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In this paper, we present a new algorithm to deal with the real-time dynamic traffic routing (DTR) problem using a second order traffic flow model (METANET). We investigate variable structure control (VSC) as a high-speed switched feedback control resulting in sliding mode. The control objective is to minimize the difference of the travel times on alternate routes in a network setting. Accordingly, the congestion could be reduced/eliminated. The relevance of the proposed algorithm is demonstrated via a set of numerical simulations in the case of the same as well as different geometric conditions.

I. INTRODUCTION

Traffic control represents an efficient way to improve the freeway throughput and to ensure an efficient, safe and less polluting transportation of goods and persons [START_REF] Kostialos | Motorway network traffic control systems[END_REF]. It also contributes to a high reduction of direct and indirect costs.

Freeway traffic control can be achieved via a set of actions and measurements such as: dynamic speed limits, route guidance, dynamic assignment and dynamic traffic routing, ramp metering, etc.

Dynamic traffic assignment (DTA) and dynamic traffic routing (DTR) represent some of the most efficient solutions to steer congestion problems especially the no-recurrent ones. DTR/DTA or control of traffic diversion rests on the determination of time-dependent split variables at the diversion point in order to achieve a user-equilibrium traffic pattern [START_REF] Kachroo | Solution to the user equilibrium dynamic traffic routing problem using feedback linearization[END_REF] in a way that one route not be overloaded and the others underused. Accordingly, the congestion could be alleviated/eliminated. Several algorithms have been developed to solve this problem. Most of them rely on optimization approaches such as those proposed by [START_REF] Petta | Multiple users classes real time traffic assignement for on-line operations: a rolling horizon solution framework[END_REF]. As stated in [START_REF] Kachroo | System dynamics and feedback control problem formulations for real-time dynamic traffic routing[END_REF], the proposed optimization algorithm attempts to solve the DTR problem by optimizing the objective functions for the nominal model over the planning horizon and it is not adapted for on-line DTR control. Papageorgiou [START_REF] Papageorgiou | Dynamic modeling, assignment and route guidance traffic networks[END_REF] and Messmer & Papageorgiou [START_REF] Messmer | Route diversion control in motorway networks via nonlinear optimization[END_REF] have proposed algorithms for dynamic traffic assignment (DTA) based on the linear quadratic regulator, and nonlinear optimization techniques. Other techniques use expert systems to deal with the diversion problem [START_REF] Gupta | Development of prototype kbes in the management of non-recurrent congestion of the massachusetts turnpike[END_REF]. Liu & al. [8] have proposed a strategy based on a model reference adaptive control in order to guide the real-world traffic flow to evolve towards the desired states 1 Univ. Lille Nord France, F-59000 Lille, France. U-Artois, LGI2A, EA. 3926 Technoparc Futura, F-62400 Béthune, France.

(hassane.abouaissa, daniel.jolly, gildas.morvan)@univ-artois.fr. [START_REF] Kachroo | Real-time dynamic traffic routing based on fuzzy feedback control methodology[END_REF] have designed feedback and fuzzy control laws for an on-line diversion problem. Another algorithm for DTR and DTA problems based on the nonlinear H ∞ was proposed in [START_REF] Kachroo | Feedback control solutions to network level user-equilibrium real-time dynamic traffic assignement problems[END_REF]. See also [START_REF] Karimi | Integration of dynamic route guidance and freeway ramp metering using model predictive control[END_REF] and [START_REF] Pavlis | Simple decentralized feedback strategies for route guidance in traffic networks[END_REF] for more information about route guidance strategy.

In this paper, we exploit the variable structure control theory (VSC). The control algorithm consists of two parts; trajectory planning (open loop control) which is achieved using a specific class of complex systems called 'Differentially flat systems'. The trajectory tracking (closed loop control) is ensured by a high-speed switched feedback control resulting in sliding mode. In contrast of [START_REF] Abouaïssa | Flatness based control for real-time dynamic traffic routing problem[END_REF], the non-destination oriented METANET model [START_REF] Messemer | [END_REF] [START_REF] Messemer | Metanet: a macroscopic simulation program for motorway networks[END_REF] is used in the design of the control algorithm.

The paper is organized as follows: Section II presents the main principles of the DTR problem and its mathematical formulation. Section III recalls the main definitions of the control system. Section IV shows the control design methodology using the concept of flatness and sliding mode control. Section V provides some numerical simulations for a sample network. Section VI concludes the paper and outlines some tracks for further developments.

II. DYNAMIC TRAFFIC ROUTING FORMULATION

In this section, we first present a mathematical formulation which is used for the design of DTA/DTR flat controller. We expose a second order traffic flow model ( METANET).

For the sake of simplicity, we consider the case of two alternate routes divided into n 1 and n 2 sections, respectively, as depicted in Fig. 1.

The proposed control approach rests on the use of METANET model. The dynamic equation of the traffic density reads:

ρi,j (t) = 1 L i,j [q i,j-1 (t) -q i,j (t)] (1) 
where (i, j)=(1, 1), (1, 2), . . . , (1, n 1 ), (2, 1), . . . , (2, n 2 ). L i,j is the section length and ρ i,j represents the traffic density at section j of the route i.

The relation between the traffic flow q i,j and the mean speed v i,j is:

q i,j (t) = ρ i,j (t)v i,j (t)λ i,j (2) 
where λ i,j is the number of lanes. v i,j is the dynamic mean speed of section j on the route i.

The equation of dynamic mean speed is:

vi,j (t) = 1 τ (V ρi,j (t) -v i,j (t)) + 1 Li,j v i,j (t)(v i,j-1 (t) -v i,j (t)) -ν τ Li,j
ρi,j+1(t)-ρi,j (t) ρi,j (t)+κ

(3) V ρi,j is defined as a nonlinear expression called fundamental diagram mean speed (see [START_REF] May | Traffic Flow Fundamentals[END_REF]):

V ρi,j (t) = vf i,j exp - 1 a ρ i,j (t) ρ ci,j a (4) 
ρ ci,j , vf i,j , a, ν, κ and τ are constant parameters which reflect particular characteristics of a given traffic system [START_REF] Messemer | [END_REF].

The control input α(t) ∈ [0, 1] is defined as an exogenous variable of the system [START_REF] Pavlis | Simple decentralized feedback strategies for route guidance in traffic networks[END_REF], it is a split rate that allows to reach a user equilibrium traffic pattern. For the case of two alternate routes, the equations of entry flow in each route are:

α(t)q e (t) = q 1,in (t) (1 -α)q e (t) = q 2,in (t) (5) 
where q e (t) is the traffic demand. The control objective is to find the optimal split rate α in order to minimize the differences J(α) between the travel time T T of the two alternate routes. Kachroo and Özbay [START_REF] Kachroo | System dynamics and feedback control problem formulations for real-time dynamic traffic routing[END_REF] have formulated the DTR problem as follows: finding α 0 and the optimal α(t), which minimizes

J(α) = tf 0   n1 j=1 T T (ρ 1,j ) - n2 j=1 T T (ρ 2,j )   2 dt (6) 
where T T (ρ 1,j ) and T T (ρ 2,j ) are the travel times function of section j on the route 1 and 2 respectively. t f is the final time.

In the general case, consider a traffic flow system with n alternate routes. The system is described by the same ordinary differential equation [START_REF] Kostialos | Motorway network traffic control systems[END_REF] where, (i, j) = ((1, 1), . . . , (1, n 1 ), (2, 1), . . . , (2, n 2 ), (n, 1), . . . , (n, n n )).

The problem consists then in finding a set of split variables, α n-1 , where, n-1 i=1 α i = 1, minimizes total travel time T T , (see [START_REF] Kachroo | System dynamics and feedback control problem formulations for real-time dynamic traffic routing[END_REF], for optimal formulation of the DTR problem for a general case)

         α 1 (t)q e (t) = q 1,in (t) α 2 (t)q e (t) = q 2,in (t) . . . (1 -α 1 -α 2 -, . . . , -α n-1
)q e (t) = q n,in (t) [START_REF] Gupta | Development of prototype kbes in the management of non-recurrent congestion of the massachusetts turnpike[END_REF] Note that for such a complex problem, an open loop control structure is not sufficient [START_REF] Kachroo | Feedback control solutions to network level user-equilibrium real-time dynamic traffic assignement problems[END_REF], it calls for a more robust feedback control one. In this context, we highlight the interest of an attractive approach based on the concept of differential flatness [START_REF] Fliess | Sur les systèmes non linéaires différentiellements plats[END_REF] [START_REF] Fliess | Flatness and defect of non-linear systems: Introductory theory and examples[END_REF]. The following section, recalls the main definitions and principles of differentially flat systems.

III. SLIDING MODE FLATNESS-BASED CONTROL SYSTEMS

In this paper, we exploited one of the most attractive methods that can be applied to a broad class of nonlinear systems resulting in controllers that are robust to modeling errors and unknown disturbances. We investigated variable structure control (VSC) as a high-speed switched feedback control resulting in sliding mode. The gains in each feedback path switch between two values according to a rule that depends on the value of the state at each instant. The purpose of the switching control law is to derive the non-linear system's state trajectory onto a prespecified surface in the state space and to maintain the system's state trajectory on this surface (switching surface) for subsequent time.

In standard sliding mode control, or first order sliding mode control (FOSMC) [START_REF]Sliding Mode Control in Engineering[END_REF] and [START_REF] Rashid | Robust State Estimation and Control of Highway Traffic Systems[END_REF] , the sliding surface is chosen so that it has a relative degree of one with respect to the control input. In such a case, the control input u is, for example, of the form; u(t) = u eq (t) + u d (t), where u eq is the continuous function and u d (t) = -K d sign(s(t)) -K p s(t) is the discontinuous function. K d specifies the speed of convergence of the closed-loop system in order to s(t) = 0. To combine a small switching gain with fast convergence, the discontinuous control term could be extended with a proportional feedback term K p s(t) [START_REF] Monsees | Discrete-Time Sliding Mode Control[END_REF].

u eq ensures that ṡ = 0. It is the equivalent control, it depends only on the switching surface s(t) and not on the control function u d [START_REF] Rashid | Robust State Estimation and Control of Highway Traffic Systems[END_REF]. Thus, it can be said that u eq introduces the trajectory planning (open loop control) of the output. In this context, the term u d should introduce the trajectory tracking (closed loop control) of the output.

In this paper, instead of u eq , the trajectory is made using a specific class of control system called 'differential flatness' .

The concept of flat systems was first introduced by Fliess and al [START_REF] Fliess | Sur les systèmes non linéaires différentiellements plats[END_REF] [18] more than a decade ago using the formalism of differential algebra (see [START_REF] Ph | Contribution l'étude des systèmes Différentiellement plat[END_REF] for a slightly different approach of differentially flat systems). This special class of non-linear control systems described by ordinary differential equations: differentially flat systems form a special class of nonlinear control systems for which systematic control methods are available once a flat-output is explicitly known.

The flatness-based control methods may be expected to play a very significant role in high technology applications in the next few years, similar to what happened for nonlinear control in the last decade [START_REF] Sira-Ramírez | Differentially flat systems[END_REF]. The main property of flat systems is that all the state and input variables can be expressed directly, without integration of any differential equation, in terms of the set of so-called "flat output" and a number of its time derivatives. More precisely, the entire system behavior is determined by the trajectory of a finite collection of quantities: flat outputs. This leads to a simple and elegant trajectory design. For a given system, the number of flat outputs is equal to the number of the system inputs.

For more details on flatness see also [START_REF] Fliess | Flatness and defect of non-linear systems: Introductory theory and examples[END_REF], [START_REF] Sira-Ramírez | Differentially flat systems[END_REF], [START_REF] Manish | Higher order sliding mode control of differentially flat systems[END_REF], [START_REF] Isidori | A sufficient condition for full linearization via dynamic state feedback[END_REF], [START_REF] Rouchon | Flatness based control of oscillators[END_REF] and [START_REF] Ph | Flat systems[END_REF].

IV. SLIDING MODE FLATNESS-BASED CONTROL FOR THE DTR PROBLEM

Here, we introduce a first order sliding mode flatnessbased control using the METANET model for dynamic traffic routing. In the freeway portion, there are two alternate routes with two sections in each route, see Fig. 2.

A. DTR Control for Two Alternate Routes With Two Sections

The equations of the system discretized in space are

ρ11 (t) = 1 L 11 [αq e -ρ 11 (t)v 11 (t)] (8) 
vji (t) = 1 τ (V ρji (t) -v ji (t)) + 1 Lji v ji (t)(v ji-1 (t) -v ji (t)) -ν τ Lji ρji+1(t)-ρji(t) ρji(t)+κ (9) 
ρ21 (t) = 1 L 21 [(1 -α)q e -ρ 21 (t)v 21 (t)] (10) 
ρj2 (t) = 1 L j2 [ρ j1 (t)v j1 (t) -ρ j2 (t)v j2 (t)] (11) 
V ρji (t) = vf ji exp - 1 a ρ ji (t) ρ cji a
The travel time function is obtained as follows:

y 1 (t) = L 11 v 11 (t) + L 12 v 12 (t) (12) 
y 2 (t) = L 21 v 21 (t) + L 22 v 22 (t) (13) 
The variable y is equal to the difference in the travel times the two sections.

y(t) = L 11 v 11 (t) + L 12 v 12 (t) - L 21 v 21 (t) + L 22 v 22 (t) (14) 
The first time derivative leads to: 

ẏ(t) = A + B + C + D + αE ( 
C1= -L 12 (v 12 ) 2     -σ 13 + v 12 - vf 12 σ 11 τ - vf 12 σ 15 (ρ 11 v 11 -ρ 12 v 12 ) L 12 ρc 12 σ 11 τ     C2= 1 v 12 v 11 - vf 11 σ 19 τ - v 12 - vf 12 σ 11 τ +σ13- ν(ρ 11 -ρ 12 ) L 11 τ (κ+ρ 11 ) C3= σ 17 (v 12 ) 2 v 12 - vf 12 σ 11 τ -σ13
D is composed of three terms (D 1 , D 2 and D 3 );

D1= L 22 (v 22 ) 2     -σ 14 + v 22 - vf 22 σ 12 τ - vf 22 σ 16 (ρ 21 v 21 -ρ 22 v 22 ) L 22 ρc 22 σ 12 τ     D2= -1 v 22 v 21 - vf 21 σ 20 τ - v 22 - vf 22 σ 12 τ +σ14- ν(ρ 21 -ρ 22 ) L 21 τ (κ+ρ 21 ) D3=- σ 18 (v 22 ) 2 v 22 - vf 22 σ 12 τ -σ14
E is composed of two terms. The first one concerns section 11 and the second belongs to section 21;

E11= L 11 qe (v 11 ) 2   vf 11 σ 7 L 11 ρc 11 σ 3 τ - ν L 11 L 11 τ (κ+ρ 11 ) + νσ 5 (L 11 ) 2 τσ 10   E21= L 21 qe (v 21 ) 2   vf 21 σ 8 L 21 ρc 21 σ 4 τ - ν L 21 L 21 τ (κ+ρ 21 ) + νσ 6 (L 21 ) 2 τσ 9   σ 3 = exp 1 a ( ρ11 ρc 11 ) a , σ 4 = exp 1 a ( ρ21 ρc 21 
) a , 1) ,

σ 5 = ρ 11 -ρ 12 , σ 6 = ρ 21 -ρ 22 , σ 7 = ( ρ11 ρc 11 ) (a-
σ 8 = ( ρ21 ρc 21 ) (a-1) , σ 9 = (κ + ρ 21 ) 2 , σ 10 = (κ + ρ 11 ) 2 , σ 11 = exp 1 a ( ρ12 ρc 12 ) a , σ 12 = exp 1 a ( ρ22 ρc 22
) a ,

σ 13 = v12σ17 L12 , σ 14 = v22σ18 L22 , σ 15 = ( ρ12 ρc 12
) (a-1) ,

σ 16 = ( ρ22 ρc 22 ) (a-1) , σ 17 = v 11 -v 12 , σ 18 = v 21 -v 22 , σ 19 = exp( 1 a ( ρ11 ρc 11 
) a ) and σ 20 = exp( 1 a ( ρ21 ρc 21

) a ).

The studied system is characterized by one input (control) variable, we have then one flat output F = y, which represents the difference in travel time function between the two routes. Thus the equation ( 15) can be rewritten as:

Ḟ (t) = A + B + C + D + αE (16) 
from which

α(t) = Ḟ (t) -(A + B + C + D) E (17) 
The expression of the state variable allows to choose a suitable trajectory of the travel time (the flat output). The equation of the control (input) variable allows to add additional constraints to this travel time trajectory. This means that all important properties of the system (see equation ( 15)) are contained in such a differential parametrization.

B. Trajectory Planning:

The equation ( 17), corresponds to an open loop control algorithm. In order to define the trajectory planning, a suitable desired trajectory F * has to be defined. According to the expression of the control variable in equation [START_REF] Fliess | Sur les systèmes non linéaires différentiellements plats[END_REF], this trajectory must have smooth derivatives up to order two. In order to reduce computational effort in real time situation, one can build this reference trajectory for the travel time (flat output) using a polynomial interpolation [START_REF] Sira-Ramírez | Differentially flat systems[END_REF] from the initial and final conditions of the travel time

(F (t i ) = F i , Ḟ (t i ) = 0) and (F (t f ) = F f , Ḟ (t f )) = 0).
This is accomplished by prescribing the following desired trajectory for the flat output F :

F * (t) =    F ti for t < t i F ti + (F tf -F ti )ϕ(t, t i , t f ) for t i ≤ t ≤ t f F tf for t > t f (18 
) where ϕ(t, t i , t f ) is a polynomial function of time which exhibit a sufficient number of zero derivatives at times t i and t f . (For the polynomial calculation see e.g. [28] [23]):

ϕ(t) =      0 if t < t i 3 t-ti tf -ti 2 -2 t-ti tf -ti 3 if t i ≤ t ≤ t f 1 if t > t f (19 
) Thus, by replacing the term Ḟ (t) in equation ( 17) by the term of desired trajectory Ḟ * (t), we obtain the nominal open loop control:

α * (t) = Ḟ * (t) -(A + B + C + D) E (20) 

C. Trajectory Tracking:

Due to the parameter variations and disturbances in traffic flow and frequent changes in the traffic conditions, the open loop control is not sufficient. To ensure a steady state and reduce the influence of parameter variations, the traffic flow has to be operated in closed loop. Using the flatness-based open loop presented in equation ( 17), an additional feedback can be determined in order to achieve a desired dynamic behaviour and to compensate the external disturbances. Here, a first order sliding mode controller is used to feedback the system which asymptotically regulates the output towards the desired equilibrium position (see Fig. 3). Thus, the closed-loop control schema including the flatness-based loop can be obtained as follows:

ψ(t) = Ḟ * (t) -K d sign(s(t)) -K p s(t) (21) 
where k d and k p are parameters that must be selected so as to satisfy the desired performances of the closed loop system and to ensure asymptotically stabilization of the input variable. The control law α now reads: 

V. NUMERICAL SIMULATIONS For the numerical simulations, consider the freeway section depicted in Fig. 2. It shows two routes with the same length and geometric conditions. Each route is partitioned into 2 identical cells (each cell = 400m). At the end of each cell, one loop detector (sensor) is installed. The model parameters are depicted in table I. The control algorithm value is shown via variable message signs (VMS). For the sake of simplicity, we assume a full compliance of the drivers. The used data is collected between 6 AM -10 PM. The simulation time step is about 20 s. The simulations have been done in two different cases; when the two routes have the same geometric conditions as well as when the two routes have different geometric conditions (L11, L12 = 300 m). The traffic demand used in the simulations is shown in Fig. 4. Fig. 5, 6, 7 and 8 show the densities, mean speeds, control values and the travel times evolution in the case when the two routes have the same geometric conditions. From these
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figures, it is clear that the densities and mean speeds of the system in each reciprocal cell are equal, it means that the control algorithm distribute the traffic demand between two routes somehow one route not be overloaded and the other underused. Fig. 9, 10, 11 and 12 show the densities, mean speeds, control values and the travel times evolution in the case when the two routes have some different in theirs geometric conditions (L11, L12 = 300 m, L21, L22 = 400 m). We can realize the control algorithm distribute always the traffic demand between the two routes equally. Contrary, because of different length of the two routes, the mean speed of the two routes are different. In this paper, a first order sliding mode flatness-based control algorithm was designed in order to control the incoming flow into two alternate routes which have the same origin and destination. The objective of the control algorithm is to minimize the difference between the travel times of two alternate routes, accordingly, to optimize the flow on the freeway portion. The control algorithm was applied using the METANET model which is a nonlinear traffic flow model. The results show the relevance of the control algorithm in the cases of the same and different geometric conditions of the two alternate routes. These results inspire us to extend this work to deal with more complex network and to design an integrated control in the future.