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The celebrated Diamond Lemma of Bergman gives an effectively verifiable criterion
of uniqueness of normal forms for term rewriting in associative algebras. We revisit
that result in the context of deformation theory and homotopical algebra; this leads
to a new proof using multiplicative free resolutions. Specifically, our main result states
that every such resolution of an algebra with monomial relations gives rise to its own
Diamond Lemma, where Bergman’s condition of “resolvable ambiguities” is precisely the
first nontrivial component of the Maurer—Cartan equation in the corresponding tangent
complex. The same approach works for many other algebraic structures, emphasizing
the relevance of computing resolutions of algebras with monomial relations.
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V. Dotsenko € P. Tamaroff

0. Introduction
0.1. Context of our work

When studying algebras presented by generators and relations, the central gen-
eral result is the statement known as the Diamond Lemma. Historically, one would
say that it was already implicit in Shirshov’s work [84] who proved an analogous
but technically more involved result, the Composition Lemma, in the case of Lie
algebras. In the decade that followed, various versions of the same result were
established, highlighting the multitude of its applications: the Buchberger algo-
rithm for commutative associative algebras [22] leading to the establishment of
Grobner bases as a key tool in symbolic computation, the Knuth—Bendix algorithm
for attacking the word problem in universal algebra [49], and most importantly for
our purposes, two equivalent results for associative algebras obtained independently
in early 1970s, the Composition Lemma of Bokut [12], and the Diamond Lemma of
Bergman [11]], who proposed the catchy name to in order to emphasize the analogy
with the classical result of Newman [70]. Paraphrasing the opening phrase of [I1],
the main results of our paper are doubly trivial: Bergman’s Diamond Lemma is, in
his own words, trivial, and our main goal is to explain a new trivial proof of this
trivial statement, as well as some other trivial statements, from the point of view of
homotopical algebra. However, we believe that this work will be advantageous for
readers of all backgrounds. For non-experts, it can serve as a gentle introduction
to several topics at the crossroads of term rewriting and deformation theory. For
the readers whose intuition comes from homotopical algebra, our work will hope-
fully feel like a conceptual explanation of useful but seemingly technical criteria
of “resolvable ambiguities” for uniqueness of normal forms. Finally, for the readers
with a background in Grébner—Shirshov bases or term rewriting, our proof will offer
intuition behind both the Diamond Lemma and its important optimization, known
as the Chain Criterion in the commutative case [2I) 28, 50] and as the Triangle
Lemma in the case of non-commutative associative algebras [20, [0, B8], as well
as precise guidance on how to generalize those for other algebraic structures. In
a nutshell, our work means that explicit computation of resolutions for algebras
with monomial relations helps both to state the relevant Diamond Lemmas and to
optimize them.

0.2. From Grobner bases to deformation theory and back

The idea of using Grobner bases for computing homological invariants of associa-
tive algebras is well known. The seemingly earliest instance appears in the work of
Priddy [72] who constructed resolutions for the ground field, viewed as the trivial
module, for algebras presented by quadratic-linear relations; this was later general-
ized by Anick [3] to arbitrary presentations. Existence of such resolutions is not at
all surprising for the following reason. Defining relations of an associative algebra
A form a Grobner basis if the same monomials give a vector space basis for both
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algebras A and Apon; the latter is the algebra with monomial relations given by
the leading monomials of the relations of A with respect to a suitable ordering. The
trivial module for Ao, admits a combinatorially defined free resolution, implicit in
the work [] of Backelin, and explicitly determined by Green, Happel and Zacharia
in [33]. Such resolution can be obtained as a contraction of the bar resolution; incor-
porating the lower terms of relations from a Grébner basis can be obtained from
such a contraction by homological perturbation techniques, see, for example, the
approaches of [10] 35, B6l 55]. In fact, the one-sided module resolution of Anick can
be generalized to a bimodule resolution, as established by Bardzell [Bl [6], leading to
a computational method for determining the Hochschild (co)homology of an alge-
bra, and thus for studying deformations of a given algebra. This construction works
under a weaker assumption of a convergent rewriting system instead of a Grébner
basis, as shown by Chouhy and Solotar in [23]; we invite the reader to consult [7]
for a cornucopia of applications of that resolution in deformation theory.

Our main wish, motivated by interest in generalizing these methods to algebraic
structures other than associative algebras, is to go in the opposite direction and
re-discover effective criteria for reduction systems with unique normal forms from
the deformation theory viewpoint. Since in those situations the multiplication table
of an algebra A is obtained from the simple combinatorial multiplication table of
Amon by incorporating appropriate lower terms, we naturally find ourselves in the
framework of deformation theory. In fact, very recently the bimodule resolutions
mentioned above have been used to study deformations of algebras with monomial
relations by Barmeier and Wang in their work on deformation theory of quiver
algebras [7] and by Redondo and Bertone in [77], using the following idea. A free
bimodule resolution

Amon ® C. ® Amon = Amon

leads to the representative Hom(Cl, Amon ) of the deformation complex, and one can
use a strong deformation retract relating it to the Hochschild complex to compute
explicitly its Loo-algebra structure using the homotopy transfer theorem. Studying
deformations of Ay, may be accomplished via studying solutions to the Maurer—
Cartan equation in that L.,-algebra, and one may obtain various results in this way.
However, if one adopts this viewpoint, the Diamond Lemma criterion of “resolv-
able ambiguities” cannot be recovered instantly: it involves a calculation in the free
associative algebra which cannot be reproduced directly since the target space of
the deformation complex is the monomial algebra Ay,o,. The two deformation com-
plexes are homotopy equivalent, so the necessary result can be proved in principle.
However, recovering the classical Diamond Lemma will require some translation,
in the spirit of Anick’s slogan “the perturbative construction of the second dif-
ferential of the resolution is precisely the procedure of resolving ambiguities”, see
[3L Sec. 2]. We also refer the reader to a discussion of this phenomenon in the survey
of Ufnarovski [88, Sec. 3.8] where one also finds the Triangle Lemma as a way to
optimize the algorithm.
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0.3. Deformations via tangent complexes

It turns out that a natural way to remedy the situation is to move from homology
to homotopy, and study deformations of algebras in terms of homotopical algebra.
This means working with multiplicative free resolutions, that is resolutions which
are free as algebras rather than as bimodules. In this case, the homotopy class of
the deformation complex of an algebra can be represented by its tangent complex,
that is, the differential graded Lie algebra of derivations of its free resolution. His-
torically, this approach to deformations first emerged in the case of commutative
associative algebras. In this context, it makes sense to note that some of the pio-
neering works both in the theory of Grébner bases and in the deformation theory
appeared in the algebro-geometric context: the former in the solution of the reso-
lution of singularities problem in characteristic zero by Hironaka [40, [41], and the
latter in Palamodov’s work on deformation of analytic spaces [71], where the tan-
gent complex approach is attributed to unpublished work of Tyurina (who tragically
died in a kayaking accident at the age of 32). However, the standard bases of Hiron-
aka were just one of many tools in a paper of more than two hundred pages, and
the power of this method in algebraic geometry and commutative algebra became
apparent only after the work of Buchberger [22] who highlighted their algorithmic
nature. The tangent complex approach to deformation theory of algebras became
widely known from the famous paper [80] by Schlessinger and Stasheff. We would
like to also remark that a seemingly completely independent path to multiplicative
resolutions which however stays away from deformation theory questions emerges
in higher-categorical rewriting theory. Original work of Squier [54, [82] on homo-
logical finiteness conditions for monoids admitting a convergent presentation first
received a higher-categorical flavor in works of Lafont [52] and Citterio [25]; corre-
sponding multiplicative resolutions appear in work of Lafont and Métayer [53] and
Guetta [34] relying on theory of resolutions of categories by polygraphs developed
by Métayer [69]. This formalism was recently extended to the k-linear context by
Guiraud et al. [38], who in particular explained how to construct a polygraphic
resolution of an associative algebra by techniques similar to the perturbative con-
struction of A..-structures [37] and free resolutions of algebras [44].

0.4. Structure of the paper

For wus, it is crucial that working with free resolutions means that recovering
Bergman’s criterion of resolvable ambiguities stands a chance, at least in prin-
ciple, since our deformation complexes of algebras with monomial relations have
free associative algebras as target spaces. Our approach blends ideas and meth-
ods from several different areas, and we tried to offer enough detail when recall-
ing the necessary background information. Our first homotopical re-formulation of
uniqueness of normal forms is a general criterion in terms of perturbations of free
resolutions (Theorem [I]). Using that result, we prove another general criterion
in terms of approximate solutions to the Maurer—Cartan equation in the tangent
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complex (Theorem ). Using this latter result, we establish the main result of
this paper (Theorem [£.2)): every model extending the Shafarevich complex of the
given relations gives rise to its own Diamond Lemma, where the resolvable ambi-
guities condition of the Diamond Lemma is precisely the first nontrivial component
of the Maurer—Cartan equation in the tangent complex of the model. Applying
that latter result to some specific combinatorial models, we recover the classical
Diamond Lemma in the case of the inclusion—exclusion model of the first author
and Khoroshkin [26] and the Triangle Lemma in the case of the minimal model of
the second author [85]. We discuss some analogues and possible generalizations of
our results for other types of algebras towards the end of the paper. Already in the
case of operads with monomial relations, explicit formulas for minimal models are
not known in general, and only a much weaker version of the Triangle Lemma is
available [20]; we hope that our work will attract due attention to this question.

0.5. Precursors: Evgeny Solomonovich Golod and Victor
Nikolaevich Latyshev

To conclude the introduction, we would like to mention two crucial sources of inspi-
ration for our work. The first of them is the work of Golod who discovered a proof
of the Diamond Lemma [30] using the non-commutative analogue of the Koszul
complex, the Shafarevich complex associated to a system of elements in the free
algebra originally introduced in [32]. That complex is a differential graded alge-
bra whose homotopy type depends on the presentation of the original algebra. Our
homotopy invariant free resolutions are obtained from the Shafarevich complex at
the cost of adding extra generators of higher degrees; we believe that the benefit
of the resulting clarity outweighs the cost. Our second inspiration comes from the
work of Latyshev who used normal forms to resolve some particular cases [60, [61]
of the celebrated Specht problem on identities of associative algebras [81], and
advocated general importance of normal forms and standard bases [57H59]. Both
Golod and Latyshev passed away relatively recently (in July 2018 and April 2020,
respectively). We would like to dedicate this work to their memory.

1. Conventions

Unless otherwise indicated, all objects in this paper are defined over an arbitrary
ground field k. By a graded vector space we mean a vector space V of the form

V=V,

nez

where we write |v| = n for v € V,,, and refer to n as the homological degree of an
element v. The adjective “homological” means that these degrees create “Koszul
signs” arising from exchanging factors in tensor products. Recall that one defines
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the tensor product of two graded vector spaces by the formula

VeW),:= P view,
itj=k
summarized in words by “degrees add under tensor products”, and homological
degrees enter the formula for the symmetry isomorphism

v VOW =WV

given by 7(v ® w) = (1)1l ® v. (This, for a trained eye, creates signs in a lot
of places; for example, if one applies the tensor product of linear maps to a tensor
product of two vectors, the formula (¢ ® ¥)(v @ w) = (=1)I?11?l¢(v) ® ¥(w) has to
be used.) Occasionally, our graded vector spaces will have extra gradings which do
not create any extra signs in formulas; in such cases, we shall use the word “grade”
for such degrees.

2. Term Rewriting

Classically, the theory of term rewriting developed as an abstraction of many sit-
uations where one deals with “simplifications of terms”: there is a set of rewriting
rules that allow one to replace some terms defined within a certain theory by some
other terms. One of the earliest examples which is associated with the notion of
term rewriting goes back to the work of Church and Rosser [24] on normal forms
in A-calculus. For the purpose of this paper, it is fair to say that one of the central
results in term rewriting is Newman’s Diamond Lemma [70]. An algebraic view-
point of that result which is very close to our immediate topics of interest is due to
Knuth, and is widely known as the Knuth-Bendix algorithm [49]. However, our goal
is to discuss term rewriting in the linear context, where a term may be rewritten
as a linear combination of other terms, and this section is intended for reminding
the reader of all the relevant definitions. Mathematically, this goes back to [I1];
terminologically, we choose to follow the recent literature on rewriting systems, see,
for example, [38] and references therein.

2.1. Rewriting systems

Let us fix once and for all a finite set X; we shall denote by (X) the free monoid
generated by X, so that the linear span k(X) is the free associative k-algebra
generated by X. For an element g € k(X) we shall denote by supp(g) the set of all
elements of (X) that appear in g with a nonzero coefficient.

Definition (Rewriting system). A rewriting system on k(X) is a triple (X,
W, f), where W C (X), and f is a function on W with values in k(X).

The right way to think of a rewriting system is as of a collection of rules that
allow to replace each monomial w € W by the corresponding element f(w) € k(X).
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In this way, each rewriting system X naturally gives rise to an associative algebra
Ay, with relations R = {w — f(w) : w € W}

As = k(X | R).

Each rewriting rule of 3 becomes a way to replace monomials divisible by elements
of W by other representatives of the same coset in Ay. Since we work with free
associative algebras, a monomial m can have several divisors equal to the same
element w, so one has to be careful and specify the concrete occurrence of w in m,
which we shall do by indicating a triple (a,w,b) with awb = m.

Definition (Reduction). Suppose that w € W, and a,b € (X). A basic reduction
associated to the triple (a,w,b) is the k-linear endomorphism p of k(X) such that
for each m € (X)) we have

af(w)b if m = awb,
p<m>={ )

m otherwise.

A finite sequence of basic reductions is called a reduction; it defines a k-linear endo-
morphism of k(X)) by composing, in the given order, the basic reductions appearing
in it.

Using reductions is intended to “simplify” representatives of cosets. This is
formalized by the notion of a normal form.
Definition (Normal form). An element g € k(X) is called irreducible if p(g) = g

for every basic reduction p. A normal form of an element g € k(X) is an irreducible
element g such that the cosets of g and g are equal in Asy.

In principle, it is possible that one can perform basic reductions infinitely many
times. We shall only work with rewriting systems for which it does not happen. To
formalize that, we give the following definition.

Definition (Terminating rewriting system). A pseudo-reduction is an infinite
sequence
p = (p1,p2,p3;---)

of basic reductions. To every pseudo-reduction p and every g € k(X) we can asso-
ciate the sequence

p(9) = (p1(9), p2p1(9), p3p2p1(9), - - )

of elements in k(X). We say that an element g € k(X) is reduction finite if for
every pseudo-reduction p, the associated sequence p(g) is eventually constant. A
rewriting system X is terminating if all elements g € k(X)) are reduction finite.

Note that if an element g is reduction finite, there exists a reduction that sends
this element to an irreducible one, for otherwise we could easily find a pseudo-
reduction p for which p(g) is not eventually constant. Thus, for a terminating
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rewriting system, each element has at least one normal form. All rewriting systems
considered in this paper are assumed to be terminating. We shall now recall how
to recast termination in terms of partial orderings.

Definition (Compatible rewriting ordering). For a given rewriting system ¥,
we say that a partial order < on (X) is a rewriting ordering compatible with 3 if
the following conditions hold:

(1) multiplicativity: if m < m’ for two elements m,m’, then amb < am’b for any
a,b e (X);

(2) well-ordering: every non-empty set of monomials has a minimal element;

(3) compatibility with X: for all w € W and all w’ € supp(f(w)), we have w’ < w.

Among rewriting orderings compatible with ¥ (if they exist at all), there exists
the weakest possible one obtained as follows. We first define <y, as the smallest
transitive binary relation that is multiplicative and compatible with 3. If <y is a
well-ordering, the reflexive closure <y is a rewriting ordering compatible with X,
and each other rewriting ordering compatible with ¥ obviously refines the ordering
<s. According to [T1] 23], the rewriting system X is terminating if and only if <x
is a well-ordering.

For a terminating rewriting system, the associative algebra

As, = k(X | W)

obtained from the rewriting system X¢ = (W,0) and called the monomial algebra
associated to ¥ is a relevant object of study. Indeed, an element g € k(X) is irre-
ducible if and only if no monomial m € supp(g) is divisible by elements of W, so
irreducible monomials form a basis of the algebra As,,. However, since the same ele-
ment may have several different normal forms, the cosets of irreducible monomials
might not be linearly independent in the algebra As;.

Definition (Convergent rewriting system). A (terminating) rewriting system
is convergent if each element g € k(X) has exactly one normal form.

Among the rewriting systems, the best known class is given by Grébner bases:
those are rewriting systems where there is a total order < on (X) satisfying the
above three conditions. Let us recall an example [20] 38] showing that sometimes
using a partial order is really advantageous. For that, we consider the algebra
A = k(z,y, 2|23 + y® + 2% — xyz). Note that for a total multiplicative order, we
always have zyz < max(x®,y3,2%), and one can check that for such an order the
corresponding rewriting system is not convergent, so one needs to extend it by fur-
ther rewriting rules. However, one can consider the rewriting system ¥ = (X, W, f)
with X = {z,y,2}, W = {zyz} and f(zyz) = 23 + y3 + 23 which does not arise
from a total multiplicative order. Let us explain why this rewriting system is termi-
nating. For that, we define, for each monomial m, ®(m) = 3A(m) + B(m), where
A(m) is the number of divisors of m equal to zyz and B(m) is the number of divi-
sors of m equal to y. Then one can check that any application of our rewriting rule
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replaces a monomial by a linear combination of terms for which the parameter ®
is strictly smaller, which guarantees the termination. Later we shall see that this
rewriting system is convergent, showing that in this case there is an advantage over
the theory of Grobner bases.

Bergman’s Diamond Lemma [I1] establishes a criterion of convergence in terms
of the so-called “resolvable ambiguities”. If this were a paper on rewriting systems,
at this point we would formulate and prove that result. However, our goal is to
explain how such criterion can be found, so that one can determine its analogues for
other algebraic structures. It is easy to see that a rewriting system 3 is convergent
if and only if the corresponding irreducible monomials are linearly independent. In
other words, ¥ is convergent if and only if the linear map Ay, — As, sending each
element of the standard monomial basis of Ay, to its coset in Ay, is an isomorphism
of vector spaces. This suggests that convergent rewriting systems may be studied
from the viewpoint of deformation theory of associative algebras. In general, the
notion of a deformation implies that we deform the structure by adding lower terms
with respect to a suitable filtration. For example, for the classical deformation
theory set-up [67] defined over an Artinian local ring containing k, the filtration
may be defined by powers of the maximal ideal m of that ring. In our case, the
filtration is defined out of the partial ordering <s;, or better to say, out of any order
that extends it to a total well-ordering. The multiplication table in the algebra Ay,
is very simple: the product of two basis elements is either a basis element or zero.
For a convergent rewriting system, the product of two basis elements in the algebra
As. is either a basis element or the linear combination of smaller basis elements
obtained by term rewriting. Thus, saying that ¥ is convergent is equivalent to
saying that the algebra As; is a deformation of the algebra As,, with respect to the
corresponding filtration. This suggests that using deformation theory of algebras
might shed light on convergence of rewriting systems. The main part of this paper
uses this viewpoint extensively.

3. Homotopy Theory of Associative Algebras

Deformation theory of algebras borrows a lot of intuition from algebraic topology:
one may say that algebraic tools for studying continuous deformations of spaces are
very much amenable to the case of deformations of algebras. In algebraic topology,
an important invariant of a space is its cohomology algebra. However, that algebra
itself does not capture many important homotopy invariants. It turns out that in
order to remedy this, one should either consider cohomology together with certain
higher structures, or work with a bigger algebra of the same homotopy type, for
example the differential graded algebra of singular cochains. This led Quillen to the
general philosophy of homotopical algebra [75] suggesting that one should extend
categories of algebras to better behaved “model categories” with a notion of weak
equivalence, an abstraction of homotopy equivalence, and consider the homotopy
category formed by equivalence classes. Alternatively, one may say that instead
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of studying an algebra it is often beneficial to study its model, which is a better
behaved algebra of the same homotopy type in the model category. This section
gives a recollection of the corresponding definitions to make the rest of the paper
more readable to experts in Grobner bases and rewriting.

3.1. Differential graded associative algebras

A sufficiently general recipe to define model categories is to consider simplicial
algebras of the given type. However, in the case of associative algebras, it turns
out to be possible to do homotopy theory in a slightly more hands-on way, using
differential graded algebras.

Definition (Differential graded associative algebra). A differential graded
associative algebra, is a pair (A4, d), where A is a graded associative algebra, that is,
a graded vector space equipped with the associative degree zero map A ® A — A,
and d: A — A is a degree —1 map satisfying the condition d?> = 0 as well as the
graded derivation property d(ajas) = d(ay)as + (—1)1%la;d(as).

We denote by DGA the category whose objects are differential graded associative
algebras and whose morphisms from (A, d4) to (B,dp) are (degree zero) algebra
homomorphisms f : A — B that are chain maps, that is satisfy fodas = dg o f.
Such a morphism f induces a morphism fo : Ho(A,da) — He(B,dp) of graded
associative algebras obtained by computing homology. We say that f is a quasi-
1somorphism if the induced homology morphism f, is an isomorphism.

3.2. Models of algebras

As indicated above, our general plan is to replace an associative algebra with a
better behaved differential graded algebra of the same homotopy type. A math-
ematically precise meaning of the words “better behaved” is given by the notion
of a cofibrant object in a closed model category. A motivated reader is invited to
consult [42][75] for foundations of the general theory of model categories. According
to Hinich [39) Theorem 4.1.1], the category DGA admits a closed model category
structure for which weak equivalences are quasi-isomorphisms, and the fibrations
are surjections. In fact, Hinich works in the general framework of algebras over oper-
ads, and in the only case relevant for this paper, that of differential graded algebras
concentrated in non-negative homological degrees, the same result is established by
Jardine [46]. To describe cofibrant objects, we need one more definition.

Definition (Triangulated quasi-free algebra). A quasi-free algebra is a differ-
ential graded algebra (B, dp) for which the underlying graded associative algebra
is free, that is B = T'(V') for some graded vector space V. Such algebra is said to be
triangulated if its space of generators admits an extra decomposition into a direct
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sum (of graded vector spaces)
V o @ V)
j=>1
for which the differential of an element v € VU+1 belongs to the subalgebra gen-
erated by @1§k§j V) for all j > 0.

The cofibrant objects for Hinich’s model category structure on DGA are exactly
the retracts of triangulated quasi-free algebras. We remark that it is useful to think
that triangulated algebras are an abstraction of the construction of “killing cycles”
of Tate [47, [86]. The relevance of triangulated differential graded commutative alge-
bras in homotopy theory became apparent after the seminal paper of Sullivan [83];
for this reason, they are frequently called Sullivan algebras.

Definition (Model of an algebra). A model of a differential graded algebra
(A,dy) is a triangulated quasi-free algebra (T'(V'),d) equipped with a surjective
quasi-isomorphism f to (A, d4). Such a model is said to be minimal if its differential
is decomposable, that is for each v € V', the element d(v) is a combination of products
of length at least two in the tensor algebra.

While minimal models of algebras are unique up to isomorphism, their existence
is a much more subtle matter; see, for example, the unpublished note of Keller [4§].
However, the target algebras (A, d4) of interest for us are in fact non-graded and
non-differential, in other words, A,, = 0 for n # 0 and d4 = 0. Since we work over
a field, minimal models for such algebras exist under very mild assumptions (see,
for example, [8 [44]) which hold in all cases that are of interest to us.

3.3. Shafarevich complexes

We shall now recall the notion of a Shafarevich complex of a system of elements
in an algebra. Those complexes are very rarely models themselves, but they offer
a good starting point for constructing a model, which will be one of the guiding
principles for our main results.

Definition (Shafarevich complex). Let A be an associative (non-differential
non-graded) algebra. The Shafarevich complex of a subset S C A is the differential
graded algebra

II(S, A) = (A* T(U), d).

Here AxT(U) is the free product of A and the tensor algebra, the degree of elements
of A in the free product is defined to be equal to zero, U is the graded vector space
whose only nonzero component is U; = k{e, : s € S}, and d is the unique derivation
of degree —1 satisfying d(a) = 0 for a € A and d(es) = s € A for each basis element
es € Uy.

It is an immediate consequence of the definition that the degree zero homology
of III(S, A) is isomorphic to the quotient = A/(S). In this paper, we shall only
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consider the Shafarevich complexes III(S, k(X)) for the free algebra A = k(X); it
is precisely those that were first defined in work of Golod and Shafarevich [32] and
later called the Shafarevich complexes by Golod in [30]. In this particular case, the
degree zero homology is the algebra k(X | S). Of course, III(S, k(X)) = (T(V),d),
where V is the graded vector space whose only nonzero components are V) = kX
and V3 2 kS, and d is the unique graded derivation satisfying d(z) = 0 for x € X
and d(es) = s € k(X) = T(Vp) for each basis element s € V;. Thus, III(S, k(X))
is a triangulated quasi-free algebra whose space of generators is concentrated in
homological degrees zero and one corresponding to killing certain cycles in T'(Vjp).
In that capacity, it was rediscovered by Lemaire [62], and used by Anick in his work
on Hilbert series of associative algebras [11 [2].

In general, the positive degree homology of II(S, k(X)) does not vanish, so
that differential graded algebra is not a model of k(X | S). In fact, it is known that
the homology of III(S, k(X)) is generated by elements of homological degrees zero
and one [3I], but this remarkable result will not be immediately useful for us. We
however will be mainly interested in models that extend Shafarevich complexes.

~

Definition (Acyclic extension of the Shafarevich complex). Let A =
k(X |S) be an associative algebra presented by generators and relations. We
say that a model of the algebra A is an acyclic extension of the Shafarevich
compler TI(S, k(X)) if it is concentrated in non-negative homological degrees,
and in homological degrees zero and one is isomorphic to the Shafarevich com-
plex HI(S, k(X)).

4. Rewriting Systems and Perturbation of Models

Since any model of an associative algebra is quasi-free, it is not particularly inter-
esting as an algebra: all the complexity is hidden in the differential. Thus, if we
replace an algebra by a model, it is reasonable to expect that studying deformation
theory is done via studying perturbations of the differential. The main result of
this section confirms this expectation: essentially, it says that once we fix a filtra-
tion, deforming a monomial algebra with respect to that filtration is equivalent to
perturbing the differential of its model.

Definition (Word-homogeneous algebra). Let us call a differential associa-
tive graded algebra (B, d) word-homogeneous if it has an extra grading by the free
monoid (X), that is we have a decomposition into a direct sum of chain subcom-
plexes
(B,d) = @ (Bud),

u€e(X)
such that By, By, C By, u, for all uj,us € (X). For an element b € B,,, we say the
element b is word-homogeneous of grade wu.

As above, let us consider a rewriting system ¥ = (X, W, f). Clearly, the
non-differential non-graded algebra (Ay,,0) is word-homogeneous. It is easy to

2350013-12



Tangent complexes and the Diamond Lemma

establish that its minimal model is word-homogeneous; while we shall consider
models that are not necessarily non-minimal, we shall restrict ourselves to word-
homogeneous models when considering monomial algebras. Moreover, since the
algebra Ay, is concentrated in homological degree zero, it is enough to work with
word-homogeneous models concentrated in non-negative homological degrees. For
such a model (T'(V),d), the differential graded subalgebra (T'(V5),0) surjects onto
As,; in other words, the image of the vector space Vj generates the algebra Ay, . In
the context of studying the rewriting system 3, we are working with a distinguished
set of generators X, so it makes sense to focus on models with Vy = kX. Moreover,
since Ho(T'(V),d) = Ay, the image of V; under d generates the two-sided ideal of
T (Vo) = k(X) generated by W; it makes sense to focus on models with V; = kIV.
Using the terminology we recalled earlier, this means that we work with word-
homogeneous acyclic extensions of the Shafarevich complex III(W, k(X)). Finally,
we make one slightly less trivial assumption: similar to many situations in ratio-
nal homotopy theory, we shall consider models of finite type, that is require that
dim V,, < oo for all n > 0. This is true for the minimal model of a monomial algebra
with finitely many relations, as established by the second author in [85], and for
some other models of interest.

The following result is a mild generalization of [85] Theorem 5.1], which mimics
[26, Theorem 4.1], and is an adaptation to our case of the argument of Anick [3]
Theorem 1.4]. We say that a linear endomorphism of a word-homogeneous algebra
is X-filtered if it sends every element of grade u € (X)) to a combination of elements
of grades strictly less than u with respect to the ordering <.

Theorem 4.1. Suppose that (T(V),d) is a word-homogeneous acyclic extension
of finite type of the Shafarevich complex IIL(W,k(X)). The rewriting system ¥ is
convergent if and only if there exists a model of the algebra As, = k(X | R) that is
an acyclic extension (T'(V),d+ d') of the Shafarevich complex UI(R, k(X)) with a
Y -filtered perturbation d'.

Note that being an acyclic extension of the Shafarevich complex III(R, k(X)) means
in particular that d’|y, = 0 and that for each basis element e,, C V3, we have

dl(euz) = _f(w)7

so d’ is indeed Y-filtered on elements of degree one.

Proof. Suppose first that such a model exists. Extend the partial ordering <y
to a total well ordering arbitrarily, and consider the filtration of the graded vec-
tor space T'(V') associated to that ordering. Since we are dealing with a countable
well-order that is not necessarily isomorphic to N, one has to be careful, and either
consider a sequence of spectral sequences, or consider generalized spectral sequences
of countably filtered modules, such as the transfinite spectral sequences of Hu [43]
or spectral sequences of transfinite filtered modules of Rahmati [76]; either strategy
works in our case, and allows one to construct a spectral sequence converging to
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Ho(T(V),d+d") with the zeroth term E° given by (T'(V'), d). This forces our spectral
sequence to collapse on the following page, since the homology He(T'(V'),d) is con-
centrated in homological degree zero. Examining the individual word-homogeneous
components, we conclude that cosets of the monomial basis of Ay, form a basis of
the vector space Ay, and therefore ¥ is convergent.

Suppose now that ¥ is convergent. If we ignore the differential, there exist surjec-
tive homomorphisms from the algebra T'(V') to both the monomial algebra Ay, and
the algebra Ay:: one may project it onto its part T'(Vp) = k(X) of homological degree
0, and the latter admits obvious projection maps to its respective quotients. Let us
choose splittings for those projections; this amounts to exhibiting two idempotent
endomorphisms 7 and 7 of T(V') such that both of them annihilate all elements
of positive homological degree, the former annihilates the ideal of T'(Vp) = k(X)
generated by W, and the latter annihilates the ideal of T'(Vj) = k(X) generated by
R. Since the model T'(V) is of finite type, there exists a word-homogeneous map
h:T(V)— T(V) such that [d,h] =1 — 7.

We are going to define a derivation d’ : T(V') — T'(V') of homological degree —1
satisfying the requested conditions; since d’ is a derivation, it is enough to define it
on the generators. We shall also define a map

h' :ker(d+d') — T(V)
of homological degree 1 such that
(d+d)(h+ h)ler(apan =17

This latter condition instantly implies that (T'(V),d + d’) is a model of As.

We shall construct the maps and prove their properties inductively. More specif-
ically, we shall prove by induction on k > 0 that one can define the values of the
perturbation d’ on generators of homological degree k + 1 and the values of A’ on
elements of ker(d+d’) of homological degree k so that the following conditions hold:

— perturbation: both maps d’ (on generators of homological degree k + 1) and A’
(on elements of ker(d + d’) of homological degree k) are X-filtered,

— square-zero: we have (d + d’)? = 0 on generators of homological degree k + 1,

— homotopy: we have (d + d')(h + h') = 1 — 7 on elements of ker(d + d') of
homological degree k; of course, according to the definition of the map 7, this
condition reads (d+d')(h+ h') = 1 on elements of positive homological degree.

As a basis of induction, we recall that the formula d’(e,,) = — f(w) indicated in
the statement of the theorem is ¥-filtered, and the square-zero condition is satisfied
for degree reasons, as there are no elements of negative homological degree. Suppose
that = is a degree zero element of grade u. We define

Wi - {0 it ¢ (W),
—(h+ 1)1 = 1)(x) — (d+ d)h(z)) ifze (W)
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Since the map h is word-homogeneous and since we already know that d’ is X-
filtered on elements of homological degree 1, the map d'h is X-filtered. Also, the
map (1 —7)—dh=(1—-m) — (1 —7) = (7 — m) is X-filtered simply by definition
of <y. By induction with respect to the well-ordering <y, we may assume the
Y-filtered condition for the map h’ evaluated on sum of those elements, and the
perturbation condition for i’ evaluated on x follows. Finally, to show the homotopy
property evaluated on elements of homological degree zero, we note that on elements
x ¢ (W) this becomes 0 = 0, and otherwise we have

(d+d)(h+ 1) (x)=(d+d)h(z) — (d+d)(h+h)((1—-m)(x) — (d+d)h(z)),
which, by induction on the well-ordering < is equal to
(d+d)h(x) — (1= m)((1 = m)(z) — (d+ d)h(z))
= (1 —-m)*(2) = (L= m)(d+d)h(z) = (1 - 7)(z),

since 7 vanishes on the image of d+d’, which is equal to (R) and 1— is a projector.
To make the step of induction, we proceed in a similar way. To define d’(z) for
a word-homogeneous generator = of homological degree k 4+ 1 > 1, we put

d(x) = —(h+1)(d+ d)d(x).

The X-filtered property for d’ now easily follows by induction. For the square-zero
property, we note that

(d+d)2(z) = (d+d)dz) — (h+ 1) d + d)d(z))
= (d+d)d(x) — (d+d)(h+ 1) (d+d)d))
= (d+d)d(@) — (1 —m)(d +d)d(z) = 7((d + d')d(z)) = 0,

since (d+d")d(z) € ker(d+d'), and since 7 vanishes on the image of d+d’. Suppose
that z is word-homogeneous of grade u. Note that whenever x € ker(d + d’), we
have © — (d+ d")h(z) € ker(d + d') as well. Since 7 vanishes on elements of positive
homological degree, we have dh(z) = (1—7)(x) = z, and so, using the perturbation
condition for d’, we see that © — (d+ d')h(z) is a combination of elements of grades
strictly less than u with respect to the ordering <x. Consequently, we may define
I’ on elements of ker(d 4+ d’) of homological degree k > 0 by the same inductive
argument: we put

W(z) = (h+h')(x = (d+ d)h(z)).

Once again, a simple inductive argument shows that the ¥-filtered property for the
map h’ and the homotopy condition are satisfied.

We conclude that (T'(V'), d+d') a differential graded algebra, with the homology
H (T (V),d+d') isomorphic to Ay, and a X-filtered map d’, as required. It remains
to check that it is triangulated. For that, we first decompose the space of gener-
ators V' according to the homological degree, and then for the fixed homological
degree n, decompose V,, into word-homogeneous components. Since we work with
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a model of finite type, there are finitely many word-homogeneous components in
each homological degree, and so once we linearly order them extending the ordering
<y, the total order on thus obtained components is either finite or isomorphic to
N. This total order gives a triangulation: by construction, the differential of each
component is made of products of elements from the previous components. This
completes the proof of the theorem. O

5. Differential Graded Lie Algebras and the Diamond Lemma

In this section, we present a deformation-theoretic version of the Diamond Lemma.
This corresponds to the heuristics of deformation theory going back to Deligne,
Drinfeld, and Feigin (and later formalized by Lurie [65] [66] and Pridham [73]) that,
infinitesimally, any moduli space of deformations in characteristic zero is controlled
by a Maurer—Cartan equation in a suitable differential graded Lie algebra. We
remark that while using this heuristics requires to restrict ourselves to a ground
field k of characteristic zero, one can easily see that replacing, in Theorem [B.1] the
Maurer—Cartan equation [d+F, d+ F] = 0 by the square-zero condition (d+F)? = 0
leads to a result that is valid without any assumption on the ground field.

5.1. Differential graded Lie algebras

We begin with a brief recollection of differential graded Lie algebras and their
Maurer—Cartan elements.

Definition (Differential graded Lie algebra). A differential graded Lie algebra
is a pair (L,d), where L is a graded Lie algebra, that is a graded vector space
equipped with a degree zero operation L® L — L, a ® b — [a,b], called the Lie
bracket, which satisfies the graded skew-symmetry property [a,b] = —(—1)1%I[b, a]
for homogeneous elements a,b € L and the graded Jacobi identity

[a, b, ] = [la, 0], ] + (1)1 [b, [a, ]

for homogeneous elements a,b,c € L, and d: L — L is a degree —1 map satisfying
the condition d? = 0 as well as the graded derivation property

d[av b] = [d(a)v b] + (_1)|a|[avd(b)]'

From the homotopical algebra point of view, one of the protagonist in the homo-
topy theory for differential graded Lie algebras is the set of Maurer—Cartan elements
of such algebra.

Definition. Let (L, d) be a differential graded Lie algebra over a field k of charac-
teristic different from two. The condition

d(z) + %[m] —0
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is called the Maurer—Cartan equation of L, and any solution x € L_; is called a
Maurer—Cartan element.

Let L be a graded Lie algebra. Note that for an element x € L of degree —1
and any a € L, the Jacobi identity implies

[.23, [x>a]] = [[Jj,x],a] + (_1)‘zux‘[$’ [x>a]] = [[x>$]7a] - [.23, [x>a]]
and therefore
1
[.23, [x>a]] = 5[['13"1:])@]'

Thus, if we suppose that = satisfies the condition [z,z] = 0 (note that for elements
of odd degree the graded antisymmetry property is actually symmetry, so this
condition is non-empty), the degree —1 endomorphism [z, —] squares to zero; the
Jacobi identity implies that it also satisfies the derivation property. Thus, (L, [z, —])
is a differential graded Lie algebra.

5.2. Tangent complexes and deformations

Our Lie algebras of interest arise as Lie algebras of derivations of models of associa-
tive algebras. Suppose that A is an associative algebra, and that (B, d) is a model
of A. The graded vector space Der(B) of all derivations of the graded associative
algebra B has a natural structure of a graded Lie algebra: the graded bracket

of two derivations is again a derivation. Clearly, d € Der(B) and
[d,d] = dd — (1) dd = 24% = 0;

as we saw above, the map [d, —] : Der(B) — Der(B) makes Der(B) a differential
graded Lie algebra. We note that in the previous section, d denoted the differential
of the Lie algebra, and now our context forces us to consider differential graded
Lie algebras whose differentials are of the form [d, —] with d being an element of
the algebra, the differential of the model; we hope that this does not lead to a
confusion. This algebra is called the tangent compler associated to the model B.
Using the work [19] of Schlessinger and Stasheff as an inspiration, Hinich showed
in [39] that the homotopy type of this Lie algebra does not depend on the choice of
a model.

In our context, the Maurer—Cartan heuristics of deformation theory acquires
very precise meaning. Since the differential of the tangent complex of a model is of
the form [d, —], the Maurer—Cartan equation in that differential graded Lie algebra
is equivalent to the equation [d + x,d + x] = 0, which in turn is equivalent to the
square-zero condition for the derivation d + x. Thus, the Maurer—Cartan equation
for the differential graded Lie algebra (Der(B),[d,—]) describes perturbations of
the differential of B.
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5.3. Perturbing solutions to the Maurer—Cartan equation

In this section, we shall prove what is essentially the Diamond Lemma in disguise. It
claims that having the Maurer—Cartan equation satisfied on generators of homolog-
ical degree at most two of a model is sufficient to ensure existence of a perturbation.
As above, we consider a rewriting system X = (X, W, f).

Theorem 5.1. Suppose that (T'(V),d) is a word-homogeneous acyclic extension
of finite type of the Shafarevich complex II(W,k(X)). The rewriting system X is
convergent if and only if there exists an degree —1 element F € Der(T(V)) such
that

e for each e, € Vi, we have F(e,) = —f(w),

o Iy, is X-filtered,

o the Maurer—Cartan equation for the element F' holds when evaluated on genera-
tors of homological degree at most two.

Proof. In view of Theorem Il we have to prove that finding a perturbation that
only satisfies the Maurer—Cartan equation on generators of homological degree at
most two is enough to ensure that there exists a perturbation that is a Maurer—
Cartan element. We shall show by induction on k that we can find a Y-filtered
derivation F' for which the Maurer—Cartan equation holds on generators of homo-
logical degree at most k, the basis of induction being k& = 2.

Note that [d+ F,d+ F] is the Lie bracket of derivations, thus itself a derivation,
so since it vanishes on generators of homological degree at most k, it vanishes on
all elements of T'(V) of homological degree at most k. Let us consider a word-
homogeneous element ¢ € Vi, 1. We note that the element

1

V(e) = (8(F) +3

[F, F]) (c) =d(F(c)) + F(d(c)) + F(F(c)) e T(V)
is in the kernel of d + F'. Indeed, we have
d(V(c)) = d(d(F(c)) + F(d(c)) + F(F(c))) = (dF)((d + F)(c))

and since the element (d + F')(c) is of homological degree at most k, the Maurer—
Cartan equation for F' holds when evaluated on that element. This means that

d(V(c)) = —(Fd + F?)((d + F)(c))
= —F(d(F(c))) — F(F(d(c)) = F(F(F(c))) = —F(V(e)),

as required. The element V(c) is of homological degree k + 1 —2 =k — 1, and we
know that the Maurer—Cartan equation means that the derivation d 4+ F' squares to
zero on elements of degree at most k. Thus, it is not unreasonable to ask whether
V(c) is in the image of d + F. Let us show that it is indeed the case. We write
V(c) = = + y, where z is the word-homogeneous component of maximal grade u.
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Since the differential d is word-homogeneous, and the derivation F' is YX-filtered on
elements of degree at most k, it follows that

d(x) =0,

d(y) + F(z +y) = 0.
Since |z| = |V(¢)| = k—1 > 1 and the model (T'(V), d) is acyclic in positive degrees,
it follows that we can write z = da for some a € T'(V). The element

y = Fla) =V(e) = (d+ F)(a)

represents the same homology class for d+ F', but its component of grade u has been
replaced by a combination of elements of grades strictly less than uw with respect to
the ordering <x. By induction with respect to the well-ordering <s;, we see that
V(c) is a boundary of d+ F', so we can write V(c) = (d+ F)(b). Let us now consider
a new derivation F’ which coincides with F' on elements of homological degree at
most k, but satisfies

F'(¢) = F(c) —b.

We note that since V is Y-filtered, each element a above (and hence the resulting
element b) is a linear combination of elements of grades strictly less than the grade
of ¢ with respect to the ordering <y, so F’ is still X-filtered. Moreover, since the
elements d(c) and F’(c) are of homological degree k, we have

d(F'(c)) + F'(d(c)) + F'(F'(c))
= d(F(c) — b) + F(d(c)) + F(F(c) — b) = V(c) — d(b) — F(b) = 0.

Making such adjustments for all elements of homological degree k + 1, we obtain a
perturbation that satisfies the Maurer—Cartan equation up to degree k + 1, which
allows us to proceed by induction. Since the correction does not change values of F
on generators of low homological degrees, we may consider the limiting value of F;
it is a bona fide Maurer—Cartan element extending the original perturbation of the
differential. O

5.4. Maurer—Cartan equation and the Diamond Lemma

In this section, we are finally rewarded for going through all the previous arguments
involving models and the Maurer—Cartan equation; the reward is a general result
stating that each word-homogeneous acyclic extension of IIT(W, k(X)) leads to its
own Diamond Lemma criterion for convergence of X. At the core of such result is
the following definition of an S-polynomial associated to a generator of homological
degree two of such model.

Definition (Obstruction). Let (T'(V'),d) be a word-homogeneous acyclic exten-
sion of the Shafarevich complex HI(W, k(X)). For each element ¢ € V5, the element
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d(c) is of degree 1, and therefore is of the form

d(c) =Y aiew,bi € T(Vo) @ Vi @ T(Vp).

We define the obstruction S. € k(X) associated to the element ¢ by the formula
Se =Y aif(w)bi.

We remark that our usage of the term “obstruction” is different from that of
Anick in [3]: for us, as it will become apparent below, S, is an actual obstruction
to convergence of 3.

We are now ready to state and prove our model-specific Diamond Lemma. As
above, we consider a rewriting system > = (X, W, f).

Theorem 5.2. Suppose that (T'(V),d) is a word-homogeneous acyclic extension of
finite type of the Shafarevich complex (W, k(X)). The rewriting system % is con-
vergent if and only if for each word-homogeneous element ¢ € Va, the corresponding
obstruction S, is mapped to zero by some reduction with respect to X.

Proof. According to Theorem Bl X is convergent if and only if there exists a
degree —1 element F' € Der(T(V)) such that

e for each e,, C Vi, we have (d + F)(ey) = w — f(w),

o [y, is X-filtered,

e the Maurer—Cartan condition [d + F,d + F] = 0 for the element F holds when
evaluated on generators of homological degree at most two.

Since the Maurer—Cartan equation evaluated on an element of homological degree
k is an element of homological degree k — 2, we may replace “at most two” by
“exactly two” without changing the statement.

Suppose ¢ € V5 is word-homogeneous of grade u. We note that the formula

Se = Zaif(wi)bi

for the obstruction S, means that S, is a combination of terms of grade less than u,
so existence of its reduction equal to zero is clearly equivalent to existence of a
representation of S, as a two-sided linear combination

Se = Zaé(wé = fw)bi,

where all the terms in that sum are of grade less than u. Indeed, a sequence of basic
reductions produces such a combination, and vice versa, the existence of each such
combination immediately suggests a sequence of basic reductions.
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Recall that the Maurer—Cartan equation for F' is exactly the square-zero condi-
tion for d + F. Let us evaluate it on an element ¢ € V5 of grade u. We obtain

d(d(c)) + F(d(c)) +d(F(c)) + F(F(c)) = 0.
We already remarked that the element d(c¢) € T'(V) is of homological degree one,

and therefore can be written as

= aiew,bi € T(Vo) @ Vi @ T(Vp).

The first term in the square-zero condition vanishes, while the second is

=F (Z aiewibi> Z az ew 1 Z az wl i = Sc-

The remaining terms in the square-zero condition are
d(F(c)) + F(F(c)) = (d+ F)(F(c)).

Since Fly, is Y-filtered, the element F'(c) is of the form )~ aje,b;, where all the
terms in the sum are of grades less than u. Finally, we obtain

d(F(c)) + F(F(c)) = (d+ F) (Za eu/b> Z P (wi — f(w)))b;.
We conclude that the validity of the Maurer—Cartan equation on ¢ € V5 of grade u
is equivalent to the equation

Se =Y aj(wj — f(w)))b,
i
where all the terms in that sum are of grade less than u, which, according to our
observation above, completes the proof. O

6. Examples: Specific Cases of Models and Their Diamond
Lemmas

In this section, we discuss two particular examples of models of monomial algebras
that allow us to recover the Diamond Lemma and the Triangle Lemma for classical
term rewriting.

6.1. The inclusion-exclusion model

In [26], the first author and Khoroshkin constructed a combinatorial (usually non-
minimal) model for a shuffle operad with monomial relations; specializing to shuffle
operads generated by elements of arity 1, one obtains a model for an associative
algebra with monomial relations. For the benefit of the reader who does not wish

to go through the operad construction, we describe that model here. As above, we
denote As, = k(X |W).

2350013-21



V. Dotsenko € P. Tamaroff

Let u € (X). Suppose that there are exactly m different occurrences of elements
of W in the word u (as above, we refer to such occurrences as divisors). We introduce
formal symbols Dy, 1,..., Dy,m in one-to-one correspondence with those divisors,
and denote by A, the Grassmann algebra A(Dy, 1, ..., Dy.m). The direct sum

Ay = P A
)

ue (X

has an associative algebra structure defined as follows. For an element v’ € (X)
which is a divisor of u, there is a natural inclusion A, <— A, sending each generator
D, ; to the corresponding D, j, where j is the position of the ith divisor of u’
(viewed now as a divisor of u) in the list of divisors of u. The product of two elements
ay € Ay, and ag € A, is the product in A, ., of their images with respect to the
inclusions A,,, Ay, — Ay, u,. If we set the homological degree of each D, ; to be
equal to one, the algebra Ay is graded. Moreover, it has a differential graded algebra
structure, where the differential d, when restricted to each Grassmann algebra A,
is the unique derivation of that algebra sending all generators D, ; to 1.

Let us call a Grassmann monomial Dy ;; A --- A Dy, € A, indecomposable
if there does not exist a factorization u = wjus into a product of two non-empty
monomials w1 and wup for which each of the divisors of u corresponding to S,
is either a divisor of w; or a divisor of us. It is easy to see that as an associa-
tive algebra, the algebra Ay, is freely generated by its indecomposable elements.
Moreover, according to [26] Theorem 2.2], the differential graded algebra (A, d)
is a model of the algebra Ay,,. We call this model the inclusion-exclusion model. It
is immediately seen to be a word-homogeneous acyclic extension of finite type of
the Shafarevich complex III(W, k(X)). Moreover, all homological degree two word-
homogeneous generators ¢ of that model of grade u € (X) are of two possible
forms:

e inclusion: ¢ = Sy ; A Sy,j, where the ith divisor of u is its proper divisor u’ and
the jth divisor of u is equal to u,

e overlap: ¢ = Sy ; A\ Sy ;, where the ith divisor of u is a left divisor v’ of w, the jth
divisor of u is a right divisor «” of u, and these two subwords have a nontrivial
common divisor.

For each generator of the first type, we have u = au’b for some a,b € (X), therefore
such generators are in one-to-one correspondence with the inclusion ambiguities
of [I1I]. We note that for such generator, we have

d(c) = ey — aeyd

and the obstruction associated to this generator is the basic reduction associated
to the triple (a,u’,b) applied to the relation u — f(u). Similarly, for each generator
of the second type, we have u = w'a = bu” for some a,b € (X), therefore such
generators are in one-to-one correspondence with the overlap ambiguities of op. cit.
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Moreover, for such generator, we have
d(c) =beyr —eya

and the obstruction associated to this generators is the element usually called the
S-polynomial corresponding to the overlap of v’ and u” [20] (the term “composition”
of Shirshov [84] and Bokut [I2] is a bit too ambiguous in many situations, and we
choose to avoid it). This proves the following result.

Proposition 6.1 (Bergman’s Diamond Lemma [I1, Theorem 1.2]). The
rewriting system X is convergent if and only if each basic reduction of each relation
from R and each S-polynomial between two relations from R is mapped to zero by
some reduction with respect to 3.

As an immediate consequence, we see that the rewriting system
J;yz»—>a:3—|—y3+z3

on k{x,y, z) discussed in Sec. Plis convergent, since we already established its ter-
mination, and the word zyz does not have self-overlaps.

6.2. The minimal model

In [85], the second author constructed, for each monomial algebra As, = k(X | W),
the minimal model which we shall now recall and use. We shall assume the rewriting
system Y minimal: W contains no words of length one and no words from W divide
one another. We begin with recalling the definition of (right) Anick chains, a notion
that was to some extent present implicitly in work of Backelin [4], then used by
Green et al. [33], and became known to a wider community from the work of
Anick [3].

Definition (Anick chain). We say that a 0-chain is an element x € X, and
define the tail of such element to be equal to it. For n > 0, we say that an n-chain
is a monomial ¢ € (X) such that

(1) we can write ¢ = ¢’t, where ¢ is an (n — 1)-chain,
(2) if ' is the tail of ¢/, then ¢t has a right divisor which is a relation from W,
(3) no proper left divisor of ¢ satisfies the first two conditions.

The tail of ¢ is the element ¢, := t.

In particular, the 1-chains are the defining relations W, with the tail of each
monomial relation given by the monomial obtained by deleting its first letter, and
the 2-chains are precisely the monomials ¢ € (X) which can be written as ¢ = v'a =
bu” for two relations u’,v” € W, and which do not have other divisors from W.

It is shown in [3] that a monomial ¢ admits at most one structure of a chain: if
¢ is an n-chain with tail ¢., then both n and t. are uniquely determined. We define
the homological degree of an n-chain ¢ to be equal to n, and consider the graded
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associative algebra B freely generated by Anick chains. This algebra has a unique
derivation d whose value d(c¢) on an n-chain ¢ is the sum over all ways to represent
¢, viewed as a monomial, as a concatenation of an ni-chains ¢y, ..., an ng-chain ¢y,
with ny + - -+ nx = n — 1, of the terms

() @@ e

The main theorem of [85] states that for a minimal rewriting system X, the quasi-
free algebra (B, d) is the minimal model of Ay, . It is a word-homogeneous acyclic
extension of finite type of the Shafarevich complex III(W,k(X)).

The description of Anick 2-chains mentioned above indicates that they are
among the overlaps from the previous section; in fact, they are minimal overlaps
that have only two divisors from W. For the differential of the model, we have
d(c) = beyr — ey a, as before. This proves the following result.

Proposition 6.2 (Triangle Lemma [20, Sec. 2.4.3]). A minimal rewriting
system X is convergent if and only if each S-polynomial corresponding to a minimal
overlap is mapped to zero by some reduction with respect to 3.

3 3

For example, for the rewriting system 2% — zyz —y> — 2 arising in the example

discussed in Sec. [ for a total multiplicative ordering, the monomial x> has two
self-overlaps, 24 = 2% -2 = o - 2% and 2° = 23 - 22 = 22 - 23. Only the first of
them is minimal. This means that there is no need to consider the S-polynomial
corresponding to the overlap #® when checking the Diamond Lemma, criterion. That
said, in this case already the S-polynomial corresponding to the overlap x* cannot
be reduced to zero, so the rewriting system is not convergent, as we indicated when

discussing that example.

7. Analogues and Generalizations

In words of Kontsevich and Soibelman [51], “the deformation theory of associative
algebras is a guide for developing the deformation theory of many algebraic struc-
tures; conversely, all the concepts of what should be the “deformation theory of
everything” must be tested in the case of associative algebras”. We believe that our
work constitutes a successful test of putting the Diamond Lemma in the homotopi-
cal context, and it is natural to conclude this paper with a discussion of analogues
and possible generalizations of our results.

7.1. Multiplicative algebraic structures

We begin with outlining a context in which an immediate generalization of our
approach is available.

Definition (Multiplicative algebraic structure). We say that an algebraic
structure P is multiplicative if it is described by a colored operad obtained as a
k-linear span of a set-theoretic operad. In classical terms, we require that the free
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k-linear P-algebra generated by a vector space V is equal to the k-linear span of
the free P-algebra in the category of sets generated by a basis of V.

The key consequence of this definition is that free k-linear P-algebras are natu-
rally equipped with monomial bases, so one can talk about rewriting systems and
orderings of monomials, and most of our results apply mutatis mutandis if one
can talk about models of algebras in the same way as above. Work of Hinich [39]
mentioned earlier allows one to verify that condition easily enough.

Some remarks are in order. First, talking about colored operads means that
this formalism includes, for instance, quotients of path algebras, since the latter
are obtained as k-linear spans of small categories and are not just algebras in
a very classical sense. Second, there are situations where the deviation from the
set-theoretic property is “moderate”, i.e. the value of any structure operation on
basis elements is a basis element up to a nonzero constant; it is easy to extend
our work to such algebras. Finally, it is also possible to include algebras that are
complete in a suitable sense; we already indicated in the introduction that complete
commutative associative algebras were one of the central examples at the moment
of inception of both topics discussed in this paper, through the theory of standard
bases of Hironaka [4I], Sec. II1.1] and the deformation theory of analytic spaces of
Palamodov [71].

7.1.1. Commutative associative algebras

The free commutative associative algebra coincides with the linear span of the free
commutative monoid, and the homotopy theory for commutative associative alge-
bras suggests that our results work over a field of characteristic zero. An analogue
of the inclusion-exclusion model exists, and generators of homological degree at
most two of the minimal model of a given monomial algebra can be determined
directly (for further information, we refer the reader to [9]). If the partial order
<y comes from a total multiplicative order of monomials, the result corresponding
to the inclusion-exclusion model is the Buchberger criterion [22], and the result
corresponding to the minimal model is known as the Chain Criterion [21] [50].

7.1.2. Non-associative algebras

If one considers free non-associative algebras, better known as magmatic algebras
for one binary operation and as absolutely free algebras in the more general case,
the free algebra is the linear span of the free set-theoretic magma (consisting of
appropriate decorated planar trees), and models are surprisingly manageable. In
particular, the inclusion-exclusion model of a given monomial algebra is readily
available, and the minimal model for a monomial algebra whose set of generators
and relations are already chosen minimal is simply the non-associative Shafarevich
complex, since there are no non-associative overlaps. As a consequence, for a general
rewriting system convergence is equivalent to the fact that all basic reductions
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between the relations R are mapped to zero by some reduction with respect to X,
and in particular, a rewriting system where pairwise reductions are impossible is
convergent. This result goes back to [89], see also [I8, Appendix 3] and a more
recent paper [29].

7.1.3. Shuffle algebras

Shuffle algebras [27] [7§], known also as permutads [64], are associative algebras for
the monoidal category of non-symmetric sequences with respect to the monoidal
structure given by Cauchy tensor product. The corresponding definition is also
available for sets; elements of the free monoid are decorated permutations and their
suitable generalizations. All results of this paper, including a generalization of the
inclusion-exclusion model and the second author’s minimal model, can be adapted;
the corresponding results are the Diamond Lemma for shuffle algebras [20, Theo-
rem 4.5.1.4] and the Triangle Lemma for shuffle algebras [20, Proposition 4.5.3.2].

7.1.4. Non-symmetric operads and shuffle operads

When one considers operads, whether non-symmetric or shuffle ones, each free
operad is the linear span of the corresponding free set operad consisting of appro-
priate decorated planar trees. It is important to note that the algebraic structure on
the space of decorated trees in this case is much richer than the one considered in
the case of magmatic algebras above, so the corresponding Diamond Lemmas (and
especially their applications) are sufficiently nontrivial. Models are once again avail-
able under relatively mild assumptions [68]. In particular, the inclusion-exclusion
model can be defined for every shuffle operad with monomial relations [26] Sec. 2].
This way one obtains the Diamond Lemma for non-symmetric operads and for
shuffle operads [20].

Finding an explicit description of the minimal model of the given operad with
monomial relations is an open problem. Partial results in the spirit of the Triangle
Lemma are available for operads [20], but even in homological degree two, the
computation of the spaces of generators of minimal models of monomial operads
still has to be completed in full generality. One calculation hinting at the noticeable
complexity of this question was made by Skoldberg several years ago (unpublished),
and we shall now describe the result of that calculation; another discussion of that
phenomenon can be found in the recent preprint of Iyudu and Vlassopoulos [45].

The minimal model of a monomial operad is homogeneous: one can separate
generators according to their underlying tree monomials. In the case of associative
algebras, minimal models of monomial algebras satisfy the homological purity con-
dition: for each monomial, the corresponding component of the space of generators
is concentrated in one homological degree. Somewhat surprisingly, it turns out that
in the case of operads, this homological purity condition does not hold for some
underlying tree monomials. The simplest possible example arises in the case of the
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free non-symmetric operad generated by one binary operation, and the set of mono-
mial relations W consisting of all tree monomials of arity four in that operad. Then
for the tree monomial

of arity seven, as well as the monomials obtained from it by reflections at inter-
nal vertices, the corresponding component of the space generators of the minimal
model is two-dimensional, with one generator in degree three and one generator
in degree four. This example is a particular case of the remarkable construction
from the very recent preprint of Qi et al. [74, Sec. 5]: it is the “operadization” of
the algebra k(x,y)/m?. We remark that this exhibits a rather interesting feature
of the operadization: it converts a Koszul monomial algebra to an operad whose
homotopy invariants are highly nontrivial. For that reason, we feel that explicitly
computing minimal models for monomial operads obtained by that construction is
likely to exhibit some of the most interesting phenomena behind minimal models
of general monomial operads.

7.2. Non-multiplicative algebraic structures

For an algebraic structure that is not multiplicative, our approach does not adapt
immediately. Upon examining the existing literature on Grobner—Shirshov bases,
see, for example, [I3HI5] and references therein, we feel that the most obvious way
to deal with a non-multiplicative algebraic structure is to embed it into a bigger
multiplicative one. For example, Lie algebras can be embedded in their universal
envelopes, and so one can work with a rewriting system within a multiplicative
algebraic structure. Equivalence of the associative algebra methods applied to the
universal envelopes and the Lie-algebraic methods of Shirshov was established by
Bokut and Malcolmson [19]. Alternatively, a Lie algebra can be regarded as an
anti-commutative magmatic algebra; the corresponding study of Grébner—Shirshov
bases was undertaken in [I7]. Recent papers on Grobner—Shirshov bases for pre-
Lie algebras [16], Novikov algebras [87], and Sabinin algebras [63] follow the same
logic. This raises a question of computing not only models of monomial algebras for
multiplicative algebraic structures, but also models of meaningful classes of algebras
obtained when extending non-multiplicative structures to multiplicative ones. We
hope to address this in more detail elsewhere.
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