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State Reconstructor
for Real-Time Freeway Ramp Metering

Hirsh Majid, Hassane Abouaissa, Daniel Jolly, Gildas Morvan

Abstract—The work presented in this paper aims to solve the
problem of real-time ramp metering in the case of unavailable
(not measured) traffic flow at an on-ramp or measurements
provided by a faulty detector which lead to creation of unpre-
dictable traffic states. A state reconstructor is then proposed and
a systematic approach is developed for real time freeway ramp
metering. The state reconstructor is developed using a second
order sliding mode observer, while the control algorithm is based
on the concept of differential flatness. Numerical simulations
demonstrate the relevance of the provided algorithm for both
state reconstructor and control of freeway networks.

Index Terms—Reconstructor, sliding mode, ramp metering.

I. INTRODUCTION

The main objective of real-time traffic control is to deal with
a daily problem of congestion. Such problem is well identified
as a source of continuous growth of the direct and indirect
costs (drivers health and stress problems, pollution, increase
in energy consumption, ...etc.) [1], [2]. The principle of traffic
control is based on the use of a variety of adequate actions
such as: dynamic speed limits using variable message signs,
driving information and alerts, tidal control, dynamic route
guidance and ramp metering.

Ramp metering or admissible control, represents the most
efficient and direct way to solve congestion problems and to
upgrade freeway traffic [3], [4]. This control action consists
in regulating the ramp flow at the entrance of the freeway [1].
As stated in [5], ramp metering strategies are a valuable tool
for an efficient traffic management that can be classified into:
reactive strategies that aim to maintain the traffic conditions
in freeway close to pre-specified set values using real-time
measurements, and proactive strategies, aiming at specifying
optimal traffic conditions for a whole freeway network based
on the demand and the model prediction over a time horizon
[2].

Ramp metering strategies can be implemented locally (iso-
lated ramp metering) in the vicinity of each ramp to calculate
the corresponding ramp metering values. It can be imple-
mented simultaneously (coordinated ramp metering) when the
objective is to use the available traffic measurements from
larger freeway sections.

However, the performance of any control strategy is closely

related to the ability to have all needed information about the
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traffic state!. Indeed, traffic control problems usually require
the knowledge of both the present and the future traffic
behaviours. Such information is provided via a set of sensors
already installed along the freeway infrastructure. The future
traffic behaviour can be computed using a suitable traffic
model.

The main objective of this paper is to deal with isolated
ramp metering problems when no information about the traffic
state variable at the merge segment is available. In other words,
we assume that the measurements just downstream of the
controlled ramp are provided by a faulty detector. Having
the state reconstructor, a systematic approach for real time
isolated ramp metering is provided in order to maintain the
traffic conditions at a desired optimal operating level.

The paper is organized as follow:

o Section II, recalls the used macroscopic model and pro-
vides the basis of the state reconstructor scheme.

« Section III, presents the freeway ramp metering algorithm
based on the concept of differential flatness .

¢ Section IV, provides some numerical simulations and
demonstrates the relevance of the proposed approach.

o The conclusion, section V, summarizes the main obtained
results and lists some promising perspectives and further
researches.

II. TRAFFIC FLOW MODELING AND STATE
RECONSTRUCTOR

Several studies have demonstrated the relevance of macro-
scopic models for freeway traffic modeling, supervision and
control [7], [8] and [9].

A. Macroscopic models

The first macroscopic model was developed by Lighthill
and Whitham [10] and Richard [11] which is based on the
conservation law:

d d
EP(}C,I)-FECI(X,t):g(X,t) (1)

where, p(x,t), g(x,t) and g(x,t) are, the traffic density in
vehicles/km/lanes, the traffic volume in vehicles/h, the ramp
generation term in vehicles/h/km, respectively.
Equation (1) is supplied by g(x,t) = p(x,1)v(x,1)B.

v(x,r) is the mean speed and 3, the number of lanes. The
mean speed v(x,) and the traffic density p(x,7) are related by

I Traffic density (or occupancy) constitutes the basis state variable of the
most available traffic flow models and plays an important role for both traffic
flow modeling and traffic control [6].
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a so called “fundamental diagram” v(x,7) =V, (p(x,7)). One
of the most used form of such function is due to May [8]

Ve(p(x.1)) = vyexp (—i (;’)) @)

where, a is a parameter, v, is the free-flow speed and,
p. represents the critical density. Such fundamental diagram
allows to identify the free flow zone and congested one (See
Fig. 1).

As the first order macroscopic model is based on a static
relationship between the main traffic variables, it presents
several drawback such as the inability to describe the dynamic
of the traffic behavior. In this context, the second order models
seem to be more adapted. One of these models is the Payne’s
model [12]. In this work, we use the model proposed by
[13], (See also [14]) which is discretized in time and space.
Consider then the following freeway segment divided into n
links (Fig. 2).

The studied freeway segment is then described by the
following ordinary differential equations for each link i [15]

1

pi= L (gi—1 —apyvir1 — (1 — @) pir1vipa +ri(t) —si(r)) (3)
1= £ Vep) = WO+ it vt (0] = 1 (pis1 = )
2 () =) )

where, r;(t) and s;(¢) are the on-ramp and off-ramp flows,
respectively. T, 17, v and  are model parameters. L; is the
length of the link i.

B. State reconstructor

All current freeway traffic control and monitoring algo-
rithms require an accurate knowledge of traffic states along
the studied segments [6]. From the macroscopic point of
view, the main variables of interest are the traffic density in
vehicules/km/lane and the average speed in km/h [16]. These
important traffic data are usually obtained via a set of sensors,
for example, such as inductive loop detector, camera video.

Nevertheless, The high cost of installation and maintenance
of a large number of sensors or the occurrence of sensor’s fail-
ures, led many researchers to develop traffic control methods

X1 l
= o +
Z y=x2 r f ] X1 -
obs
e = X1 — )21
Fig. 3. Structure of the super twisting algorithm

and algorithms based on state estimation techniques in order
to reduce the number of sensors or to reconstruct the missing
state information.

Several methods were proposed, in [6], a state estimator was
developed using Extended Kalman filters [17], other works use
the well known Luenberger observer [18].

In [15], a first order sliding mode observer has been pro-
posed in order to design a state observer. Such robust variable
structure observer (see [19] and [20], for more explanation
about Sliding mode control and observation) suffers from the
high frequency chattering phenomenon generally present near
the sliding surface. In this paper, a second order sliding mode
observer is proposed in order to overcome this problem.

1) Short overview on the observers: The sliding mode
technique has been used for the observer’s design in many
applications. Consider the following nonlinear system

X = X3
Xy = X3
(5)
in=f(x ...,x—1)
y= X1

The sliding mode differentiator of order 2 (super twisting
algorithm) is given in its general form by [21] (figure 3).

Z: { yie) =y+A e \1/2 sign(ey)

. . AL,m >0
y = msign(e;) } A

obs
Where, A; and 7, are positive tuning parameters of the differ-
entiator whose the output is y. Applying the exact differentiator
to system (5) when n=2, one obtains:

1/2

5(11 23224-11 |X] — X ‘ sign(x1 —xAl) (6)

)?zzfq(xl,iz)—kﬂlsign(xl —)21) 7

fq(x1,%2) = equation(6). Then, the estimated value of £, can
be found from equation (7). For more details see ([22], [23],
[24], [25], [26], [27], [28] and [29]).

2) Traffic state estimation: Consider the following freeway
segments (Fig. 4): Using the relationship between the three
aggregated variables (flow ¢, density p > and mean speed v),

qi(x,1) = pi(x,1)vi(x,1) ()

2loop-detector (sensor) measures directly the occupancy, which refers to the
percentage of time a detector is occupied by vehicles. It can be transformed to
density by TO = 100(L, +L,)p [30]. where: L, = length of the loop-detector,
L, = length of the vehicle, p = density and 7O = occupation rate.
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St.1 St.2 5t.3 Consider p and ¥ are the estimated value of p and v respec-
L1 L2 tively. Then, the observer errors are defined as: ep = p —p and
Qe e, =v—7.
——————————————— | U ——— S The proposed observer (called super-twisting) has the form
—1 = pLwv1 p2,v2 ——— |
Ve Vs pr = fl(qe+r—aﬁlvz—(1—a)ﬁzvs)+2p1 (13)
%.L g
/ o | Measared occupancy (10) Where zp1 and zp are the output injection of the form:
r 0y = P1+ (14)
Control Algorithm p2 o pl sz
Zp1 = Tsign(p2 — P2 (15)
Estimated occupancy (TO) I& P (1 )
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Fig. 4. Freeway segments example . .
For the speed estimation ¥;, the observer reads:
b= %(V(ﬁ]) — V) + L%ﬁ](ve—w) -
The output vector is: y = [y 2] = [p2 va]” s a7
. . D \4 A "
As long as the outgoing traffic speed satisfies the positivity H(PZ —p1)— Vit
condition: vi,vy = vs 2= Vi > 0, the studied freeway section The output injection are of the form:
(see figure 4) can be described by the following equations: )
V2 ="V1+22 (18)
.1
p1= E(Qe +r—opvy— (1 —0a)prvs) ©) 21 = Tsign(vy — 02) (19)
1
. . = — Py |2 si -
p2 = g5 (apiva — (1 — &) pavs —gq5) = ¥p (10) 2 = A | va =P |7 sign(vy —02) (20)
III. REAL-TIME RAMP METERING
5= LVu(pr) = vi)+ Lvi(ve—va) — The ramp metering algorithm is based on the differentially
T\"e L € flat systems concept, (see [31], [32], [33] and [34] for more
y 5 (11) explanations about flat systems).
2 (P2 =p1) — -1 Notice that the studied system (9)—(12) is flat with F = p,
. X . . its flat output (see [35], for the first application of flatness
vy =7z (Ve(p2) =v2) + V2 (vi=vs) = (12) concept in the traffic flow control). It means that all the system

In expressions (9)-(12), p» and v, are assumed to be known.
V.(p;) are given thanks to the May fundamental diagram (2).

It should be mentioned that g; and vy form the output
measurements variables which are equal to g, and v, respec-
tively, measured on sensor St.3. ¢, and v, (measured on sensor
St.1) are external measured inputs (see figure 4). Assuming
that sensor St.2 is broken down. We try to estimate the state
variables p; and v; which are essential for the control system
from the measured states on sensor St.3 :

variables can be parametrized in term of this flat output and a
number of its time-derivative. The state variable p; reads then

Sy
p1= 20w2

1
oy qs

(04
——F+
o

1)

From the expressions above, the control variable r(¢) can be
parametrized in term of the flat output and its time derivatives
up to two

l—of .
F




TABLE I
PARAMETERS OF THE MODEL

Parameter Value Parameter Value
Free-flow speed 105km/h n 0.42
Jam density 180veh/km v 5.8E 2% 100/ n’
Critical density ~ 35.86 veh/km a 1.66
a 0.77 T 7.8E —3 %3600 sec
Ly, L, 500m ) 0.17 m/veh

Liv,

2] gs+2(1—o)nF —q.  (22)
oy

Ly | |
+ o qs+ {
Given a desired reference trajectory for the traffic density,
represented by F*, a linearized control law achieving an
exponential asymptotic tracking of the trajectory is given by
the following expression:

LiL LiLov l—al . L
r(t) = 222 2F+{L2— L }F L,
vy vy (04 (02%)
Liv;
+ I_W qs+2(1—06)v2F—qe (23)
2
C=F" L (F-F)—M(F-F") (24)

F =T is an auxiliary control input. The set of parameters
{K1,K>}, is chosen so that the roots of the closed loop
characteristic polynomial, in the complex variable s: p(s) =
s? + K»s + K, be a Hurwitz polynomial. Clearly, the tracking
error, e = F — F* (F = p,) satisfies

é+Kre+Kie=0 25)

A suitable choice of the design parameters is obtained by
matching the characteristic polynomial, p(s), to a desired char-
acteristic polynomial p,(s), with pre-specified root locations.

IV. NUMERICAL SIMULATIONS

For numerical simulations, consider the same example of
the stretch depicted in Fig. 4. We suppose that the sensor on
St.2 is broken down. Thus, in order to the control system
do not disrupt, we try to estimate the state variables (p;
and vy), which are essential for the control algorithm, from
the measured state variables (p» and v;) on St.3. The traffic
demand (veh/h/lane) is represented in Fig. 5. For simulation,
the model parameters are given in table (I).

In the no-control case, Fig.6 and Fig. 7, show the densities
and speed evolutions. Notice that in this case, the congestion
appears for about 40 min. Without additive noise, we obtain
a good estimation for both the traffic density and the mean
speed of the first link.

Fig. 8 and Fig. 9 show the effectiveness of the proposed
controller. Indeed, the proposed algorithm ensures convergence
to the desired value. Notice also the good estimation results
for the main state variables.

Obviously, the implementation of the ramp metering leads
to a queue formation as depicted in Fig. 10.

In the presence of additive noise, Fig.12 and Fig. 13 show
a good robustness of the identification method as well as the
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control algorithm to keep the trajectory around the desired
value. In table (II), the standard error occur in the estimated
values of p and v, in the case of without additive noise and
with the presence of additive noise, are given.

V. CONCLUSION

The work presented in this paper exploits the relevance of
high order sliding mode observer for state estimation. The
proposed super twisting algorithm seems to be very efficient
for the case where any information about the state of the
controlled ramp is available. On the other hand, the application
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of the concept of differential flatness for real time ramp
metering is based on the system inversion concept, which do
not requires integration of any differential equations. Notice
that, the flat output is defined by the state of the downstream
segment. This means that in addition of on-ramp metering of
the merge section, we are able to control all the downstream
ones. This fact leads to propose in future works a coordinated
ramp metering algorithm which takes measurement of all
studied freeway network.
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