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Abstract
In this paper, we study mixtures of two Mallows
models for top-k rankings with equal location pa-
rameters but with different scale parameters (a
mixture of concentric Mallows models). These
models arise when we have a heterogeneous pop-
ulation of voters formed by two populations, one
of which is a subpopulation of expert voters. We
show the identifiability of both components and
the learnability of their respective parameters.
These results are based upon, first, bounding the
sample complexity for the Borda algorithm with
top-k rankings. Second, we characterize the dis-
tances between rankings, showing that an off-the-
shelf clustering algorithm separates the rankings
by components with high probability -provided
the scales are well-separated.As a by-product, we
include an efficient sampling algorithm for Mal-
lows top-k rankings. Finally, since the rank ag-
gregation will suffer from a large amount of noise
introduced by the non-expert voters, we adapt the
Borda algorithm to be able to recover the ground
truth consensus ranking which is especially con-
sistent with the expert rankings.

1. Introdution
Ranked data has been subject to study in different commu-
nities starting with Social Choice (Bartholdi et al., 1989),
Bioinformatics (Vitelli et al., 2018), and recently in Ma-
chine Learning (Busa-Fekete et al., 2014) since rankings
arise naturally when ordering items in order of preference.
Top-k rankings arise in practice when voters, human or soft-
ware, see all the items but provide a ranking of their most
preferred k items. Examples of top-k rankings are the re-
sults displayed in a search engine, which contain just the
top 10 most relevant, related search results, out of possibly
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millions of results.

The Mallows model (MM) (Fligner & Verducci, 1986; Mal-
lows, 1957) is one of the preferred distributions to model
rank data. It belongs to the location-scale family since it is
parametrized by a location parameter (a.k.a. central ranking)
σ0 and a non-negative scale (a.k.a. dispersion) parameter, θ.
The location parameter is the consensus ranking of the distri-
bution. The probability of any other permutation decreases
exponentially with its distance to σ0, where the distance for
rankings is, in general, the Kendall’s-τ distance. Finally,
the dispersion parameter controls the variance of this decay.
For other distances see (Irurozki et al., 2019).

Mixtures of MM populations are divided into different sub-
populations, each of which can be modeled with a single
MM since each is consistent with noisy realizations of their
particular consensus ranking. In this paper, we study the
particular context of mixtures where all the location parame-
ters are the same σ0. We denote this situation as concentric
mixture.

Real world motivation In this work, we consider the fol-
lowing problem. There is a consensus ranking σ0 repre-
senting a complete ranking of a set of n alternatives, i.e.,
films that are ordered for the preferences, students that are
ranked according to their grades in a particular exam or high-
quality and low-quality rankings corresponding to different
sampling techniques. However, this consensus ranking is
unknown and must be estimated from the realization of rank-
ings provided by a collection of m raters or voters. Each
voter has ranked his top k < n alternatives.
The population is heterogeneous: a number of them are
low-bias-low-variance rankings that will be close to the
consensus and the rest will provide low-bias-high-variance
rankings, which will be noisier. The population of rankings
is modeled as a mixture whose components are 2-concentric
MM: Both components will be centered at the same consen-
sus ranking σ0, but their spread parameter will be different.
Our goals are to show identifiability in this scenario by (1)
obtaining the consensus ranking with high probability and
(2) distinguishing the rankings from each subpopulation
with high probability.

This situation is motivated by general noisy settings.
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Our contributions We study here concentric mixtures
of Mallows for top-k rankings. Our contributions are the
following:

• We propose efficient algorithms to compute the proba-
bility, sample top-k rankings, and sample linear exten-
sions of top-k rankings under the Mallows model.

• We show identifiability of concentric mixtures with the
following two results.

– We analyze the sample complexity that the Borda
algorithm needs to return the consensus ranking
with high probability for a sample of top-k rank-
ings.

– We propose an algorithm that separates the rank-
ings from both components of the mixture with
high probability. This is the key to estimate the
dispersion parameters of each component.

• We propose an improvement for the Borda algorithm
for the estimation of the central ranking in concentric
mixtures of top-k rankings.

All these results are valid for mixtures of complete rankings.

Related work Partially ranked data and extensions of the
Kendall’s-τ distance, in particular, have been analyzed ex-
tensively. In (Fagin et al., 2003) a family of extensions is
studied and the authors show that they are equivalent up to
global constants. Based on this work, constant factor approx-
imation algorithms can be found in (Ailon, 2010). Mallows
models for top-k rankings under the distance in (Fagin et al.,
2003) are given in (Chierichetti et al., 2018), where the au-
thors argue that previous sampling algorithms based on the
Repeated Insertion Model (RIM) (Doignon, 2004) cannot
be efficiently adapted to sample top-k rankings and propose
a O(k24k + k2 log n) algorithm to sample top-k rankings
from a MM. By taking a different approach from theirs, we
propose a sampling algorithm of complexity O(k log k) for
top-k rankings under the MM.

Theoretical identifiability of the parameters of a mixture of
MM was first addressed in (Awasthi et al., 2014) after a large
number of papers on practical research (D’Elia & Piccolo,
2005; Lee & Yu, 2012; Meila & Chen, 2010). They obtain
a polynomial-time algorithm for the case of two mixtures
using tensor decomposition. Despite working with arbitrary
separation of the centers of the distributions, their algorithm
performance drops as the centers of the distributions get
closer, being able to correctly identify 10% of the mixtures
when both centers are the same (where for identification
the authors counted the fraction of times on which their
proposed algorithm returned the true rankings that generated
the sample).

The problem of learning mixtures of MM was also addressed
in (Chierichetti et al., 2015). They propose and analyze
algorithms for different mixture settings. They show iden-
tifiability when the dispersion parameter is the same and
known for all the components and argue that the learnability
of the problem can strongly depend on the separation of
the consensus rankings of the mixtures’ components. In the
present work, we focus on this allegedly difficult setting of
concentric mixtures of unknown dispersion and show that
even concentric mixtures can be identified polynomially pro-
vided that the variances in both distributions are different
enough.

The first polynomial time algorithm for provably learning
the parameters of a mixture of Mallows models with any
constant number of components can be found in (Liu &
Moitra, 2018). They show that any two mixtures of top-
k Mallows models whose components are far from each
other and from the uniform distribution in total variation
distance are far from each other as mixtures too, provided
that n > 10k2. We improve their results showing that for a
component close to uniformity and smaller values of n the
separation can be done polynomially.

A growing body of recent papers consider simultaneously
partial preferences and mixtures of probabilistic models,
i.e., Plackett-Luce (Mollica & Tardella, 2017), proposing
provably efficient learning algorithms (Liu et al., 2019),
sampling linear extensions (Zhao & Xia, 2019), character-
izing identifiability (Zhao & Xia, 2020). In this work, we
extend the scenario to the Mallows model.

Mallows model belongs to the location-scale family of dis-
tributions. The most prominent member of this family is the
Gaussian and therefore both Mallows model and Gaussian
are usually considered to be analogous. Nonetheless, Mal-
lows model lacks many interesting properties of the Gaus-
sian. In this paper, we show that on the other hand, Mallows
model has interesting properties that are not present on the
Gaussian such as identifiability of concentric mixtures.

We assume for the theoretical results that the number of
alternatives in the rankings is n > 3, following traditional
assumptions on the computer theory literature. There is
often a phase transition between n ≤3 and n ≥ 4, for
example, the NP-hardness result for the Kemeny ranking
problem (which Borda approximates) holds provided n ≥ 4,
see (Dwork et al., 2001).

This paper is organized as follows. Section 2 gives back-
ground on rankings and distances. Section 3 details the
Mallows models for partial permutations and shows effi-
cient ways of dealing with them, sampling, or computing
statistics. Section 4.1 shows how to separate both subpopula-
tions of concentric MM. Section 4.2 addresses the problem
of the estimation of the consensus ranking. Finally, Sec-
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tion 5 details the experimental evaluations and Section 6
concludes the paper.

2. Preliminaries
The group of permutations of n items is denoted Sn.The
identity permutation is e = 1, 2, . . . , n, the group operation
is the composition σ · π, denoted σπ, and the inverse of σ is
denoted σ−1. We consider that permutation σ represents a
ranking of items, where σ(i) is the rank of item i.

Every permutation σ ∈ Sn can be uniquely represented by
its inversion vector V(σ) = (V1(σ), . . . , Vn−1(σ)),

Vj(σ) =
∑
i>j

I[σ(i) < σ(j)], (1)

where I is the indicator function and 0 ≤ Vj(σ) < n−j. In-
version vectors are also denoted Lehmer codes. There exist
two different definitions of the inversion vectors (Fligner &
Verducci, 1986; Mandhani & Meila, 2009): this one counts
the number of items smaller than σ(j) in the tail of σ; the
alternative, most popular definition counts the number of
items smaller than σ−1(j) in the tail of σ−1. When we
consider complete permutations both definitions are equiva-
lent. However, with this definition, we can manage naturally
partial permutations with consequences that will be clear
in subsequent sections, particularly in for its application in
sampling algorithms.

The complexity of the bijection between each possible in-
version vector and permutations in Sn is O(n log n) (Mc-
Clellan et al., 1974).

We consider the Kendall’s-τ distance, d(σ, π), which counts
the number of pairwise disagreements between σ and π.
We use d(σ) to denote d(σ, e). Among the properties that
this distance satisfies we highlight the following for their
implication in the paper. First, the distance to the identity
from σ and its inverse is the same d(σ, e) = d(σ−1, e).
Second, the distance is label invariant d(σ, π) = d(στ, πτ)
for every triplet σ, π, τ ∈ Sn.

The relation between the Kendall’s-τ distance and inversion
vectors comes from the fact that d(σ) =

∑
j Vj(σ). For

top-k rankings we use a generalization of the Kendall’s-τ
distance that assumes that items that cannot be compared
do not increase the distance. This is equivalent to the gener-
alization of (Fagin et al., 2003) with the p parameter equal
to 0.

We consider the Mallows model (MM) to model distribu-
tions on Sn. MM expresses the probability of ranking
σ ∈ Sn as p(σ) ∝ exp(−θd(σ, σ0)). We will make use
of the convenient observation made in previous paragraphs
that claims that d(σ) =

∑
j Vj(σ) to rewrite the MM as

follows (Meila et al., 2007),

p(σ) =

∏n−1
j=1 exp(−θVj(σσ−10 ))

ψn

where ψn =

n−1∏
j=1

ψn,j =

n−1∏
j=1

1− exp(−θ(n− j + 1))

1− exp(−θ)
.

(2)

We denote as M(σ0, θ) a MM with consensus ranking (or
location parameter) σ0 and with dispersion parameter θ. A
random permutation distributed according to this model is
denoted as σ ∼ M(σ0, θ). Since the Kendall’s-τ distance
is right invariant, we can assume that σ0 = e w.l.o.g. The
base of our sampling algorithm is that the probability dis-
tribution of each item in the inversion vector V(σσ−10 ) =
(V1(σσ−10 ), . . . , Vn−1(σσ−10 )) for σ ∼ M(σ0, θ) can be
expressed as

p(Vj(σσ
−1
0 ) = r) =

exp(−θr)
ψn,j

. (3)

It follows that p(σ) can be stated as the product of indepen-
dent factors, p(σ) =

∏
j p(Vj(σσ

−1
0 )), (Mandhani & Meila,

2009).

Learning the maximum likelihood estimate (MLE) of a MM
given a sample of permutations is done in two stages (Mand-
hani & Meila, 2009). Firstly, the MLE of the central ranking
is the Kemeny ranking of the sample (Ali & Meila, 2012).
Since this problem is NP-hard (Dwork et al., 2001), usu-
ally the Borda ranking is used. Borda can be computed in
quasi-linear time and is an unbiased estimator of the Ke-
meny ranking of a sample distributed according to Mallows
model (Fligner & Verducci, 1988). Secondly, the MLE of
the dispersion parameters are obtained numerically (Irurozki
et al., 2019).

Mixture models are used to combine different simple proba-
bility models to model large, heterogeneous populations. In
our motivating problem, we consider a heterogeneous pop-
ulation of two subpopulations: one made of expert voters
(low-variance rankings) and another one of non-expert vot-
ers (low-variance rankings). This is modeled with a mixture
of two concentric components where the probability of each
permutation is

p(σ) = r
exp(−θgd(σ, σ0))

ψn
+ (1− r)exp(−θbd(σ, σ0))

ψn
.

(4)

where there is one consensus ranking σ0, a dispersion pa-
rameter of the low-variance rankings, θg, a dispersion of
the high-variance rankings, θb < θg and a proportion of
low-variance rankings in the population r, denoted mixture
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parameter. We denote mixtures in which all the components
have the same central ranking as concentric.

3. Top-k Ranking Statistics under the
Mallows Model

In this section, we study the problems of sampling top-k
rankings from a MM, sampling linear extensions of top-k
rankings, and computing the probability of a top-k ranking
efficiently.

We start with the primary problem in statistics: Comput-
ing the probability of a top-k ranking σ efficiently. The
probability of σ is the sum of the probabilities of all its
linear extensions, p(σ) =

∑
σ′∈L(σ) p(σ

′), so a naive ap-
proach computes p(σ) inO((n log n)(n−k)!). We propose
a O(n + k log k) expression to compute p(σ) in the next
lemma.

Lemma 1. The probability of the top-k ranking σ is

p(σ) = exp(−θd(σ, σ0))
ψn−k,θ
ψn,θ

.

The complexity of the previous expression comes from the
normalization constant (O(n), in Equation (2)) and the com-
putation of the distance (O(k log k)). A proof can be found
in the appendix.

Sampling When we consider the problem of sam-
pling complete rankings (instead of top-k rankings),
RIM (Doignon, 2004) offers a convenient alternative. RIM
samples a ranking in two steps: First, it samples vector
R(σ) = (R1, . . . , Rn), where 1 ≤ Ri ≤ i and p(Ri) for
σ ∼ M(σ0, θ) is known (Doignon, 2004). Second, start-
ing with an empty vector σ and letting i range in [1, n],
it inserts item i in position Ri of σ, shifting backwards
items if necessary. Due to this shifting strategy, σ(i) is
not known until the last iteration for every i ≤ n. This
means that the only way of sampling a top-k ranking with
RIM is to sample a complete ranking and then to censor
it. This is clearly a terrible idea, especially when k << n.
There exits an improvement for this process with complexity
O(k24k + k2 log n) (Chierichetti et al., 2018).

In the following lines, we introduce a new sampling algo-
rithm for top-k rankings with quasi-linear complexity. Al-
though the theoretical foundation (inversion vectors and
its bijection) is known, this algorithm to sample top-k
rankings in less than exponential time is novel. Our pro-
posed algorithm can also be used to sample complete
rankings by setting k = n and its complexity improves
over RIM’s. Software implementing the algorithms de-
scribed here is distributed in https://github.com/
ekhiru/top-k-mallows.

Algorithm 1 samples a top-k ranking σ ∼M(σ0, θ) in time
O(k log k) and memory O(k). It is based on the following
results: First, Equation (3) gives the probability of each
position of the inversion vector independently V(πσ−10 ):
sampling the first k positions is linear in k. Second, it
generates the partial permutation πσ−10 from the inversion
vector with a quasi-linear time bijection (McClellan et al.,
1974). Finally, the top-k ranking σ is distributed as σ ∼
M(σ0, θ) where σ = π−1 (Mallows, 1957).

Algorithm 1 Sample top-k in O(k log k)

Data: n, k, θ, σ0
Result: σ: Top-k ranking of n items distributed according

to M(σ0, θ)
for j ∈ [1, k] do

Vj(πσ
−1
0 ) = random choice in [n− j] with choice prob-

abilities of Eq. (3)
πσ−10 = transform V (πσ−10 ) with the bijection in (Mc-
Clellan et al., 1974)
return π−1

end

Sampling linear extensions A similar approach is used
to sample a linear extension of a top-k ranking in O((n−
k) log(n− k)), we refer to the supplementary material for
the pseudo-code. It follows directly from the previous result.
Sampling a linear extension is done by sampling Vj(σ) from
j ≥ k. Then, obtaining σ is O((n − k) log(n − k)) (Mc-
Clellan et al., 1974).

Expressions for the expected distance and variance are in-
cluded in the appendix for completeness and also appear
in (Busa-Fekete et al., 2019).

4. Identifiability of Concentric Mixtures
Identifiability of concentric mixtures has been claimed
to be the most difficult scenario in mixture identifiabil-
ity (Chierichetti et al., 2015). Indeed, the concentric mix-
tures of Normal components, which belongs to the same
family as the MM, are known to be non-identifiable.

Identifiability is guaranteed if we can (1) recover the ground
truth ranking and (2) separate the rankings in each popu-
lation. Each of these points is addressed in the following
sections to claim identifiability for concentric mixtures.

4.1. Provably separation of the sub-populations of each
component

In this section we consider the problem of separating the
rankings of the two components of a concentric mixture of
MM. We propose an algorithm that can separate the two
sub-populations under mild conditions of the separation of
the dispersion parameters among the mixture components

https://github.com/ekhiru/top-k-mallows
https://github.com/ekhiru/top-k-mallows
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and the mixture parameter r. Our proposed algorithm is
based on finding the separation of the mean distance of each
top-k ranking σ to all the others in the sample, which is
defined as follows,

δσ =
1

|S| − 1

∑
σ′∈S\{σ}

d(σ, σ′). (5)

Recall that the expected distances E[d(σ, σ0)] and E[δσ]
for σ ∼ M(σ0, θ) only depend on θ. We will use the
following observation along this section (Korba et al., 2017):
The expected distance between a random Mallows ranking
σ ∼ M(σ0, θ) and the consensus ranking σ0, E[d(σ0, σ)],
is bounded by the expected pairwise distance of two random
Mallows permutations, σ, σ′ ∼M(σ0, θ) as follows.

1

2
E[d(σ′, σ)] ≤ E[d(σ0, σ)] ≤ E[d(σ′, σ)]. (6)

First, we introduce some notations recalling our motivat-
ing example: a concentric mixture represents a population
of voters with two homogeneous sub-populations, a sub-
populations of low-bias-low-variance rankings distributed
according toM(σ0, θg) and another sub-populations of low-
bias-high-variance rankings i.i.d. as M(σ0, θb) for θg > θb.
Let β ∼ M(σ0, θb) and γ ∼ M(σ0, θg) be two random
top-k rankings, i.e., β belongs to the group of bad, high-
variance rankings and γ to the group of good, low-variance
rankings. In this section we show that E[δβ ] and E[δγ ] are
well separated and give an algorithm that separates the two
sub-populations in O(m2) time provided that the compo-
nents are sufficiently far from each other.

Now, we show an auxiliary lemma that bounds the expected
distance between random rankings of different components,
γ and β.

Lemma 2. The expected distance between two rankings of
different components E[d(β, γ)] is bounded as follows

E[d(β, σ0)] ≤ E[d(β, γ)] ≤ E[d(β′, β)]. (7)

The following result shows that the expected mean distances
δα and δβ of top-k rankings α, β of different components
are well separated.

Theorem 3. Let M(σ0, θg) and M(σ0, θb) be the two com-
ponents of a concentric mixture of top-k rankings in which
E[d(β, σ0)] ≥ c · E[d(γ, σ0)] for c ≥ 2. Let r ∈ [0, 1]
be the mixture parameter. The expected mean distance be-
tween rankings of different components β ∼M(σ0, θb) and
γ ∼M(σ0, θg) is bounded as follows,

E[δβ − δγ ] ≥ O(c · r · E[d(γ, σ0)]). (8)

Theorem 3 suggests that a clustering algorithm in δσ for
every σ ∈ S can segment the population by generating
component. We show that, indeed, a single linkage cluster-
ing algorithm can separate the sub-populations with proven
guarantees.

Theorem 4. Let M(σ0, θg) and M(σ0, θb) be the two com-
ponents of a concentric mixture of top-k rankings in which
E[d(β, σ0)] ≥ c·E[d(γ, σ0)] for c > 2. Let r ∈ (0, 1] be the
mixture parameter. There exists an algorithm that separates
the samples from both components with probability 1− ε in
O(m2) when the number of samples is at least

m >

(
n(n− 1)

(c− 2) · r · E[γ, σ0]

)2
log(2/ε)

2
. (9)

Proof. First, and based on a direct application of Hoeffd-
ing’s inequality, note that for d(σ, σ′) i.i.d. random vari-
ables with range n(n−1)

2 then, it holds that with probability
at least 1− ε:

|δσ − E[d(σ, σ′)]| ≤ n(n− 1)

2

√
log(2/ε)

2(m− 1)
. (10)

Now, we consider the Single-linkage clustering, which sep-
arates two components when

E[δβ − δγ ] ≥ |δβ − E[δβ ]|+ |δγ − E[δγ ]|, (11)

Thus, the theorem holds if Equation (11) holds. Hence,
using Equation (10), the following holds.

|δβ − E[δβ ]|+ |δγ − E[δγ ]|

≤ 2 · n(n− 1)

2

√
log(2/ε)

2m

≤ (c− 2) · r · E[γ, σ0]

≤ E[δβ − δγ ],

(12)

We obtain a bound for m using the second inequality, which
concludes the proof.

Hence, we have shown that under certain conditions about
the expected distances of both populations, we can separate
both components with high probability. This would allow us,
given that we also know the central permutation, to learn θg
and θb dispersion parameters, using the maximum likelihood
estimation as described in (Irurozki, 2014), adapted to the
case of top-k rankings here.

Computing δσ for every permutation in the sample requires
O(m2) distance calculations. However, in practice, we



Concentric mixtures of Mallows models for top-k rankings

can approximate this value with high probability, reducing
the number of distance computations using a result from a
corollary of Hoeffding’s bound.

Applicability in real-world scenarios is related to the ques-
tion of whether c ≥ 2, i.e., “twice the distance in expec-
tation”, is a large separation. We need to elaborate on the
answer by linking it to the asymptotic of the distance. The
maximum Kendal’s-τ distance between rankings of n al-
ternatives is at most n ∗ (n− 1)/2 (grows quadratic with
n), while Theorem 4 holds provided that the ratio of the ex-
pected distances for two components is linear (the double).
Therefore, “twice the distance in expectation” compared to
the maximum distance is not a large separation for relatively
small rankings (n = 5) but it becomes arbitrarily small as
we increase n. Moreover, we can deal with cases where one
of the distribution is very close to uniformity, which can
be a problematic case for some approaches (Liu & Moitra,
2018).

Relation to total variation (TV) distance We have
choosen to elaborate the results regarding the expected dis-
tance for interpretability on the dataset, but certainly, a
discussion on the TV is in order. The TV distance is very
easily computed among concentric MM. The TV distance
between distributions p1 and p2 is

dTV (p1, p2) = max
σ∈Sn

|p1(σ)− p2(σ)|. (13)

Since in the model MM(σ0, θ) the permutation σ with
the largest (resp. lowest) probability value is the mode σ0
(resp. the antimode σ̄0 = (σ0(n), σ0(n − 1), . . . , σ0(1)),
for concentric pg, pb (pg = M(σ0, θg), pb = M(σ0, θb) ) it
turns out that

dTV (p1, p2) = pg(σ0)− pb(σ̄0) (14)

This observation allows bounding the dTV when the separa-
bility condition E[d(β, σ0)] ≥ c·E[d(γ, σ0)] is satisfied. Let
us assume that the condition is satisfied and that E[d(γ, σ0)]
and c are in their maximum values (which are a function
of n). This is the worst case scenario, since dTV decreases
with both E[d(γ, σ0)] and c. For this setting, we can easily
obtain the dispersion parameters θg and θb with numeri-
cal methods. To conclude, we plug this values on Eq (14)
obtaining the desired bound.

4.2. Estimating the consensus ranking of top-k
rankings

In this section we study the following problem: given a sam-
ple of top-k rankings distributed as a concentric mixture of
MM, find the MLE of the central ranking. Since all the com-
ponents of a concentric mixture have the same consensus

ranking σ0, this problem boils down to a rank aggrega-
tion problem, as in the single-component case: the MLE is
exactly given by the Kemeny ranking. Unfortunately, com-
puting this ranking is NP-hard for n > 4, (Dwork et al.,
2001).

For a sample of complete rankings drawn from a MM, Borda
is an approximation to the Kemeny ranking (Fligner & Ver-
ducci, 1988). Moreover, Borda is quasi-linear in time and
outputs the correct σ0 w.h.p. with a polynomial number
of samples (Caragiannis et al., 2013). However, there is
no quality result for the case in which the sample consists
of top-k rankings i.i.d. from a MM. In the next lines, we
provide a sample complexity for Borda over top-k rankings
from a MM and then extend it to the case of concentric
mixtures.

A crucial difference between complete and top-k rankings
drawn from a MM1, is that in top-k Mallows rankings σ the
probability of observing item i, i.e., p(σ(i) ≤ k), decreases
with i. Intuitively, this means that Borda will need fewer
samples to guess the rank of smaller i’s. We formalize this
intuition in the next result: We bound the number of samples
that Borda requires to rank items i and i+ 1 in the correct
order with probability 1− ε.

For this analysis, we first need the following definition.

Definition 5. Let i ∈ [0, n− 1], k ∈ [0, n].

∆ik =
∑

σ:σ(i)≤k

p(σ)−
∑

σ:σ(i+1)≤k

p(σ). (15)

Despite in general there is no closed-form expression for
∆ik, we can give a convenient expression for the case where
i = 1, ∆1k.

Lemma 6. The minimum value for ∆ik, ∆1k = mini ∆ik

can be computed in O(k2 + kn) as follows:

∆1k =

k−1∑
r1=0

exp(−θr1)

ψn,1

−
k−1∑
r1=0

k−2∑
r2=0

exp(−θr1) exp(−θr1)

ψn,1ψn,2

−
n∑

r1=k

k−1∑
r2=0

exp(−θr1) exp(−θr2)

ψn,1ψn,2
.

(16)

Based on the above results, we can bound the sample com-
plexity of Borda for giving the correct ordering of items i
and i+ 1.

Theorem 7. Let S be a sample of top-k rankings drawn
from a MM with dispersion θ. Borda for sample S orders

1We assume, as in previous sections and w.l.o.g., that σ0 = e.
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the pair of items i and i+ 1 correctly with probability 1− ε
when the number of rankings in the sample is at least

m ≥ O
(
n2 log ε−1

(k2(1− exp(−θ))2

1− exp(−θn)
− i∆1k

)−2)
.

(17)

The above theorem formalizes the intuitive idea that the
sample complexity of Borda to order correctly items i and
i+ 1 on a sample of top-k rankings increases polynomially
with i. Therefore, this bound generalizes to the sample
complexity of Borda to obtain the correct ranking w.h.p.
for a sample of top-k drawn from a mixture of MM with
parameters σ0, θg and θb.

Corollary 8. Borda returns the correct central ranking σ0
when the number of samples in the both component satisfies
Equation (17) with i = n and θ = θb.

Expert Borda In a practical point of view, we can im-
prove Borda quality in the problem of estimating σ0 for
concentric mixtures. The improvement is based on the fol-
lowing observations: (1) The sample complexity is smaller
for the component M(σ0, θg) than for M(σ0, θb). (2) we
can identify the rankings in M(σ0, θg) w.h.p. as shown in
Section 4.1. With this in hand, we propose an improvement
for Borda that (1) identifies the low-variance rankings (2)
constructs a top-k ranking by aggregating those rankings
drawn from M(σ0, θg) and (3) fills the missing n − k po-
sitions with the data of the whole sample of rankings. We
denote this approach expert Borda and show its improve-
ment empirically in the experimental section.

Summarizing identifiability Let us put all the pieces to-
gether: First, we compute δσ (Eq (5)) for each ranking.
Since this δσ will be very different for rankings σ in each
component (by Theorem 3), applying the clustering algo-
rithm on δ will separate the rankings in each component.
The centers will be the same for both components provided
that the number of samples is larger than a known bound (by
Theorem 4). Then, identifiability follows, since the spread
parameters are computed exactly in linear time, see Sec-
tion 2 or (Critchlow et al., 1991). Otherwise -if the number
of samples is smaller than the statement in Theorem 4- and
the centers of both components are not the same, one can
use the Expert Borda algorithm to recover the ground true
ranking, see Section 4.2.

5. Experiments
In this section, we validate empirically our proposal. The
experimental framework is as follows. In the first two ex-
periments, we generate a sample of partial rankings, using
Algorithm 1, with parameters n = 30 and k = 10, from a
mixture of concentric MM, both centered at a random σ0

and with two dispersion parameters, θb, θg. The mixture
parameter is denoted r.

5.1. Voters separability

The goal of this experiment is to separate the two compo-
nents of rankings based on the mean distance of each of
the rankings to all the others as defined in Equation (5).
To compute these distances, we used the generalization of
Kendall’s-τ distance described in Section 2.

The experimental framework is as follows:

• mg = 40 rankings from a M(σ0, θg) such that
E[d(γ, σ0)] ∈ {3, 8, 13, . . . , 48}

• mb = 60 rankings from a M(σ0, θb) such that
E[d(β, σ0)] = c · E[d(γ, σ0)] with 40 > c ≥ 3 and
E[d(γ, σ0)] ≤ 217 (bound corresponding to the uni-
form distribution).

For a sample distributed as the model detailed above, we
compute each δσ and apply a 2-means clustering. The error
is measured as the percentage of badly-separated rankings
in the sample.

We can observe the results of this experiment in Figure 1
(a). As we can see, as the ratio c increases, the separation
gets more accurate. Indeed, for c ≥ 9 the percentage of
wrongly separated rankings is almost always below 10%
and is very close to 0 when high-variance rankings are close
to the uniform distribution. These results are consistent with
Theorem 3.

5.2. Consensus estimate with expert Borda

In these lines, we evaluate eBorda (expert Borda) algorithm
after Corollary 8. It estimates σ0 for a sample drawn from a
mixture of two concentric Mallows models. We show that
eBorda outperforms Borda.

Intuitively, and in the context of the low-variance/high-
variance rankings, this aggregation algorithm is based on
the following ideas.

• For the top-k items: the low-variance will provide an
accurate samples, however

• the probability of observing the items that are not in
the top-k is larger for high-variance rankings, although
the quality of the provided information might not be
very good (the sample complexity is indeed larger, as
shown in Section 4.1).

We assume that the number of high-variance rankings is
larger than the number of low-variance rankings and our
aggregation should pay more attention to the low-variance
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(a) (b)
(c)

Figure 1. (a) Total error (%) of separation between rankings in each component, using K-means. (b) Distances between the consensus and
its estimates, with different sizes of samples and two aggregation methods. (c) Comparison of the log-likelihoods of a distribution of
rankings, considering it as a single component of Mallows model or as a concentric mixture of Mallows models with different dispersion
parameters

opinion, but also be sure to include the high-variance rank-
ings, specially if there is missing information.

Hence, we sample a population of rankings drawn from a
mixture of two Mallows models. We will take mg = 4
rankings from M(σ0, θg), and mb = 40 from M(σ0, θb).
θg and θb are chosen such that E[d(σ0, γ)] = 10 and
E[d(σ0, β)] = 75.

The estimate σ̂0 for σ0 is computed with both the Borda
method and with our proposed eBorda, using the same
growing sample, with size {1, 2, 3, ..., 44}: first 1 ranking,
then 2, ... starting with the low-variance rankings. For each
number of rankings, we measure the error of the estimate,
d(σ0, σ̂0), as the mean between the maximum and the mini-
mum distance the estimate could have to the consensus if
all its positions were filled. This is repeated ten times and
average values for the distances are given.

The results are given in Figure 1 (b), where the x-axis indi-
cates the number of rankings considered for the estimation,
and the y-axis gives the error of estimation. The vertical
line marks the step from which high-variance rankings are
added to the sample. Finally, the aggregation of top-k rank-
ings results on a single top-k′ ranking where k ≤ k′ ≤ n.
When measuring our top-k′ estimate to our complete σ0
consensus, not all the pairs can be compared. The shadow
around the curve is the bound on the distances between any
linear extension of the partial estimate and the consensus.
Hence the larger k′, the smaller the shadow.

As expected, we can observe that eBorda can perform bet-
ter than Borda. Indeed, the separation of both components
allows us to keep a more accurate estimate for the first k
positions, using only the low-variance rankings to estimate
it. Nevertheless using the high-variance rankings afterward
allows us to complete the estimate into a full ranking, mak-
ing the uncertainty of the error decrease faster as we can see
with the shadows around the curves narrowing.

5.3. Semi-synthetic example

To test the identifiability on real data, we used a dataset
already used in (Fligner & Verducci, 1986), for which 98
college students were asked to rank five words according to
its strength of association with the word “idea”. The five
words to classify were: (1) thought, (2) play, (3) theory, (4)
dream, and (5) attention. These were to be ranked from 1 to
5, 5 being the most strongly associated with the target word.
In our present example, m = 98 and n = 5.

We assumed the dataset to be distributed according to a
Mallows Model and estimated its Maximum Likelihood Es-
timates, σ0 = 5, 1, 4, 3, 2 and θg = 1.43. We then simulated
a sample of 2 ·m raters generated uniformly at random.

Simulated raters were added, one by one, and at each step,
two different models were fitted: (1) a MM and (2) a mixture
of concentric MM, for which each component is determined
performing a 2−Means clustering, using the same proce-
dure as in Section 5.1. Then, we compute the log-likelihood
of each model. The results are represented in Figure 1 (c),
we can see that the mixture of concentric MM fits the data
better, even in this case in which the number of random is
large, larger than n!.

6. Conclusions
In this paper, we have studied the allegedly most difficult
setting in the learnability of mixtures of location-scale dis-
tributions: the case in which the location parameters are
the same. We denote this case as concentric and focus on
the Mallows model for top-k rankings. This situation arises
when we have a low-bias-low-variance population and a
low-bias-high-variance subpopulation. For example, when
there are two populations of voters (expert/non-expert).

We have proposed a O(k log k) sampling algorithm for top-
k ranking, which dramatically reduces the requirement of
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the samplers in the literature.

We have also proposed an algorithm for the learnability of
the parameters of the concentric mixture of top-k rankings
with a high probability in polynomial time. It is based on
our two following results: We have bounded the sample
complexity of the Borda algorithm to recover the ground
truth consensus ranking. And second, we have been able
to separate the rankings of each component in polynomial
time with high probability.

Interesting extensions to our work could be to generalize
our results to concentric Mallows mixtures of more than two
components, non-concentric mixtures of Mallows model, or
other models such as Plackett-Luce’s model.
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1. Proof of Lemma 1
Proof. Let the linear extensions of σ be L(σ). The sum of their probabilities is

p(σ) =
∑

σ′∈L(σ)

p(σ′) =
∑

σ′∈L(σ)

∏n−1
j=1 exp(−θVj(σ′))

ψn,θ

=
∑

σ′∈L(σ)

∏k
j=1 exp(−θVj(σ))

∏n−1
j=k+1 exp(−θVj(σ′))

ψn,θ

=
exp(−θd(σ))

∑
σ′∈L(σ)

∏n−1
j=k+1 exp(−θVj(σ′))

ψn,θ

=
exp(−θd(σ))ψn−k,θ

ψn,θ
,

(1)

where ψk,θ is defined in Equation (2). The overall complexity is dominated by ψn,θ, which is O(n)

2. Sampling linear extensions

Algorithm 1 Sampling linear extensions in O((n− k) log(n− k))

Data: n, k, θ, σ′

Result: σ: Full ranking
Vj(σ) = bijection from σ′ for j ∈ [k + 1, n] do

Vj(σ) = random choice in [n − j] with choice probabilities of Eq. (3) σ = transform V (σ) with the bijection
in (McClellan et al., 1974) return σ−1

Along the section, we have made use of the following result.

Lemma 1. Let σ ∈ Skn where σ ∼M(σ0, θ). Then, σ−1 is a top-k ranking distributed according to the same distribution,
σ−1 ∼M(σ0, θ), and d(σ) = d(σ−1).

Proof. Let σ ∼ MM(e, θ) and π = σ−1. Note that for σ ∈ Skn then π is a top-k ranking. Moreover, d(σ) = d(π) and,
since the MM is defined upon the distance function, it follows that p(σ) = p(π) for every σ and therefore π ∼MM(e, θ).
In the case that σ0 6= e, taking the right invariance property of the Kendall’s-τ distance, it follows that πσ0 ∼MM(σ0, θ).
Finally, if πσ0 is a top-k ranking, then (πσ0)−1 is a top-k list, which concludes the proof.

3. Proof of Equation 6 of the paper
Proof. Let pij be the marginal probability that item i is preferred to item j:

pij =
∑

σ:σ(i)<σ(j)

p(σ). (2)
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The exact expression can be found in (Busa-Fekete et al., 2014) but for the proof, we just need to highlight that pij = 1−pji.
This pairwise comparison expression and the assumption that σ0 = e lets us rewrite the expected distance from the mode as
follows

E[d(σ, σ0)] =
∑
i<j

pji. (3)

The expected pairwise distance can be written as follows

E[d(σ, σ′)] = 2 ∗
∑
i<j

pijpji = 2 ∗
∑
i<j

pji − p2ji. (4)

With this restatement, the bound can be easily proved.∑
i<j

pji − p2ji ≤
∑
i<j

pji ≤ 2 ∗
∑
i<j

pji − p2ji. (5)

Note that this result holds for partial permutations as well.

4. Expected distance E[D] and variance V[D] under the Mallows model
Lemma 2. Let D be a random variable defines as D = d(σ, σ0) for a random Mallows ranking σ. The expectation and
variance of D are as follows:

E[D] =
k · exp(−θ)
1− exp(−θ)

−
n∑

j=n−k+1

j exp(−jθ)
1− exp(−jθ)

,

V[D] =
k · exp(−θ)

(1− exp(−θ))2
−

n∑
j=n−k+1

j2 exp(−θj)
(1− exp(−θj))2

.
(6)

Proof. The moment generating function M(t) = E [exp(tD)] of the distance D = d(σ0, σ) of a random Mallows
permutation σ can be factorized in this way (Fligner & Verducci, 1986):

M(t) =
∏
j

Mj(t) =
∏
j

1− exp(t(n− j + 1))

(n− j + 1)(1− exp(t))
. (7)

It’s derivative, is as follows :

d lnMj(t)

dt
=

exp(t)

1− exp(t)
− (n− j + 1) exp(t(n− j + 1))

1− exp(t(n− j + 1))
. (8)

For exponential models as the MM, expected values and variances can be easily written as function of the moment generating
function.

E[Vj ] =
d lnMj(t)

dt

∣∣∣
t=−θ

=
exp(−θ)

1− exp(−θ)
− (n− j + 1) exp(−θ(n− j + 1))

1− exp(−θ(n− j + 1))

(9)

and
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V[Vj ] =
d2 lnMj(t)

dt2

∣∣∣
t=−θ

=
exp(−θ)

(1− exp(−θ))2
− (n− j + 1)2 exp(−θ(n− j + 1))

(1− exp(−θ(n− j + 1)))2
.

(10)

The proof concludes by noting that E[D] =
∑k
j=1 E[Vj ] and V[D] =

∑k
j=1 V[Vj ].

5. Proof of Lemma 2
Proof. We start by the right hand side of the equation: Let gij and bij be the marginal probabilities for good and bad raters
respectively, as defined in Equation (2).

Let us assume that ∀i < j, bij ≥ gij and using Corollary 3 from (Busa-Fekete et al., 2014) we even have that ∀i < j,
1 ≥ bij ≥ gij > 1

2 . Then ∀i < j, ∃εij ∈ [0, 12 ] such that bij = gij + εij .

We can rewrite the expected distances as functions of the marginal as follows:

• E[d(β, γ)] =
∑
i<j bij + gij − 2bij · gij

• E[d(β, β′)] =
∑
i<j 2bij − 2b2ij

Now we show the expression E[d(β, γ)] ≤ E[d(β, β′)] holds, as the following inequalities are equivalent:

E[d(β, γ)] ≤E[d(β, β′)]∑
i<j

bij + gij − 2bij · gij ≤
∑
i<j

2bij − 2b2ij∑
i<j

gij − 2bij · gij ≤
∑
i<j

bij − 2b2ij∑
i<j

gij − 2 · (2g2ij + 2εij · gij) ≤
∑
i<j

gij + εij − 2(g2ij + 2gij · εij + ε2ij)∑
i<j

−2g2ij ≤
∑
i<j

εij − 2ε2ij

∑
i<j

εij(εij −
1

2
) ≤

∑
i<j

g2ij .

(11)

Which conclude the proof of the right hand side, as the last inequality is always true since ∀i < j, g2ij ≥ 0 and
εij(εij − 1

2 ) ≤ 0.

For the left hand side: Using once again Corollary 3 from (Busa-Fekete et al., 2014) which states that ∀i < j, 1− bij <
1
2 < bij , we have:

E[d(β, σ0)] =
∑
i<j

(1− bij) =
∑
i<j

gij(1− bij) + (1− gij)(1− bij)

<
∑
i<j

gij(1− bij) + bij(1− gij) = E[d(β, γ)].
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6. Proof of Theorem 3
Proof. Note that

E[δβ ] = (1− r) · E[d(β, β′)] + r · E[d(β, γ)]

E[δγ ] = r · E[d(γ, γ′)] + (1− r) · E[d(β, γ)]
(12)

And our goal is to show there is a lower bound for the difference

E[δβ − δγ ] = (1− r)E[d(β, β′)] + (2r − 1)E[d(γ, β)]− rE[d(γ, γ′)]. (13)

This proof is divided in two parts. First, we show that the following expression holds:

c · r · E[d(γ, σ0)] ≤ (1− r) · E[d(β, β′)] + (2r − 1) · E[d(γ, β)]. (14)

In order to show the correctness of the above expression, we will deal with cases where r < 0.5 and r ≥ 0.5 separately.

Case r < 0.5:

Starting from the right hand side of Lemma 3 and multiplying by (2r−1) (negative in this case) and adding (1−r)E[d(β, β′)]
on both sides it holds that:

(1− r)E[d(β, β′)] + (2r − 1)E[d(γ, β)] ≥ (1− r)E[d(β, β′)] + (2r − 1)E[d(β, β′)]

=r · E[d(β, β′)] ≥ r · E[d(β, σ0)] ≥ c · r · E[d(γ, σ0)],
(15)

where the last two inequalities are obtained from the right hand side of Equation (6) of the original paper and the assumption
that E[d(β, σ0)] ≥ c · E[d(γ, σ0)] respectively.

Case r ≥ 0.5:

Starting from the result of the left hand side of Lemma 3 and multiplying by (2r − 1) (positive in this case) and adding
(1− r)E[d(β, β′)] on both sides it holds that:

(1− r)E[d(β, β′)] + (2r − 1)E[d(γ, β)] ≥ (1− r)E[d(β, β′)] + (2r − 1)E[d(β, σ0)]

≥(1− r)E[d(β, σ0)] + (2r − 1)E[d(β, σ0)] = r · E[d(β, σ0)]

≥c · r · E[d(γ, σ0)],

(16)

where the last two inequalities are obtained from the right hand side of Equation (6) of the original paper and the assumption
that E[d(β, σ0)] ≥ c · E[d(γ, σ0)] respectively.

This finishes the first part, in which we show that Equation (14) holds for any value of r. In the second part we will add it to
the following result, obtained using the left hand side of Equation (6) of the paper, by multiplying it by −2r:

− 2rE[d(γ, σ0)] ≤ −rE[d(γ, γ′)]. (17)

Hence, we finally have, using Equation (13):

(c− 2) · r · E[d(γ, σ0)] ≤ (1− r)E[d(β, β′)] + (2r − 1)E[d(γ, β)]− rE[d(γ, γ′)] = E[δβ − δγ ]. (18)



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Title Suppressed Due to Excessive Size

7. Preliminaries for sample complexity proofs
Lemma 3. Let p(σ) be the probability of ranking σ ∈ Sn under the Mallows model. For every 1 ≤ i, k ≤ n the following
holds. ∑

σ:σ(i)≤k

p(σ) = 1−
∑

σ:σ(n−i)≤n−k

p(σ). (19)

Proof. We are going to do a constructive bijection between the permutations in the set {σ : σ(i) ≤ k} and those in the set
{σ : σ(n− i) ≥ n− k} and show that the probabilities are the same. Let us first define these sets.

• S = {σ : σ(i) ≤ k}

• S′ = {σ : σ(i) > n− k}

• S′′ = {σ : σ(n− i) > n− k}

Flip step. First, note that there is bijection between the sets S and S′. Given a permutation σ ∈ S we can construct a
permutation σ′ ∈ S′ by setting σ′(i) = n− σ(i) + 1. Moreover, d(σ′) =

(
n
2

)
− d(σ).

Reverse step. Now, we show a bijection between S′ and S′′. Given a permutation σ′ ∈ S′ we can construct a permutation
σ′′ ∈ S′′ by setting σ′′(i) = σ′(n − i). Moreover, d(σ′′) =

(
n
2

)
− d(σ′) = d(σ). This implies that

∑
σ∈S p(σ) =∑

σ′′∈S′′ p(σ′′).

Comlementary step. Since S′′ ∪ {σ : σ(n− i) ≤ n− k} = Sn and both sets are disjoint, to conclude the proof, we just
have to note that ∑

σ′′∈S′′

p(σ′′) = 1−
∑

σ:σ(n−i)≤n−k

p(σ), (20)

which, in turn, implies the results in Equation (19).

Lemma 4. Let ∆ik be defined as is Definition 6 where p(σ) is the probability of ranking σ ∈ Sn under the Mallows model.
For every 1 ≤ i, k ≤ n the following holds.

∆ik = ∆n−i−1,n−k (21)

Proof. Based on the result on Lemma 3, we can rewrite ∆ in this way.

∆ik =
∑

σ:σ(i)≤k

p(σ)−
∑

σ:σ(i+1)≤k

p(σ) =
(

1−
∑

σ:σ(n−i)≤n−k

p(σ)
)
−
(

1−
∑

σ:σ(n−i−1)≤n−k

p(σ)
)

=
∑

σ:σ(n−i−1)<n−k

p(σ)−
∑

σ:σ(n−i)<n−k

p(σ) = ∆n−i−1,n−k.
(22)

8. Proof of Lemma 6
Proof. The symmetry described in Lemma 4 implies a symmetry in argi min ∆ik that allows us focusing on the case
k ≥ n/2. For k ≥ n/2 argi min ∆ik = 1. As a summary,

arg min
i

∆ik =

{
n− 1 if k < n/2,

1 otherwise
(23)

which, in turn implies

min
i

∆ik =

{
∆1,n−k if k < n/2,

∆1,k otherwise.
(24)
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Despite there is not a closed form expression for ∆nk, ∆1k can be computed in O(k2).

∆1k =
∑

σ:σ(1)≤k

p(σ)−
∑

σ:σ(2)≤k

p(σ)

=

k−1∑
r1=0

p(V1 = r1)−
( k−1∑
r1=0

k−2∑
r2=0

p(V1 = r1)p(V2 = r2) +

n∑
r1=k

k−1∑
r2=0

p(V1 = r1)p(V2 = r2)
)

=

k−1∑
r1=0

exp(−θr1)

ψn,1
−

k−1∑
r1=0

k−2∑
r2=0

exp(−θr1) exp(−θr1)

ψn,1ψn,2
−

n∑
r1=k

k−1∑
r2=0

exp(−θr1) exp(−θr2)

ψn,1ψn,2
,

(25)

which concludes the proof.

9. Proof of Theorem 7
Proof. Borda outputs the correct order for the pair of items i and i+1 with probability 1−εwhen the number of permutations
is at least

m ≥ 2n2 log ε−1

(
∑n−1
j=1 ∆ij)2

. (26)

This expression has been used in sample complexity results that do not consider the spread parameter (Caragiannis et al.,
2013). The authors use this expression for ∆ij which can be shown to be equivalent. 1

n−1∑
j=1

(

j∑
l=1

∑
σ:σ(i)=l

p(σ)−
j∑
l=1

∑
σ:σ(i+1)=l

p(σ)) =

n−1∑
j=1

(
∑

σ:σ(i)≤j

p(σ)−
∑

σ:σ(i+1)≤j

p(σ)) =

n−1∑
j=1

∆ij . (27)

In these lines we extend the result by bounding the number of samples (1) w.r.t. the dispersion parameter and (2) considering
top-k rankings. To prove these points, we give an upper bound for

∑n−1
j=1 ∆ij , which is a function of the dispersion parameter

θ.

Assume w.l.o.g. that σ0 = e, let τi be an inversion of positions i and i+ 1, i.e., τi(i) = i+ 1, τi(i+ 1) = i and τi(j) = j
for j 6= i, i+ 1. As for any inversion, the result of the composition στi swaps positions i and i+ 1 in σ. Therefore,

n−1∑
j=1

∆ij =
∑

{σ:σ(i)<σ(i+1)}

(p(σ)− p(στi)(σ(i+ 1)− σ(i)) ≤
∑

σ:σ(i)<σ(i+1)

(p(σ)− p(στi))k

= k
( ∑
σ:σ(i)≤k∧
σ(i)<σ(i+1)

p(σ)− p(στi) +
∑

σ:σ(i+1)>k∧
σ(i)<σ(i+1)

p(σ)− p(στi)
) (28)

Note that for partial permutations of k items, the second sum equals 0. Therefore, the following is equivalent

= k
∑

σ:σ(i)≤k∧
σ(i)<σ(i+1)

p(σ)− p(στi) = k
∑

σ:σ(i)≤k∧
σ(i)<σ(i+1)

p(σ)(1− exp(−θ))

≤ k(1− exp(−θ))
∑

σ:σ(i)≤k

p(σ).

(29)

Since
∑
σ:σ(i)≤k p(σ) decreases w.r.t. i the following is equivalent.

1Note that the definitions of m and n are interchanged in their paper and that they denote the dispersion in the model as φ = exp(−θ).
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k(1− exp(−θ))
∑

σ:σ(i)≤k

p(σ) ≤ k(1− exp(−θ))
∑

σ:σ(1)≤k

p(σ)− imin ∆ik

≤ k(1− exp(−θ))
∑
r≤k

p(V1 = r)− i∆1k ≤ k2(1− exp(−θ))p(V1 = 0)− i∆1k

=
k2(1− exp(−θ))2

1− exp(−θn)
− i∆1k.

(30)

It follows that
n−1∑
j=1

∆ij ≤ k2(1− exp(−θ))2

1− exp(−θn)
− i∆1k, (31)

and therefore, Borda outputs the true ranking σ0 with probability 1− ε when the number of samples is at least

m ≥ 2n2 log ε−1
(k2(1− exp(−θ))2

1− exp(−θn)
− i∆1k

)−2
, (32)

which concludes the proof.
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