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Real-Time Dynamic Traffic Routing Using Variable Structure Control

Hirsh Majid 1 2, Hassane Abouaı̈ssa 1, Daniel Jolly 1, Gildas Morvan 1

Abstract— In this paper, we present a new algorithm to deal
with the real-time dynamic traffic routing (DTR) problem using
a second order traffic flow model (METANET). We investigate
variable structure control (VSC) as a high-speed switched
feedback control resulting in sliding mode. The control objective
is to minimize the difference of the travel times on alternate
routes in a network setting. Accordingly, the congestion could
be reduced/eliminated. The relevance of the proposed algorithm
is demonstrated via a set of numerical simulations in the case
of the same as well as different geometric conditions.

Keywords: Macroscopic model, variable structure control,
sliding mode control, dynamic traffic routing.

I. INTRODUCTION

Traffic control represents an efficient way to improve the
freeway throughput and to ensure an efficient, safe and less
polluting transportation of goods and persons [1]. It also
contributes to a high reduction of direct and indirect costs.

Freeway traffic control can be achieved via a set of actions
and measurements such as: dynamic speed limits, route
guidance, dynamic assignment and dynamic traffic routing,
ramp metering, etc.

Dynamic traffic assignment (DTA) and dynamic traffic
routing (DTR) represent some of the most efficient solutions
to steer congestion problems especially the no-recurrent
ones. DTR/DTA or control of traffic diversion rests on
the determination of time-dependent split variables at the
diversion point in order to achieve a user-equilibrium traffic
pattern [2] in a way that one route not be overloaded and the
others underused. Accordingly, the congestion could be al-
leviated/eliminated. Several algorithms have been developed
to solve this problem. Most of them rely on optimization
approaches such as those proposed by [3]. As stated in
[4], the proposed optimization algorithm attempts to solve
the DTR problem by optimizing the objective functions
for the nominal model over the planning horizon and it
is not adapted for on-line DTR control. Papageorgiou [5]
and Messmer & Papageorgiou [6] have proposed algorithms
for dynamic traffic assignment (DTA) based on the linear
quadratic regulator, and nonlinear optimization techniques.
Other techniques use expert systems to deal with the di-
version problem [7]. Liu & al. [8] have proposed a strategy
based on a model reference adaptive control in order to guide
the real-world traffic flow to evolve towards the desired states
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Fig. 1. Sample example of two alternate routes

especially under emergency evacuation. Kachroo & Özbay
[9] have designed feedback and fuzzy control laws for an
on-line diversion problem. Another algorithm for DTR and
DTA problems based on the nonlinear H∞ was proposed in
[10]. See also [11] and [12] for more information about route
guidance strategy.

In this paper, we exploit the variable structure control
theory (VSC). The control algorithm consists of two parts;
trajectory planning (open loop control) which is achieved us-
ing a specific class of complex systems called ’Differentially

flat systems’. The trajectory tracking (closed loop control) is
ensured by a high-speed switched feedback control resulting
in sliding mode. In contrast of [13], the non-destination
oriented METANET model [14] [15] is used in the design
of the control algorithm.

The paper is organized as follows: Section II presents the
main principles of the DTR problem and its mathematical
formulation. Section III recalls the main definitions of the
control system. Section IV shows the control design method-
ology using the concept of flatness and sliding mode control.
Section V provides some numerical simulations for a sample
network. Section VI concludes the paper and outlines some
tracks for further developments.

II. DYNAMIC TRAFFIC ROUTING FORMULATION

In this section, we first present a mathematical formulation
which is used for the design of DTA/DTR flat controller. We
expose a second order traffic flow model ( METANET).

For the sake of simplicity, we consider the case of two
alternate routes divided into n1 and n2 sections, respectively,
as depicted in Fig. 1.

The proposed control approach rests on the use of
METANET model. The dynamic equation of the traffic
density reads:

ρ̇i,j(t) =
1

Li,j
[qi,j−1(t)− qi,j(t)] (1)

where (i, j)=(1, 1), (1, 2), . . . , (1, n1), (2, 1), . . . , (2, n2).
Li,j is the section length and ρi,j represents the traffic



density at section j of the route i.
The relation between the traffic flow qi,j and the mean

speed vi,j is:

qi,j(t) = ρi,j(t)vi,j(t)λi,j (2)

where λi,j is the number of lanes. vi,j is the dynamic mean
speed of section j on the route i.

The equation of dynamic mean speed is:

v̇i,j(t) = 1
τ (Vρi,j

(t)− vi,j(t)) +
1

Li,j
vi,j(t)(vi,j−1(t)

−vi,j(t))−
ν

τLi,j

ρi,j+1(t)−ρi,j(t)
ρi,j(t)+κ

(3)
Vρi,j

is defined as a nonlinear expression called fundamental
diagram mean speed (see [16]):

Vρi,j
(t) = vfi,jexp

[(

−
1

a

)(

ρi,j(t)

ρci,j

)a]

(4)

ρci,j , vfi,j , a, ν, κ and τ are constant parameters which
reflect particular characteristics of a given traffic system [14].

The control input α(t) ∈ [0, 1] is defined as an exogenous
variable of the system [12], it is a split rate that allows to
reach a user equilibrium traffic pattern. For the case of two
alternate routes, the equations of entry flow in each route
are:

{

α(t)qe(t) = q1,in(t)
(1− α)qe(t) = q2,in(t)

(5)

where qe(t) is the traffic demand. The control objective is
to find the optimal split rate α in order to minimize the
differences J(α) between the travel time TT of the two
alternate routes.

Kachroo and Özbay [4] have formulated the DTR problem
as follows: finding α0 and the optimal α(t), which minimizes

J(α) =

∫ tf

0





n1
∑

j=1

TT (ρ1,j)−
n2
∑

j=1

TT (ρ2,j)





2

dt (6)

where TT (ρ1,j) and TT (ρ2,j) are the travel times function
of section j on the route 1 and 2 respectively. tf is the final
time.

In the general case, consider a traffic flow system
with n alternate routes. The system is described by the
same ordinary differential equation (1) where, (i, j) =
((1, 1), . . . , (1, n1), (2, 1), . . . , (2, n2), (n, 1), . . . , (n, nn)).

The problem consists then in finding a set of split vari-
ables, αn−1, where,

∑n−1
i=1 α

i = 1, that minimizes total
travel time TT , (see [4], for optimal formulation of the DTR
problem for a general case)



















α1(t)qe(t) = q1,in(t)
α2(t)qe(t) = q2,in(t)

...
(1− α1 − α2−, . . . ,−αn−1)qe(t) = qn,in(t)

(7)

Note that for such a complex problem, an open loop control
structure is not sufficient [10], it calls for a more robust feed-
back control one. In this context, we highlight the interest of

an attractive approach based on the concept of differential
flatness [17] [18]. The following section, recalls the main
definitions and principles of differentially flat systems.

III. SLIDING MODE FLATNESS-BASED CONTROL SYSTEMS

In this paper, we exploited one of the most attractive
methods that can be applied to a broad class of nonlinear
systems resulting in controllers that are robust to modeling
errors and unknown disturbances. We investigated variable
structure control (VSC) as a high-speed switched feedback
control resulting in sliding mode. The gains in each feedback
path switch between two values according to a rule that
depends on the value of the state at each instant. The purpose
of the switching control law is to derive the non-linear
system’s state trajectory onto a prespecified surface in the
state space and to maintain the system’s state trajectory on
this surface (switching surface) for subsequent time.

In standard sliding mode control, or first order sliding
mode control (FOSMC) [19] and [20] , the sliding surface
is chosen so that it has a relative degree of one with respect
to the control input. In such a case, the control input u is,
for example, of the form;
u(t) = ueq(t) + ud(t), where ueq is the continuous function
and ud(t) = −Kdsign(s(t)) − Kps(t) is the discontinuous
function. Kd specifies the speed of convergence of the
closed-loop system in order to s(t) = 0. To combine a small
switching gain with fast convergence, the discontinuous
control term could be extended with a proportional feedback
term Kps(t) [21].

ueq ensures that ṡ = 0. It is the equivalent control,
it depends only on the switching surface s(t) and not on
the control function ud [20]. Thus, it can be said that ueq

introduces the trajectory planning (open loop control) of the
output. In this context, the term ud should introduce the
trajectory tracking (closed loop control) of the output.

In this paper, instead of ueq , the trajectory is made using
a specific class of control system called ’differential flatness’
.

The concept of flat systems was first introduced by Fliess
and al [17] [18] more than a decade ago using the formalism
of differential algebra (see [22] for a slightly different
approach of differentially flat systems). This special class of
non-linear control systems described by ordinary differential
equations: differentially flat systems form a special class
of nonlinear control systems for which systematic control
methods are available once a flat-output is explicitly known.

The flatness-based control methods may be expected to
play a very significant role in high technology applications
in the next few years, similar to what happened for nonlinear
control in the last decade [23]. The main property of flat
systems is that all the state and input variables can be
expressed directly, without integration of any differential
equation, in terms of the set of so-called ”flat output” and
a number of its time derivatives. More precisely, the entire
system behavior is determined by the trajectory of a finite
collection of quantities: flat outputs. This leads to a simple
and elegant trajectory design. For a given system, the number
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Fig. 2. Simulated freeway section

of flat outputs is equal to the number of the system inputs.
For more details on flatness see also [18], [23], [24], [25],
[26] and [27].

IV. SLIDING MODE FLATNESS-BASED CONTROL FOR THE

DTR PROBLEM

Here, we introduce a first order sliding mode flatness-
based control using the METANET model for dynamic traffic
routing. In the freeway portion, there are two alternate routes
with two sections in each route, see Fig. 2.

A. DTR Control for Two Alternate Routes With Two Sections

The equations of the system discretized in space are

ρ̇11(t) =
1

L11
[αqe − ρ11(t)v11(t)] (8)

v̇ji(t) = 1
τ (Vρji

(t)− vji(t)) +
1

Lji
vji(t)(vji−1(t)

−vji(t))−
ν

τLji

ρji+1(t)−ρji(t)
ρji(t)+κ

(9)

ρ̇21(t) =
1

L21
[(1− α)qe − ρ21(t)v21(t)] (10)

ρ̇j2(t) =
1

Lj2
[ρj1(t)vj1(t)− ρj2(t)vj2(t)] (11)

Vρji
(t) = vfjiexp

[(

−
1

a

)(

ρji(t)

ρcji

)a]

The travel time function is obtained as follows:

y1(t) =
L11

v11(t)
+

L12

v12(t)
(12)

y2(t) =
L21

v21(t)
+

L22

v22(t)
(13)

The variable y is equal to the difference in the travel times
the two sections.

y(t) =

[(

L11

v11(t)
+

L12

v12(t)

)

−

(

L21

v21(t)
+

L22

v22(t)

)]

(14)

The first time derivative leads to:

ẏ(t) = A+B + C +D + αE (15)

The terms A, B, C, and D represent derivatives of sections
21, 11, 12 and 22 respectively. The term E consists of all

the terms in which α does exist. It comes from sections 11
and 21. A is composed of three terms (A1, A2 and A3);

A1=
L21

(v21)2









v21−
vf21
σ4

τ
−

νσ6
L21τ(κ+ρ21)
τ −

ν(ρ21v21−ρ22v22)
L22

L21τ(κ+ρ21)









A2=
L21
v21

ρ21





vf21σ8
L21ρc21σ4

τ −

ν
L21

L21τ(κ+ρ21)+
νσ6

(L21)2τσ9





A3=
L21qe

(v21)2





−
vf21σ8

L21ρc21σ4
τ +

ν
L21

L21τ(κ+ρ21)−
νσ6

(L21)2τσ9





B is composed of two terms (B1 and B2);

B1=
−L11
(v11)2









v11−
vf11
σ3

τ
−

νσ5
L11τ(κ+ρ11)
τ −

ν(ρ11v11−ρ12v12)
L12

L11τ(κ+ρ11)









B2=
−L11
v11

ρ11





vf11σ7
L11ρc11σ3

τ −

ν
L11

L11τ(κ+ρ11)+
νσ5

(L11)2τσ10





C is composed of three terms (C1, C2 and C3);

C1=
−L12
(v12)2









−σ13+
v12−

vf12
σ11

τ
−

vf12σ15(ρ11v11−ρ12v12)
L12ρc12σ11

τ









C2= 1
v12

[

v11−
vf11
σ19

τ −

v12−
vf12
σ11

τ +σ13−
ν(ρ11−ρ12)

L11τ(κ+ρ11)

]

C3=
σ17

(v12)2

[

v12−
vf12
σ11

τ −σ13

]

D is composed of three terms (D1, D2 and D3);

D1=
L22

(v22)2









−σ14+
v22−

vf22
σ12

τ
−

vf22σ16(ρ21v21−ρ22v22)
L22ρc22σ12

τ









D2=
−1
v22

[

v21−
vf21
σ20

τ −

v22−
vf22
σ12

τ +σ14−
ν(ρ21−ρ22)

L21τ(κ+ρ21)

]

D3=−
σ18

(v22)2

[

v22−
vf22
σ12

τ −σ14

]

E is composed of two terms. The first one concerns section
11 and the second belongs to section 21;

E11=
L11qe

(v11)2





vf11σ7
L11ρc11σ3

τ −

ν
L11

L11τ(κ+ρ11)+
νσ5

(L11)2τσ10





E21=
L21qe

(v21)2





vf21σ8
L21ρc21σ4

τ −

ν
L21

L21τ(κ+ρ21)+
νσ6

(L21)2τσ9





σ3 = exp
(

1
a (

ρ11

ρc11
)a
)

, σ4 = exp
(

1
a (

ρ21

ρc21
)a
)

,

σ5 = ρ11 − ρ12, σ6 = ρ21 − ρ22, σ7 = ( ρ11

ρc11
)(a−1),

σ8 = ( ρ21

ρc21
)(a−1), σ9 = (κ + ρ21)2, σ10 = (κ + ρ11)2,

σ11 = exp
(

1
a (

ρ12

ρc12
)a
)

, σ12 = exp
(

1
a (

ρ22

ρc22
)a
)

,

σ13 = v12σ17
L12

, σ14 = v22σ18
L22

, σ15 = ( ρ12

ρc12
)(a−1),

σ16 = ( ρ22

ρc22
)(a−1), σ17 = v11 − v12, σ18 = v21 − v22,

σ19 = exp( 1a (
ρ11

ρc11
)a) and σ20 = exp( 1a (

ρ21

ρc21
)a).



The studied system is characterized by one input (control)
variable, we have then one flat output F = y, which
represents the difference in travel time function between the
two routes. Thus the equation (15) can be rewritten as:

Ḟ (t) = A+B + C +D + αE (16)

from which

α(t) =
Ḟ (t)− (A+B + C +D)

E
(17)

The expression of the state variable allows to choose a
suitable trajectory of the travel time (the flat output). The
equation of the control (input) variable allows to add addi-
tional constraints to this travel time trajectory. This means
that all important properties of the system (see equation (15))
are contained in such a differential parametrization.

B. Trajectory Planning:

The equation (17), corresponds to an open loop control
algorithm. In order to define the trajectory planning, a
suitable desired trajectory F ∗ has to be defined. According
to the expression of the control variable in equation (17),
this trajectory must have smooth derivatives up to order
two. In order to reduce computational effort in real time
situation, one can build this reference trajectory for the
travel time (flat output) using a polynomial interpolation
[23] from the initial and final conditions of the travel time
(F (ti) = Fi, Ḟ (ti) = 0) and (F (tf ) = Ff , Ḟ (tf )) = 0).
This is accomplished by prescribing the following desired
trajectory for the flat output F :

F ∗(t) =







Fti for t < ti
Fti + (Ftf − Fti)ϕ(t, ti, tf ) for ti ≤ t ≤ tf
Ftf for t > tf

(18)
where ϕ(t, ti, tf ) is a polynomial function of time which
exhibit a sufficient number of zero derivatives at times ti
and tf . (For the polynomial calculation see e.g. [28] [23]):

ϕ(t) =











0 if t < ti

3
(

t−ti
tf−ti

)2
− 2

(

t−ti
tf−ti

)3
if ti ≤ t ≤ tf

1 if t > tf
(19)

Thus, by replacing the term Ḟ (t) in equation (17) by the term
of desired trajectory Ḟ ∗(t), we obtain the nominal open loop
control:

α∗(t) =
Ḟ ∗(t)− (A+B + C +D)

E
(20)

C. Trajectory Tracking:

Due to the parameter variations and disturbances in
traffic flow and frequent changes in the traffic conditions,
the open loop control is not sufficient. To ensure a steady
state and reduce the influence of parameter variations, the
traffic flow has to be operated in closed loop. Using the
flatness-based open loop presented in equation (17), an
additional feedback can be determined in order to achieve a
desired dynamic behaviour and to compensate the external

+1

-1

commutation
law s(t)

Inverse
System

Traffic flow
system

-

- +ud

kd

kp

+

α∗

α

F∗

F
.
= F∗

-

+

Fig. 3. Closed loop control structure

TABLE I

THE MODEL AND SIMULATION PARAMETERS

Parameter value Parameter value

a 2.34 ρc 36 veh/km.
τ 18 s ρmax 180 veh/km.
ν 60 km2/h vf 90 km/h.

κ 40 veh/km qmax ρcvfexp(
−1

a
).

Time step 20 s Cell length 400 m

disturbances. Here, a first order sliding mode controller is
used to feedback the system which asymptotically regulates
the output towards the desired equilibrium position (see
Fig. 3). Thus, the closed-loop control schema including the
flatness-based loop can be obtained as follows:

ψ(t) = Ḟ ∗(t)−Kdsign(s(t))−Kps(t) (21)

where kd and kp are parameters that must be selected so
as to satisfy the desired performances of the closed loop
system and to ensure asymptotically stabilization of the input
variable. The control law α now reads:

α(t) =

[

Ḟ
∗(t)−Kdsign(s(t))−Kps(t)

E

−

A+B + C +D

E

]

(22)

V. NUMERICAL SIMULATIONS

For the numerical simulations, consider the freeway sec-
tion depicted in Fig. 2. It shows two routes with the same
length and geometric conditions. Each route is partitioned
into 2 identical cells (each cell = 400m). At the end of
each cell, one loop detector (sensor) is installed. The model
parameters are depicted in table I. The control algorithm
value is shown via variable message signs (VMS). For the
sake of simplicity, we assume a full compliance of the
drivers.
The used data is collected between 6 AM - 10 PM. The

simulation time step is about 20 s. The simulations have been
done in two different cases; when the two routes have the
same geometric conditions as well as when the two routes
have different geometric conditions (L11, L12 = 300 m). The
traffic demand used in the simulations is shown in Fig. 4.
Fig. 5, 6, 7 and 8 show the densities, mean speeds, control
values and the travel times evolution in the case when the
two routes have the same geometric conditions. From these
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Fig. 4. Traffic demand used in the simulation

0 1000 2000
0

2

4

6

8

10

12

14

Time Step

D
e

n
si

ty
 [

ve
h

/k
m

]

 

 

C11 C21

0 1000 2000
0

2

4

6

8

10

12

14

Time Step

 

 

C12 C22

Fig. 5. Traffic densities in the case of the same geometric conditions

figures, it is clear that the densities and mean speeds of
the system in each reciprocal cell are equal, it means that
the control algorithm distribute the traffic demand between
two routes somehow one route not be overloaded and the
other underused. Fig. 9, 10, 11 and 12 show the densities,
mean speeds, control values and the travel times evolution in
the case when the two routes have some different in theirs
geometric conditions (L11, L12 = 300 m, L21, L22 = 400
m). We can realize the control algorithm distribute always
the traffic demand between the two routes equally. Contrary,
because of different length of the two routes, the mean speed
of the two routes are different.
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Fig. 6. Mean speeds in the case of the same geometric conditions
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Fig. 7. Control value in the case of the same geometric conditions
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Fig. 8. Travel times of the two routes with the same geometric conditions
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Fig. 9. Traffic densities in the case of different geometric conditions
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Fig. 10. Mean speeds in the case of different geometric conditions
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Fig. 11. Control value in the case of different geometric conditions
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Fig. 12. Travel times of the two routes with different geometric conditions

VI. CONCLUSION

In this paper, a first order sliding mode flatness-based
control algorithm was designed in order to control the
incoming flow into two alternate routes which have the same
origin and destination. The objective of the control algorithm
is to minimize the difference between the travel times of
two alternate routes, accordingly, to optimize the flow on the
freeway portion. The control algorithm was applied using the
METANET model which is a nonlinear traffic flow model.
The results show the relevance of the control algorithm in
the cases of the same and different geometric conditions of
the two alternate routes. These results inspire us to extend
this work to deal with more complex network and to design
an integrated control in the future.
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PhD thesis, Ecole des Mines de Paris, 1992.

[23] H. Sira-Ramı́rez and S.K. Agrawal. Differentially flat systems. Marcel
Dekker, 2004.

[24] V. Manish. Higher order sliding mode control of differentially flat
systems. Master’s thesis, Indian Institute of Technology, Bombay,
Mumbai, 2004.

[25] A. Isidori, C.H. Moog, and A De Luca. A sufficient condition for
full linearization via dynamic state feedback. In In proceedings 25th.
IEEE conf. Decision Control, pages 203-208, 1986.

[26] P. Rouchon and Z. Zamm. Flatness based control of oscillators. Angew
Math. Mech, vol. 85(6), pages:411–421, 2005.

[27] Ph. Martin, R. M. Murray, and P. Rouchon. Flat systems. In Mini-
course ECC’97 Brussels. 1997.

[28] J. Rudolph. Flatness based control of distributed parameter systems.
Shaker Verlag, 2003.


