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We report on anomalous light transport in the strong scattering regime. Using low-coherence
interferometry, we measure the reflection matrix of titanium dioxide powders, revealing crucial
features of strong optical scattering which can not be observed with transmission measurements: (i)
a subdiffusive regime of transport at early times of flight that is a direct consequence of predominant
recurrent scattering loops, and (ii) a transition to a conventional, but extremely slow, diffusive
regime at long times. These observations support previous predictions that near-field coupling
between scatterers prohibits Anderson localization of light in three-dimensional disordered media.

In disordered media, wave transport can be radically
affected by strong scattering. Strong scattering gener-
ally occurs when the wavelength of propagating waves
is comparable to the scale of structure variations in the
medium, so that the waves are extremely sensitive to
the size and arrangement of the scatterers. For strong
enough disorder and scattering strength, Anderson local-
ization can occur, wherein wave diffusion is suppressed
exponentially or even halted altogether [1–5]. In par-
ticular, three-dimensional (3D) materials are expected
to exhibit a phase transition [6] from conventional diffu-
sion to localization, occurring as disorder/energy is var-
ied, or alternately, as the time spent by the waves ex-
ploring the sample increases. This behaviour has been
observed experimentally for electrons in doped semicon-
ductors [7, 8], vibrations in elastic networks [4, 9], and
cold atoms in random potentials [10–12]. Studies of 3D
Anderson localization of light, however, remain inconclu-
sive [13–15]. It is possible that none of the materials
tested so far scatter light strongly enough to achieve lo-
calization [14, 15]; on the other hand, a number of studies
have theorized that the onset of localization is prevented
by the dipole-dipole interactions between close-packed
scatterers [16–19] which are inherent to the vector na-
ture of light [17, 20]. While supported by preliminary
evidence [19], this picture has yet to be conclusively ex-
perimentally confirmed.
The experimental search of Anderson localization for

light is complicated by absorption and nonlinear effects,
which become more important the longer the waves
spend inside the sample, and which can imitate signa-
tures of localization [14, 21, 22]. Transmission experi-
ments are particularly affected by fluorescence [14], due
to the strong incident beams that are required to over-
come noise, absorption, and a low probability of trans-
mission near the localization regime. To avoid these
issues, we use low-coherence interferometry. Inspired
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by previous studies in acoustics [23, 24] and seismol-
ogy [25, 26], our approach enables the measurement of
time-dependent Green’s functions between points at the
surface of a medium which is illuminated by an incoher-
ent light source [27, 28]. This passive type of measure-
ment offers major advantages compared to more conven-
tional methods. First, the reflected wavefield measured
via interferometry does not include any signals resulting
from spontaneous emission events. Second, a reflection
geometry enables the study of: (i) interference phenom-
ena that are precursors of Anderson localization, such
as coherent backscattering [29, 30] or recurrent scatter-
ing [31, 32], and (ii) the energy ‘halo’ in the early-time
limit – a temporal regime which is generally inaccessible
in transmission.
In this Letter, low-coherence interferometry is applied

to some of the strongest scattering samples which ex-
ist for light – titanium dioxide (TiO2) powders. We find
that the spatio-temporal spreading of the wave energy ex-
hibits two distinct regimes of transport. At short times
of flight t, anomalous diffusion is observed; the spatial
extent of the average wave energy, w2(t), scales as t2/3,
and the return probability for the energy density scales
as t−1. These observations are consistent with the scal-
ing theory of localization [33], suggesting the existence
of a critical or localized regime. Yet, after a few hun-
dred femtoseconds, a transition towards conventional dif-
fusion is observed; w2(t) grows linearly with time, and
the temporal decay of the return probability, t−3/2, is
characteristic of the diffusive regime [34]. Diffusion in
this regime is very slow, with a diffusion coefficient of
D ∼ 18 m2/s. Interestingly, Naraghi and Dogariu [19]
predicted a few years ago that such a transition would be
caused by strong near-field coupling between scatterers.
While transitory behaviour was observed via measure-
ments of return probability [19], these can be subject to
absorption or non-linear effects. Here, we report the first
experimental observations of the spatio-temporal energy
spread throughout this predicted transition. Our results
can be described using the aforementioned model, pro-
viding strong evidence for the existence of a transition
from a critical (pre-localized) to diffuse regime.
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FIG. 1. (a) Low-coherence interferometry measures the cross-
correlation between points rA and rB at the sample sur-
face [27] (MO: microscope objective). (b) Normalized inten-
sity profiles I(∆r, t)/I(0, t) are shown for samples Ti-Pure
and R700.

Samples investigated in this work were three different
types of TiO2 powder: a pure anatase phase (Ti-Pure)
obtained from Aldrich, and two types of rutile phase pow-
ders (R104 and R700) which are commercially available
from DuPont as pigments for white paint. Significant Mie
scattering resonances can be achieved in these powders,
as mean particle size 〈d〉 ∼ 400 − 800 nm [35, 36] is on
the order of the wavelength of the illuminating light. The
powders were compressed into pastille form to decrease
the transport mean free path, ℓ∗, and hence increase op-
tical scattering. Scattering strength can be characterized
by k0ℓ

∗, the product of optical wave number k0 in vacuum
and ℓ∗. A value of k0ℓ

∗ ∼ 1 indicates very strong scat-
tering, and has been used as an approximate criterion for
Anderson localization [33]. Previous measurements have
reported k0ℓ

∗ ∼ 5 − 6, 3 − 4 and 2 − 3 for compressed
Ti-Pure, R104 and R700 respectively [37, 38], indicating
that light experiences very strong scattering in all three
powders. Absorption, on the other hand, is relatively
weak, as absorption time τa is on the order of 1 ns [37].

We measure the spatio-temporal transport of light in
these samples using the low-coherence interferometry ap-
paratus introduced by Badon et al. [27, 28] (Fig. 1a).
A low-coherence broadband light source (650 − 850 nm,
radiant flux ∼ 5 × 105 W.cm−2) illuminates the sur-
face of the sample. The backscattered light is collected
by a microscope objective and sent to a Michelson in-
terferometer. A CCD camera measures the output of
the interferometer, which is the cross-correlation of the
scattered wave-fields in each arm of the interferometer.
By translating and tilting the mirrors in each arm, a
time-dependent reflection matrix R(t) can be acquired
in a focused basis [28, 39]. This matrix contains the
set of impulse responses R(rA, rB , t) between points at
the surface of the scattering sample, rA and rB. Each
of these points acts as a virtual source (rA) or detector
(rB), whose characteristic size is governed by the resolu-
tion length δr of the imaging system, here equal to 1.8
µm [39]. The spatio-temporal behaviour of the wave en-
ergy density at the surface of the sample is described by
the ensemble average of the impulse response intensity:
I(∆r, t) ≡ 〈|R(rA, rB, t)|2〉, with ∆r = |rA − rB|. In

FIG. 2. (a) Coherent backscattering arises from interference
between reciprocal paths. Pink oblongs represent the size of
virtual sources/receivers at rA and rB . (b) When source and
receiver coincide, constructive interference is maximized.

practice, this ensemble average is obtained via a spatial
average over pairs of points rA and rB separated by the
same distance ∆r. As discussed in the Supplementary
Material [39], our passive imaging method enables the
extraction of I(∆r, t) from fluorescence and noise contri-
butions that usually pollute active measurements [14, 40].
Figure 1b shows the resulting normalized intensity pro-

file, I(∆r, t)/I(0, t), for samples Ti-Pure and R700. The
difference between samples is immediately obvious: the
stronger scattering in R700 limits the spatial spread of
energy compared with Ti-Pure. The spread of I(∆r, t)
can be quantified by comparing experimental data with
theoretical predictions. In the multiple scattering regime,
I(∆r, t) can be expressed as the sum of two components.
The first is an incoherent intensity, Iinc, which is the in-
coherent average of the intensity of each individual scat-
tering path. The second is a coherent intensity correction
Icoh which takes into account coherent backscattering
(CBS) [29, 30], in which waves travelling along pairs of
reciprocal paths undergo constructive interference which
is not eliminated by the configurational average (Fig. 2).
In real space, the incoherent intensity corresponds to

the spatio-temporal spreading of the wave energy den-
sity inside the sample – the so-called diffuse halo. This
spreading can be directly quantified by measuring w(t),
the transverse width of Iinc(∆r, t) [41, 42]. In the diffusive
regime, Iinc(∆r, t) can be expressed as follows [34, 39]:

Iinc(∆r, t) =
ce−t/τa

2π3/2w3(t)
exp

[

− ∆r2

w2(t)

]

, (1)

with

w2(t) = 4DBt. (2)

DB is the Boltzmann diffusion coefficient [34, 41], τa is
the absorption time, and c the speed of light in the sam-
ple. For anomalous wave transport, w2(t) no longer ex-
hibits a linear increase with time, and Iinc(∆r, t) could
potentially deviate from a Gaussian shape [4, 43].
The CBS effect (Icoh) manifests as an enhancement

in the measured MS intensity at ∆r = 0. The en-
hancement factor, A, can be defined by the relation
Icoh(0, t) = (A − 1)Iinc(0, t). As ∆r increases [Fig.
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t = 33 fs t = 400 fs t = 767 fs

t = 1100 fs t = 1467 fs t = 1833 fs

FIG. 3. Normalized intensity profiles I(∆r, t)/I(0, t) for sam-
ple R104 (solid symbols) at different times (t). Note that ex-
perimental error bars are smaller than the symbol size. Red
solid lines show theoretical fits with Eq. 3, while black dotted
lines represent only the diffuse halo term of Eq. 3.

2(b)], the enhancement falls off, giving rise to a peak
F (∆r) of characteristic width δr [39]. While in k-
space this CBS peak narrows as time increases [44–46],
in real-space its shape is stationary [42, 47, 48]. Ide-
ally, for an experiment with point-like sources and de-
tectors on the medium surface, this CBS peak has the
form Icoh(∆r, t) ∝ [sin(k∆r)/k∆r]2 exp(−r/ℓs) (ℓs is
the scattering mean free path) with an enhancement of
A = 2 [47]. Here, the diffraction limit of our imaging sys-
tem changes the CBS peak shape to an Airy disk. Low-
order aberrations (non-ideal focus and/or astigmatism)
can furthermore cause both an increase in CBS peak
width and decrease in relative amplitude (A < 2) [39].
Altogether, I(∆r, t) in the diffusion approximation has

the form of a narrow CBS peak on top of a broader time-
dependent diffusive halo. The normalized intensity pro-
file can then be written as [39]

I(∆r, t)

I(0, t)
=

1

A
e−∆r2/w2(t) +

(

1− 1

A

)

F (∆r). (3)

Figure 3 shows I(∆r, t)/I(0, t) for sample R104 for six
times-of-flight t spanning the entire measurement range.
The spatio-temporal spreading of wave energy is clearly
exhibited, as is a small and constant CBS enhancement
around ∆r = 0. To quantify the energy spread in
each sample, the experimental I(∆r, t) was compared
with the prediction of Eq. 3. Fit parameters were w2(t)
(a free parameter for each time t), and A, which was
held constant over time. Note that while the shape of
I(∆r, t) is only strictly expected to be Gaussian when
the diffusion approximation applies, w2(t) can still give
a good quantification of spatio-temporal energy spread-
ing [5], and that in any case, I(∆r, t) is well-described
by a Gaussian for the entire time range under investiga-
tion (Fig. 3). The fitting gives very small values for A
which are caused by aberration effects in the experimen-
tal setup [39]: A = 1.12 for Ti-Pure, A = 1.2 for R104,
and A = 1.1 for R700. Results for w2(t), however, do not
agree with the diffusive prediction of Eq. 2. This implies
that our theoretical model must be altered to take into
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FIG. 4. Return probability I(0, t) normalized by its value
at time t0 = 53 fs for (a) Ti-Pure, (b) R104 and (c) R700

(symbols). Lines following t−3/2 (solid, diffusive) and t−1

(dashed, subdiffusive) are guides to the eye, not fits.

account the extreme strong scattering of our samples.
Compared with conventional diffusion, a key feature

of the strong scattering regime (kℓ∗ ∼ 1) is the predom-
inance of recurrent scattering ‘loops’, i.e an increased
probability for waves to pass nearby areas that they have
previously visited [32, 49, 50]. The time-dependence of
this return probability can be directly quantified in the
reflection geometry by observing the back-scattered in-
tensity at the source location, I(0, t) [Fig. 2(b)]. Figure
4 shows I(0, t) for all three samples. As absorption is
negligible for the time range of our measurements, I(0, t)
should scale as t−3/2 in the diffuse regime (Eq. 1). As the
system approaches a transition between diffusion and An-
derson localization, the slowing of diffusion can be mod-
eled as a scale-dependent diffusion process [51]. Based
on the scaling theory of localization [33], the diffusion
coefficient should scale with time as [1, 2, 51]

D(t) ≃ (D0ℓ
∗)2/3

(6t)1/3
, (4)

withD0 the diffusion constant in the absence of rescaling.
Replacing DB by the renormalized diffusion coefficient
D(t) in Eq. 1 gives the following scaling for the return
probability in the localized regime: I(0, t) ∝ t−1 [52].
Comparison of these theoretical predictions with the

experimental data reveals the existence of a transition be-
tween two transport regimes at a critical time τc ∼ 425 fs
for Ti-Pure, τc ∼ 400 fs for R104 and τc ∼ 480 fs for
R700 (Fig. 4). Before τc, the return probability scales
as t−1 which is characteristic of a regime of continuously
renormalized diffusion (which falls into the more general
category of subdiffusion). After the transition (t > τc),
the return probability scales as t−3/2 as expected for dif-
fusion. Naraghi and Dogariu [19] have predicted such
a transition, proposing that near-field coupling between
scatterers constitutes a ‘leak’ of energy from propagating
paths (e.g. Fig. 2) to evanescent channels. This effect
lessens the constructive interference created by recurrent
scattering paths, preventing the localization of wave res-
onances. By modeling recurrent scattering and near-field
coupling as competing mechanisms, the critical time can
be theoretically expressed as τc ∼ λ2/(3cℓ∗ρ) [19, 39],
where ρ is the ratio between the near-field and trans-
port cross-sections. Using the values of ℓ∗ ∼ 0.3 µm [38]
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FIG. 5. Transverse width w2(t) for all three samples (sym-
bols). Error bars represent the uncertainty in w2(t) due to
the (weighted) fitting of I(∆r, t)/I(0, t) with Eq. 3. Linear
fits to the data (solid lines) give D, for each sample. In the
regime of renormalized diffusion (t < τc), the data is fit with
Eq. 5 (dotted lines). The ballistic light line (dashed black
line), indicates the lower limit for w2(t). Inset: ∆ω2 through
the subdiffusion-diffusion transition for R700 (log-log scale).

and refractive index n ∼ 2.7 [37], measured in R700 at
λ0 = 700 nm, and taking τc ∼ 480 fs (Fig. 4c), we find
ρ ∼ 10−2. While this small value seems to imply that
the energy leak into evanescent channels is negligible, it
is for only a few scattering events; in the long-time limit
the sheer number of these events results in the extinc-
tion of localization and the recovery of diffusion. We
note that the observed values of τc do not scale with ℓ∗.
This is likely due to variation in ρ; although each sample
was compressed with the same force, differences in par-
ticle size/shape could cause the volume fraction to vary
slightly between samples. The differing chemical com-
position of the samples could also affect the near-field
scattering cross-section.
The transition from subdiffusion to diffusion is exhib-

ited more directly in the spatio-temporal spread of wave
energy, here quantified via w(t). As shown in Figure 5,
w2(t) increases linearly with time at long times of flight
(t > τc). This behaviour is predicted by the diffusion
approximation, in which w2(t) = 4Dt+ w2

c , where w
2
c is

the lateral extension of the energy halo at critical time
τc. Linear fits to w2(t) give a direct measurement of
D for each sample: D = 62 ± 10 m2/s for Ti-Pure,
D = 54 ± 6 m2/s for R104, and D = 18 ± 9 m2/s for
R700. The measured value of D for R700 is in excellent
agreement with previous wavelength-dependent measure-
ments performed in transmission [37]: D ≈ 18 m2/s for
λ = 700 nm [38]. Other previously reported values are
D ∼ 20 m2/s for Ti-Pure and D ∼ 18 − 38 m2/s for
R104 [37], which differ from ours, but were performed
for wavelengths at the lowest range of our experimental

spectrum. Moreover, the relative values of D that we
obtain are logical in light of the differing values of kℓ∗

reported for the three samples [37, 38].

For t < τc, the time dependence of the return proba-
bility (Fig. 4) indicates the renormalization of diffusion.
For these times, the behavior of w2(t) can be predicted
by substituting D(t) (Eq. 4) for DB in Eq. 2, giving

w2(t) =
4
3
√
6
(D0ℓ

∗t)2/3 + w2
0, (5)

where w2
0 is the size of the diffuse halo extrapolated to

time t = 0. Fitting the experimental w2(t) curves with
Eq. 5 confirms the scaling of w2(t) as t2/3 for t < τc. The
subdiffusion-diffusion transition can be more clearly seen
by plotting ∆ω2 = w2 − w2

0 on a log-log scale – this is
shown for R700 in the inset of Fig. 5. Using the value of ℓ∗

measured for this sample at λ = 700 nm [38], an estimate
of D0 can be extracted from the fitting process described
by Eq. 5. Remarkably, we find a value of D0 ∼ 15 m2/s,
which agrees within error with D ∼ 18±9 m2/s measured
from a linear fit of w2(t) in the diffuse regime (Eq. 2).

A remaining question concerns the transport of light
at very early times. The earliest measured point of w2(t),
at t ∼ 50 fs, is close to the ballistic light line w(t) = c0t
(Fig. 5). Only super-diffusive – if not ballistic – trans-
port could account for such rapid growth of the diffuse
halo. One possible explanation is the existence of bal-
listic waves propagating at the surface of the scattering
sample. This contribution predominates at early times,
and may control the dynamics of the diffuse halo in this
time range.

In conclusion, we have quantified the spatio-temporal
optical energy transport in a strongly scattering regime
across a wide range of time scales. Strikingly, we observe
a transition between a regime of continuously renormal-
ized diffusion at early times, and a conventional diffu-
sion regime at long times. The observed transition is a
manifestation of near-field couplings between scatterers
that are inherent to the vector nature of light, and which
dominate over recurrent scattering at long times. This ef-
fect may explain the elusive 3D Anderson localization of
electromagnetic waves. In the long-time diffusive regime,
the extremely slow values for the diffusion coefficient D
are in agreement with previous experimental measure-
ments performed in transmission [38]. The application
of our experimental method to such challenging samples
also illuminates the advantages of passive measurements
to probe wave phenomena in a strong scattering regime,
where non-linear effects, fluorescence, and noise can be
increasingly dominant over signals of interest [14, 40]. In
the future, a passive measurement of the reflection ma-
trix will constitute a relevant tool to study not only the
statistics of the mean intensity, but also the field-field
correlations under the framework of random matrix the-
ory [53, 54].
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Supplementary Information

This document provides supplementary information to “Transient critical regime for light near the three-dimensional
Anderson transition”. Here, we provide: (i) a description of the experimental setup, (ii) a physical interpretation of
the setup; (iii) the theoretical expression of the mean back-scattered intensity profile, (iv) the extraction of this mean
intensity profile in the presence of experimental noise, and (v) details on the theoretical expression of the critical time.

S1. EXPERIMENTAL SETUP

BS

FIG. S1. Experimental setup: a broadband incoherent light source isotropically illuminates a scattering sample. The spatio-
temporal correlation of the scattered wave field is extracted by means of a Michelson interferometer and recorded by a camera.
MO, microscope objective; BS, beam splitter; M, mirror; L, lens.

The experimental setup employed for the passive measurement of the point-to-point Green’s functions at the surface
of a scattering sample is sketched in Fig. S1. This measurement has been previously detailed by Badon et al. in
Refs [27, 28], and is described here mathematically as a foundation for the following sections.

An incoherent broadband light source (650− 850 nm) isotropically illuminates a scattering sample. The coherence
time of the incident wave-field is τc = 10 fs [27]. The backscattered wave-field is collected by a microscope objective
(NA=0.25) and sent to a Michelson interferometer, which here is used as a spatio-temporal field correlator. The
beams coming from the two interference arms are recombined and focused by a lens. A CCD camera conjugated with
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the sample surface records the output intensity

Sα(r, r +∆r, t) =

∫ T

0

|eiαψ(r, t+ τ) + ψ(r+∆r, τ)|2dτ, (S1)

where τ is the absolute time, r the position vector on the CCD screen, ψ(r, τ) the scattered wave field associated with
the first interference arm, T the integration time of the camera, and α an additional phase term controlled with a
piezoelectric actuator placed on mirrorM1. The tilt of mirrorM2 allows a displacement ∆r of the associated wave-field
at the camera. The motorized translation of mirror M1 induces a time delay t = δ/c between the two interferometer
arms, with δ the optical path difference (OPD) and c0 the light celerity in vacuum. The interference term is extracted
from the four intensity patterns Eq. S1) recorded at α = 0, π/2, 3π/2 and π (“four phase method” [28]). On each
pixel of the camera, we thus measure the cross-correlation C(rA, rB, t) between scattered wave-fields, ψc(rA, τ) and
ψc(rB , τ), associated with each arm of the interferometer:

CT (rA, rB, t) =
1

T

∫ T

0

ψ(rA, t+ τ)ψ∗(rB , τ)dτ, (S2)

where τ is the absolute time, rA and rB are the points in the focal plane of the microscope objective that are conjugated
with the same pixel on the camera, and ∆r = rB−rA. In an ideal case (fully incoherent incident light and NA=1), the
correlation function C(rA, rB , t) would converge towards the Green’s function between points rA and rB for an infinite
integration time [27, 28]. In practice, the limited numerical aperture of our experimental device induces aberrations.
This implies that our measurement scheme does not give direct access to the true Green’s function between points rA
and rB ; rather, we measure the response between a virtual source at point rA and a virtual detector at point rB. In
the following, we will see the consequences that result from the finite spatial extent of our virtual source/detector.

S2. PHYSICAL INTERPRETATION OF OUR PASSIVE IMAGING METHOD

The scattered wave-field ψc measured by the camera is now investigated in the temporal Fourier domain. Using
the Rayleigh-Sommerfeld integral, ψc can be expressed as [55]

ψc(rA, ω) = jk

∫

S

dr H(r− rA, ω)ψs(r, ω), (S3)

where S is the surface of the scattering medium, ω is frequency, k = ω/c is the optical wave number, c is optical wave-
speed, ψs(r, ω) is the optical wave-field at the surface of the sample, and H(r− rA, ω) is the spatial impulse response
between the sample and the camera. In the following, given the limited bandwidth of the light source (∆ω/ω ∼ 30%),
the impulse response H will be taken as independent of frequency ω. The time-derivative of the mutual coherence
function of this wave-field can be expressed as

R(rA, rB , ω) ≡ jω〈ψc(rA, ω)ψ
∗
c (rB, ω)〉t

= jωk2
∫

S

dr1

∫

S

dr2 H(r1 − rA)H
∗(r2 − rB)〈ψs(r1, ω)ψ

∗
s (r2, ω)〉,

where the symbol 〈· · · 〉 denotes an ensemble average. For an ambient wave field ψs(r, ω) equipartitioned in energy
in phase space, the fluctuation-dissipation theorem implies that the time-derivative of the mutual coherence function
〈ψs(r1, ω)ψ

∗
s (r2, ω)〉 converges towards the imaginary part of the Green’s function between r1 and r2 [56]:

jω〈ψs(r1, ω)ψ
∗
s (r2, ω)〉 = ImG(r1, r2, ω) = [G(r1, r2, ω)−G∗(r1, r2, ω)]. (S4)

Here, G(r1, r2, ω) and G∗(r1, r2, ω) stand for the causal (retarded) and anti-causal(advanced) parts of the Green’s
function, respectively. In our measurement, only the causal part (t > 0) of the correlation signal CT (rA, rB , t > 0) is
recorded. Hence, ImG(r1, r2, ω) can be replaced by the retarded Green’s function in Eq. S4, such that

R(rA, rB, ω) = k2
∫

S

dr1

∫

S

dr2H(r1 − rA)G(r1, r2, ω)H
∗(r2 − rB). (S5)

This equation can be given the following physical interpretation by reading the integrands from left to right: H(r1−rA)
describes the amplitude distribution at point r1 of an incident wave-field generated by a virtual source located at rA,
G(r1, r2, ω) describes wave propagation in the sample from r1 to r2 where the first and last scattering events occur,
and H∗(r2 − rB) describes the propagation between the last scattering event and the virtual detector at rB. The
covariance matrix R(ω) = [R(rA, rB, ω)] can thus be seen as the reflection matrix of the scattering medium measured
in real space.
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S3. THEORETICAL DESCRIPTION OF THE MEAN INTENSITY PROFILE

In the present work, we are interested in the spatio-temporal evolution of the mean backscattered intensity. A
theoretical prediction for this quantity can be derived by considering the ensemble averaged intensity of the time-
dependent mutual coherence function:

I(rA, rB, t) = 〈|R(rA, rB, t)|2〉. (S6)

To express I(rA, rB , t), we will first consider its temporal frequency counterpart, I(rA, rB ,Ω):

I(rA, rB ,Ω) =

∫

dtI(rA, rB , t)e
−iΩt. (S7)

Using Eq. S6, I(rA, rB,Ω) can be rewritten as

I(rA, rB,Ω) = 〈R(rA, rB , ω)R∗(rA, rB , ω − Ω)〉ω. (S8)

Injecting Eq. S5 into Eq. S8 gives

I(rA, rB,Ω) =k
4

∫

S

dr1

∫

S

dr2

∫

S

dr′1

∫

S

dr′2H(r1 − rA)H
∗(r′1 − rA)

× 〈G(r1, r2, ω)G∗(r′1, r
′
2, ω − Ω)〉ωH∗(r2 − rB)H(r′2 − rB). (S9)

In the weak scattering regime (kℓ∗ >> 1), most contributions to the correlation function of the Green’s function at
the surface of the scattering medium, 〈G(r1, r2, ω)G∗(r′1, r

′
2, ω − Ω)〉ω, will cancel out in the above ensemble average.

The only contributions to survive this average are those for which the wave and its complex conjugate experience
identical paths. This condition is achieved if the wave and the complex conjugate visit the same scatterers either in
the same order (ladder diagrams), or in reversed order (maximally crossed diagrams). The correlation function can
thus be decomposed into two terms [57]:

〈G(r1, r2, ω)G∗(r′1, r
′
2, ω − Ω)〉ω =

c

k4
P (r1, r2,Ω) [δ(r1 − r

′
1)δ(r2 − r

′
2) + δ(r1 − r

′
2)δ(r

′
1 − r2)] , (S10)

where P (r1, r2,Ω) is an energy density. Physically, P (r1, r2,Ω) is the Fourier transform of P (r1, r2, t) – the probability
to find a pulse at point r and time t, after emission of a short pulse at point r′. The first term of Eq. S10 describes the
self-interference of the wave associated with each possible scattering path between r1 and r2. The second describes
the constructive interference between reciprocal scattering paths between the same points.
Injecting Eq. S10 into Eq. S9 leads to a decomposition of the mean back-scattered intensity as the sum of an

incoherent (Iinc) and a coherent (Icoh) component. In the temporal regime, this can be expressed as

I(rA, rB, t) = Iinc(rA, rB, t) + Icoh(rA, rB, t). (S11)

The incoherent intensity Iinc accounts for the self interference of waves propagating along the same scattering paths,

Iinc(rA, rB , t) = c

∫

S

dr1

∫

S

dr2 |H(r1 − rA)|2P (r2, r1, t)|H(r2 − rB)|2, (S12)

while the coherent intensity Icoh is associated with the interference of waves propagating along reciprocal scattering
paths,

Icoh(rA, rB , t) = c

∫

S

dr1

∫

S

dr2H(r1 − rA)H(r1 − rB)P (r2, r1, t)H
∗(r2 − rA)H

∗(r2 − rB). (S13)

This term accounts for the so-called coherent backscattering phenomenon. To simplify the preceeding expressions,
the medium can be assumed to be statistically homogeneous such that P is invariant by translation: P (r2, r1, t) =
P (r2 − r1, t). Then, the incoherent intensity (Eq. S12) can be simplified to:

Iinc(∆r, t) = c

[

|H |2
∆r

⊛ |H |2
∆r

⊛ P (∆r, t)

]

, (S14)

where ∆r = rB − rA is the relative position between the virtual source and detector and the symbol
∆r

⊛ stands for the
correlation product over ∆r.
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In the weak disorder regime (kℓ∗ >> 1), P (∆r, t) is the solution to the diffusion equation, in which diffusivity D is
constant and corresponds to the Boltzmann diffusion coefficient D = DB = vEℓ

∗/3, where vE is the energy transport
velocity. In this regime [34],

P (∆r, t) =
1

π3/2w3(t)
exp

[

−|∆r|2
w2(t)

]

(S15)

where the spatial extent of this energy ‘halo’ w2(t) is

w2(t) = 4DBt. (S16)

For stronger disorder (kℓ∗ ∼ 1), an increase in the probability of recurrent scattering paths can cause a renormal-
ization (decrease) of the diffusion coefficient. The self-consistent theory of localization predicts that, in 3D, D scales
as [1, 2]:

D ≈ D0ℓ
∗

(

1

ξ
+

1

L
+

1

LA

)

, (S17)

where D0 is the diffusion coefficient before rescaling, ξ is the correlation length defining the spatial coherence of a
wavefield in the delocalized regime, L is the system size, and LA is the absorption length. In reflection, the effective
system size L can be said to be the spatial extent of the wave spread, L(t) =

√

6D(t)t [51]. Thus, before reaching
localization (L << ξ) and if absorption is negligible (L << La), Eq. S17 leads to the following time-dependence for
the diffusion coefficient:

D(t) ≃ (D0ℓ
∗)2/3

(6t)1/3
. (S18)

Replacing DB by D(t) in Eq. S16 allows an estimate of the scaling of w2(t) in the presence of strong scattering:

w2(t) ≈ 4
3
√
6
(D0ℓ

∗t)2/3 (S19)

Before reaching a localized regime, the growth of the diffuse halo is thus sub-diffusive.

As soon as w2(t) is much larger than the spatial extent δr2 of |H |2 (w2(t) >> δr2), the incoherent intensity
(Eq. S14) is a reliable estimator of P (∆r, t) :

Iinc(∆r, t) ∼
δr2<<w2(t)

cP (∆r, t). (S20)

Under the same condition , P (r2 − r1, t) can be replaced by P (0, t) in the integrand of Eq. S13. The expression of
Icoh then simplifies into:

Icoh(∆r, t) ∼
δr2<<w2(t)

cP (0, t)× |H ∆r∗ H |2(∆r), (S21)

where the symbol
∆r∗ stands for a convolution product over ∆r. In our experimental configuration where δr2 = 3.2 µm2,

this condition is already reached at the earliest measured times of flight; thus, the shape of the CBS peak is governed

by the coherent PSF |H ∆r∗ H |2(∆r) for all times.
Using Eqs. S14 and S21, a theoretical expression for the coherent backscattering enhancement A can be derived:

A = 1 +
Icoh(∆r = 0)

Iinc(∆r = 0)
= 1 +

|H ∆r∗ H |2(∆r = 0)

|H |2
∆r

⊛ |H |2(∆r = 0)

. (S22)

The shape of the CBS peak is given by the function

F (∆r) =
|H ∆r∗ H |2(∆r)

|H ∆r∗ H |2(∆r = 0)
. (S23)
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FIG. S2. (a) Evolution of the CBS enhancement factor A as a function of defocus. (b) Diffraction-limited PSF H0(r). The
dashed black circle accounts for the diffraction limited focal spot of radius δr ∼ λ/(2NA) ∼ 1.4 µm. (c) PSF H(r) for a defocus

z = 7 µm. (d,e) Corresponding CBS peak |H ∆r∗ H |2(∆r) normalized by its maximum (c) and the incoherent PSF |H |2
∆r

⊛ |H |2

at ∆r=0. (f) Corresponding incoherent PSF |H |2
∆r

⊛ |H |2(∆r). In panels (c)-(e), the white dashed circle accounts for the
defocused focal spot of radius δr ∼ zNA/

√
1−NA2 ∼ 1.8 µm.

In the absence of aberrations, the PSF is only limited by diffraction: H ≡ H0, with H0 =
√
2J1(kNA∆r)/(kNA∆r)

(Fig. S2(b)). In this ideal case, the CBS enhancement A is equal to 2 since |H0|2
∆r

⊛ |H0|2(∆r = 0) ≡ |H0
∆r∗ H0|2(∆r =

0). The CBS peak then coincides with the Airy disk: F (∆r) = |H0(∆r)|2.
In the real world, any imaging system suffers from aberrations. Relying on a simple Fourier optics model [58],

Fig. S2(a) shows, for instance, the effect of a defocus on the CBS enhancement. The enhancement factor A falls off
rapidly with the defocus distance d and cancels for d = nzR/2, where n is a positive integer and zR = 2λ/NA2 ∼ 22 µm
is the Rayleigh range or depth-of-field. The weak CBS enhancement (A ∼ 0.1− 0.2) found in our experiments would
correspond to a defocus of d ∼ 7 µm. The corresponding PSF H , the associated CBS peak F (∆r) and the incoherent

PSF |H |2
∆r

⊛ |H |2(∆r) are displayed for this value of defocus in Fig. S2(c), (d,e) and (f), respectively. This figure
illustrates the drastic effect of defocus on the CBS peak with respect to the incoherent PSF. The spatial extent δr of
each quantity is roughly equal to the transverse resolution in presence of a defocus z: δr ∼ zNA/

√
1−NA2 ∼ 1.8

µm [58]. Higher-order aberrations such as astigmatism could also contribute to the weak value of CBS enhancement
observed in our experiments.

S4. MEASUREMENT OF I(∆r, t) IN THE PRESENCE OF NOISE

Because of the incoherence of the illumination, the ensemble average of C(rA, rB, t) should be theoretically achieved
by integrating the interferometric signal over an infinite integration time T (Eq.S2):

lim
T→+∞

CT (rA, rB, t) = R(rA, rB, t). (S24)
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In practice, T is finite and the convergence of CT towards its ensemble average cannot be completely assured. The
situation is made worse by the fact that, for large ∆r and time lapse t, the signal of interest can be very weak, and
undesirable noisy contributions such as shot noise and fluorescence may dominate.
To evaluate the convergence of CT towards R, one can consider the intensity profile IT (∆r, t) averaged over pairs

of points rA and rB separated by the same distance ∆r:

IT (∆r, t) = 〈|CT (rA, rB, t)|2〉{(rA,rB) | |rA−rB |=∆r}. (S25)

Here, we have assumed that disorder is statistically homogeneous. The evolution of IT (∆r) as a function of T is given
by [28]

IT (∆r, t) = I (∆r, t) +
δt

T
〈|N(∆r, t)|2〉{(rA,rB) | |rA−rB |=∆r}, (S26)

where

I(∆r, t) = 〈|R(rA, rB, t)|2〉{(rA,rB ,t) | |rA−rB |=∆r} (S27)

is the mean intensity profile for an infinite integration time. N(∆r, t) represents the contribution of incoherent noise
whose coherence time is governed by the source bandwidth and thus scales as δt/T . The noise contribution corresponds
to the part of the wave-field whose cross-correlation function vanishes with the average over T in Eq. S26. Shot noise
and fluorescence signals that result from spontaneous emission events thus emerge along this noise contribution.
Figure S3 shows representative results for IT (∆r, t) as a function of T (solid symbols). Results for several values of

∆r are shown for times of flight (a) t = 0 fs and (b) t = 1200 fs. For small integration times, IT (∆r, t) decreases as
1/T , as expected for noise. At large T , and for small values of ∆r and t, IT (∆r, t) plateaus at the value of I (∆r, t).
In previous works [27, 28], ‘by eye’ examination of such convergence curves was performed to estimate whether or
not IT (∆r, t) had converged satisfactorily towards I (∆r, t). Points for which the convergence curve is well above
the noise level (black dotted lines in Fig. S3) were deemed acceptable. This noise level was then taken to be the
intensity measured at the maximum ∆r and t of the scan, assumed constant over space and time, and subtracted
from IT (∆r, t) to obtain IT (∆r, t). For accurate measurements at much longer times of flight, however, this method
is no longer viable. Figure S3 shows an example of convergence curves measured for sample R104. Even with a
very large integration time, IT (∆r, t) does not converge to a constant value for some values of ∆r at the relatively
short time of t = 33 fs [Fig. S3(a)], or for any spatial position at the later time t = 1000 fs [Fig. S3(b)]. It is clear
that another method of extracting I (∆r, t) from noise is required. To this end, we introduce a simple yet powerful
alternate method. We fit the experimental IT (∆r, t) versus 1/T with a straight line; the slope gives the noise level
while the y-offset gives I (∆r, t) according to Eq. S26. This fit is a weighted fit, with experimental uncertainty σ(T )
taken to be the error in the mean over pixels r in the calculation of IT (∆r, t) (Eq. S27), for each integration time T .
In Fig. S3, representative results for this fitting procedure are shown (solid lines). For all positions and times, the
data can be very well fit with the form of Eq. (S26). The uncertainty in I (∆r, t) is given by [59]

σI =

√

1

∆

∑

T

(1/T )2

σ(T )2
, (S28)

where

∆ =
∑

T

1

σ(T )2

∑

T

(1/T )2

σ2(T )
−
(

∑

T

(1/T )2

σ2(T )

)2

. (S29)

Figure S4 shows normalized intensity profiles for sample R104, calculated using (a) the noise subtraction method
from previous studies [27, 28], and (b) the IT (∆r, t) fitting approach introduced in this work. In Fig. S4(a), the data
give the impression that energy is spreading much more slowly than it appears in Fig. S4(b). This spread even seems
to stop at long times of flight – a feature that could be wrongly attributed to Anderson localization [14, 40]. Such
contributions from incoherent noise can thus hamper accurate observations of the diffuse halo, as had already been
observed for fluorescent noise in a transmission geometry [14, 40]. The ‘false’ plateau reached by the diffuse halo in
Fig. S4(a) occurs because the noise subtraction method overestimates the noise level at the largest ∆r and t in the
measured range, for a (finite) number of averages. Subtracting this estimated noise level then results in narrower
intensity profiles at long times. In contrast, the IT (∆r, t) fitting approach uses the data gathered over a finite range
of ∆r and t to properly estimate the noise level at each point (∆r,t).
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FIG. S3. Average correlation function (solid symbols) as a function of integration time (number of averages). Data shown is for
R104 for several representative values of ∆r, at times of flight (a) t = 33 fs and (b) 1000 fs. Corresponding fits [Eq. (S26)] are
shown as solid lines. In both (a) and (b) 1/T is represented by a thick black solid line. For clarity, experimental uncertainties
are not shown.

S5. THEORETICAL EXPRESSION OF THE CRITICAL TIME

As shown by Naraghi and Dogariu [19], the phase transition between the sub-diffusive and diffusive regime takes
place when the probabilities of recurrent scattering and near-field leaking become comparable. The recurrent scattering
probability, p×, is determined by the ratio between the trajectory volume and the volume the light explores inside
the multiple scattering medium [57]. In a reflection geometry, p× is stationary and given by [19],

p× ∼ λ2

2ℓ∗2
. (S30)

Let us now investigate the near-field coupling between scatterers that may inhibit scattering loops inside the medium.
At high concentration of particles, the energy can leak out of the diffusive channels because of the near-field interactions
between scatterers located at less than a wavelength apart. The corresponding leaking probability, pleak, along a wave
trajectory of length s is given by [19]

pleak ∼ 3

2
n0σNF s, (S31)

where n0 is the particle concentration and σNF is the near-field cross-section of an individual scatterer. Setting p×
(Eq. S30) and pleak (Eq. S31) to be equal, a critical path length sc can be derived:

sc ∼
λ2

3ℓ∗2n0σNF
. (S32)

This last equation leads to the final expression of the critical time τc = sc/c provided in the accompanying Letter:

τc ∼
λ2

3cℓ∗
σt
σNF

, (S33)
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Time (fs)

FIG. S4. Comparison of intensity extraction approaches for sample R104. (a,b) Diffuse halos for R104; in (a), the noise
subtraction method overestimates the noise level, resulting in a narrower halo at long times than does the convergence method
shown in (b).

where σt ∼ 1/(n0ℓ
∗) is the transport cross-section of an individual scatterer.
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M. Fink, A. C. Boccara, and A. Aubry, Manifestation
of aberrations in full-field optical coherence tomography,
Opt. Express 29, 22044 (2021).

[59] P. R. Bevington and D. K. Robinson, Data Reduction

and Error Analysis for the Physical Sciences, 2nd ed.
(McGraw-Hill, New York, 1992).


