in figure (2).

A. DTR control for two alternate routes with two sections

The space discretized equations of the system is

ρ̇11(t) =
1

L11
[αqe − ρ11(t)v11(t)] (11)
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Figure 2. Simulated freeway section

v̇11(t) = 1
τ (Vρ11(t)− v11(t)) + 1

L11
v11(t)(v10(t)

−v11(t))− ν
τL11

ρ12(t)−ρ11(t)
ρ11(t)+κ

(12)

ρ̇12(t) =
1

L12
[ρ11(t)v11(t)− ρ12(t)v12(t)] (13)

v̇12(t) = 1
τ (Vρ12(t)− v12(t)) + 1

L12
v12(t)(v11(t)

−v12(t))− ν
τL12

ρ13(t)−ρ12(t)
ρ12(t)+κ

(14)

ρ̇21(t) =
1

L21
[(1− α)qe − ρ21(t)v21(t)] (15)

v̇21(t) = 1
τ (Vρ21(t)− v21(t)) + 1

L21
v21(t)(v20(t)

−v21(t))− ν
τL21

ρ22(t)−ρ21(t)
ρ21(t)+κ

(16)

ρ̇22(t) =
1

L22
[ρ21(t)v21(t)− ρ22(t)v22(t)] (17)

v̇22(t) = 1
τ (Vρ22(t)− v22(t)) + 1

L22
v22(t)(v21(t)

−v22(t))− ν
τL22

ρ23(t)−ρ22(t)
ρ22(t)+κ

(18)

Vρ11(t) = vf11 exp
[(
− 1
a

) (ρ11(t)
ρc11

)a]
Vρ12(t) = vf12 exp

[(
− 1
a

) (ρ12(t)
ρc12

)a]
Vρ21(t) = vf21 exp

[(
− 1
a

) (ρ21(t)
ρc21

)a]
Vρ22(t) = vf22 exp

[(
− 1
a

) (ρ22(t)
ρc22

)a]
The travel time function is obtained as follow:

y1(t) =
L11

v11(t)
+

L12

v12(t)
(19)

y2(t) =
L21

v21(t)
+

L22

v22(t)
(20)

The variable y is equal to the difference in the travel time
on the two sections.

y(t) =

[(
L11

v11(t)
+

L12

v12(t)

)
−
(

L21

v21(t)
+

L22

v22(t)

)]
(21)

The first time derivative leads to:

ẏ(t) = A+B + C +D + αE (22)

The terms A, B, C, and D ... represents derivatives of sections
21, 11, 12 and 22 respectively. And the term E consists of
all the terms in which α does exist. It comes from sections
11 and 21. The term A is composed of three terms (A1, A2

and A3);

A1 =
L21

(v21)2

 v21− vf21σ4

τ − νσ6

L21τ(κ+ρ21)

τ
−

ν(ρ21v21−ρ22v22)
L22

L21τ(κ+ ρ21)


A2 =

L21

v21
ρ21

 vf21σ8

L21ρc21σ4

τ
−

ν
L21

L21τ(κ+ ρ21)
+

νσ6
(L21)2τσ9



A3 =
L21qe
(v21)2

− vf21σ8

L21ρc21σ4

τ
+

ν
L21

L21τ(κ+ ρ21)
− νσ6

(L21)2τσ9


The term B is composed of two terms (B1 and B2);

B1 =
−L11

(v11)2

 v11− vf11σ3

τ − νσ5

L11τ(κ+ρ11)

τ
−

ν(ρ11v11−ρ12v12)
L12

L11τ(κ+ ρ11)


B2 =

−L11

v11
ρ11

 vf11σ7

L11ρc11σ3

τ
−

ν
L11

L11τ(κ+ ρ11)
+

νσ5
(L11)2τσ10


The term C is composed of three terms (C1, C2 and C3);

C1 =
−L12

(v12)2

−σ13 +
v12− vf12σ11

τ − vf12σ15(ρ11v11−ρ12v12)
L12ρc12σ11

τ



C2 =
1

v12

[
v11 − vf11

σ19

τ
−
v12 − vf12

σ11

τ
+ σ13 −

ν(ρ11 − ρ12)

L11τ(κ+ ρ11)

]

C3 =
σ17

(v12)2

[
v12 − vf12

σ11

τ
− σ13

]
The term D is composed of three terms (D1, D2 and D3);

D1 =
L22

(v22)2

−σ14 +
v22− vf22σ12

τ − vf22σ16(ρ21v21−ρ22v22)
L22ρc22σ12

τ



D2 =
−1

v22

[
v21 − vf21

σ20

τ
−
v22 − vf22

σ12

τ
+ σ14 −

ν(ρ21 − ρ22)

L21τ(κ+ ρ21)

]

D3 = − σ18
(v22)2

[
v22 − vf22

σ12

τ
− σ14

]



The term E is composed of two terms one concerns section
11 and the other concerns section 21;

E11 =
L11qe
(v11)2

 vf11σ7

L11ρc11σ3

τ
−

ν
L11

L11τ(κ+ ρ11)
+

νσ5
(L11)2τσ10



E21 =
L21qe
(v21)2

 vf21σ8

L21ρc21σ4

τ
−

ν
L21

L21τ(κ+ ρ21)
+

νσ6
(L21)2τσ9


σ3 = exp

(
1
a ( ρ11ρc11

)a
)

, σ4 = exp
(

1
a ( ρ21ρc21

)a
)

, σ5 = ρ11−ρ12,

σ6 = ρ21 − ρ22, σ7 = ( ρ11ρc11
)(a−1), σ8 = ( ρ21ρc21

)(a−1),

σ9 = (κ + ρ21)2, σ10 = (κ + ρ11)2, σ11 = exp
(

1
a ( ρ12ρc12

)a
)

,

σ12 = exp
(

1
a ( ρ22ρc22

)a
)

, σ13 = v12σ17

L12
, σ14 = v22σ18

L22
,

σ15 = ( ρ12ρc12
)(a−1), σ16 = ( ρ22ρc22

)(a−1), σ17 = v11 − v12,
σ18 = v21 − v22, σ19 = exp( 1

a ( ρ11ρc11
)a) and

σ20 = exp( 1
a ( ρ21ρc21

)a).

The studied system is characterized by one input (control)
variable, we have then one flat output F = y, which represents
the difference in travel time function between the two routes.
Thus the equation (22) can be rewritten as:

Ḟ (t) = A+B + C +D + αE (23)

from which

α(t) =
Ḟ (t)− (A+B + C +D)

E
(24)

The expression of the state variable allows to choose a
suitable trajectory of the travel time (the flat output). The
equation of the control (input) variable allows to add additional
constraints to this travel time trajectory. This means that all
important properties of the system (22) are contained in such
a differential parametrization.

B. Trajectory planning:

The equation (24), corresponds to an open loop control
algorithm. In order to define the trajectory planning, a suitable
desired trajectory F ∗ has to be defined. According to the
expression of the control variable in (24), this trajectory
must have smooth derivatives up to order two. In order to
reduce computational effort in real time situation, one can
build this reference trajectory for the travel time (flat output)
using a polynomial interpolation [25] from the initial and
final conditions of the travel time (F (ti) = Fi, Ḟ (ti) = 0)
and (F (tf ) = Ff , Ḟ (tf )) = 0). This is accomplished by
prescribing the following desired trajectory for the flat output
F :

F ∗(t) =

 Fti for t < ti
Fti + (Ftf − Fti)ϕ(t, ti, tf ) for ti ≤ t ≤ tf
Ftf for t > tf

(25)

PI
Regulator

Inverse
System

Traffic flow
system

+
uPI

+u∗ α

F ∗ F
.
= F ∗

-

+

Figure 3. flow chart (Reduced-order estimator)

where ϕ(t, ti, tf ) is a polynomial function of time, exhibiting
a sufficient number of zero derivatives at times ti and tf . (For
the polynomial calculation see e.g. [24] [25]):

ϕ(t) =


0 if t < ti

3
(
t−ti
tf−ti

)2
− 2

(
t−ti
tf−ti

)3
if ti ≤ t ≤ tf

1 if t > tf
(26)

Thus, by replacing the term Ḟ (t) in equation (24) by the
term of desired trajectory Ḟ ∗(t), we obtain the nominal open
loop control:

α∗(t) =
Ḟ ∗(t)− (A+B + C +D)

E
(27)

C. Trajectory tracking:

Due to the parameter variations and disturbances in traffic
flow, and changes in the traffic conditions, the open loop
control is not sufficient to control the traffic flow. To ensure a
steady state and reduce the influence of parameter variations,
the traffic flow has to be operated in closed loop.

Using the flatness-based open loop presented in algorithm
equation (24), an additional feedback can be determined
in order to achieve desired dynamic behaviour and to
compensate the external disturbances. Here, a PI regulator
is used to feedback the system (See Fig. 3). Thus, the
closed-loop control schema including the flatness-based loop
can be obtained as follow:

ν(t) = Ḟ ∗(t)− k1(F (t)− F ∗(t))− k2
∫

(F (t)− F ∗(t))dt
(28)

where k1 and k2 are parameters that must be selected so as
to satisfy the desired performances of the closed loop system
and to ensure asymptotically stabilization of the input variable.
The control law α now reads:

α(t) =

[
Ḟ ∗(t)− k1(F (t)− F ∗(t))− k2

∫
(F (t)− F ∗(t))dt

E

−A+B + C +D

E

]
(29)

V. NUMERICAL SIMULATIONS

Figure (2) is a schematic diagram of the freeway portion
used in the simulation. It shows two routes with the same



Table I
THE MODEL AND SIMULATION PARAMETERS

Parameter value Parameter value

a 2.34 ρc 36 veh/km.
τ 18 sec ρmax 180 veh/km.
ν 60 km2

h
vf 90 km

h
.

κ 40 veh
km

qmax ρcvfexp(
−1
a
).

Time step 5 sec Cell length 500m
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Figure 4. Traffic income flow

length and geometric conditions. Each route is partitioned into
2 identical cells (each cell = 500m). At the end of each cell,
one loop detector (sensor) is installed. The model parameters
are depicted in table (I). The theoretical results are illustrated
by some simulations.

The macroscopic simulation has been done during 165
minutes. Traffic incoming flow for the simulation is shown in
figure (4). In figures (5, 6, 7 and 8) densities and mean speeds
of the two sections and the two routes are shown respectively
under control algorithm (see section IV-C). From figures, it
is clear that both density and mean speed of the system in
each reciprocal cell are equal, it is mean that the travel time
difference between these two routes are zero. In figure (9)
the control value for each route is given. In figure 10 the
travel time of each routes and their difference is shown after
applying the control algorithm.

VI. CONCLUSION

In this paper, a closed loop control algorithm was simulated
in order to control the incoming flow of two routes that
have the same length and geometry. The control algorithm
is designed to minimize the travel time and optimize the
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Figure 5. Traffic density of section 1
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Figure 6. Traffic density of section 2

flow on the freeway portion. The control was applied on
the METANET model which is a second order traffic flow
model discretized in time and in space. The results show the
relevance of the control by which the density and mean speed
of the two routes equalized. These results inspire us to extend
this work to deal with more complicated network in the future.
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Figure 7. Traffic mean speed of section 1
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Figure 8. Traffic mean speed of section 2
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