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ABSTRACT

We investigate the complexity of the evaluation problem for ECRPQ:
Conjunctive Regular Path Queries (CRPQ), extended with synchro-
nous relations (a.k.a. regular or automatic). We give a characteri-
zation for the evaluation and parameterized evaluation problems
of ECRPQ in terms of the underlying structure of queries. As we
show, complexity can range between PSpAck, NP and polynomial
time for the evaluation problem, and between XNL, W[1], and FPT
for parameterized evaluation.

CCS CONCEPTS

« Information systems — Query languages for non-relational
engines; « Theory of computation — Parameterized complexity
and exact algorithms; Database query processing and optimization
(theory).
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1 INTRODUCTION

Graph databases are finite edge-labeled graphs, which find applica-
tions in several new domains [1]. In graph databases, a fundamental
querying mechanism is based on the existence of some paths in
the database with certain properties. These properties include that
the labels seen along a path must belong to a given language, or
that the starting or terminal vertices of some paths must be equal.
Path languages are typically specified by regular expressions (or
restrictions thereof) over the alphabet of edge labels. This gives
rise to the class of Conjunctive Regular Path Queries (CRPQ).

Example 1.1. An example of a CRPQ is
s T2 * *
q1=3yx — yAx — yAlabel(r1) € a”b Alabel(my) € (a+b) ¢
which outputs all vertices v having one outgoing path with label
in a*b and one outgoing path with label in (a + b)*c. Further these
paths must end at the same vertex. One can think of such a query
as having a “reachability subquery” on variables x,y (i.e., x NN
yAXx z, y) and a “path testing subquery” on variables 7y, 72 (i.e.,

label(7r1) € a*b Alabel(mz) € (a+b)*c). Since this last part involves

only unary properties on path variables, such a query is usually

. . a*b (a+b)*c
written more succinctly as Jyx — y Ax —— y. <

CRPQs are often considered as the graph database equivalent to
Conjunctive Queries (CQ) on relational databases. Indeed, it is the
closure under conjunction and projection of “RPQ atoms” of the

rexp . .
form x — y, where rexp is a regular expression.

*Author partially supported by ANR QUID, grant ANR-18-CE40-0031.
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In the example above, the restrictions on the labels of paths are
given by monadic properties (i.e., languages). There is, hence, no
way to relate the path labels.

It has often been argued that the class of CRPQ is not expressive
enough for many natural querying tasks. One obvious shortcoming
is that we cannot express any inter-path dependencies, i.e., rela-
tions between the paths of the database that are matched by the
edges of the graph pattern, except that they must start or end with
the same node. Indeed, some scenarios require the capability to
compare these path labels (see [3] for several examples from differ-
ent domains) and the extension of CRPQ with non-monadic word
relations gives rise to several expressive extensions which have
been studied lately [2-4, 19]. Concretely, for a class of finite word
relations R one can consider “CRPQ+R”, as the result of extending
CRPQ with testing of R relations on path labels. Following our
example, we would now have that

g2 =Fyx 25 y Ax 2 y A (label(my), label(ry)) € R

is a formula of CRPQ+R, assuming R is a binary relation from R.
Using this terminology, CRPQ is equivalent to CRPQ+REG, where
REG is the class of regular languages (seen as unary relations).
Among the most basic and studied classes of finite word relations
we have the classes of Recognizable, Synchronous, and Rational rela-
tions, which form a strict hierarchy: Recognizable C Synchronous
& Rational. It is well known that any CRPQ+Recognizable query is
equivalent to a finite union of CRPQ (known as UCRPQ), and that
the evaluation and satisfiability problems of CRPQ+Rational are
undecidable, even for very simple Rational relations [2]. Hence, the
first one has too little expressive power and the last one too much.
On the contrary, CRPQ+Synchronous enjoys a good tradeoff be-
tween complexity and expressive power. Synchronous relations are
relations recognizable by synchronous multi-tape finite automata,
and they constitute a very robust and studied class, closed under
Boolean operations and enjoying most of the decidabilty and al-
gorithmic properties inherited from regular languages. This is the
reason why CRPQ+Synchronous has been studied thoroughly in
[3], and is commonly known as ECRPQ (‘Extended’ CRPQ). One
may argue that ECRPQ considerably improves not only the ex-
pressive power of CRPQ, but also the succinctness, since they can
encode CRPQ-expressible queries in a succinct way, even by a non-
elementary factor [13].

The data complexity for the evaluation of ECRPQ queries is
the same as for CRPQ and even RPQ (i.e., NL-complete), but the
combined complexity jumps from NP (of CRPQ and CQ) to PSpPACE.
As we will show, even the parameterized complexity increases in
comparison with that of CRPQ or CQ. One may however consider
this as a reasonable compromise for having substantially more
expressive power and succinctness. Indeed, even first-order logic



—arguably the kernel of the SQL language— is already PSpAcCE-
complete. But is this necessarily the case? For which sort of ECRPQ
do we have a ‘low’ complexity for the evaluation problem? Can we
characterize these classes? These are the questions we study here.

As we will show, the complexity of the evaluation problem for
ECRPQ hinges on the interplay between the structure of the reach-
ability and path testing subqueries (borrowing the jargon from
Example 1.1). In a nutshell, we characterize the complexity of the
evaluation problem and of its parameterized version in terms of the
underlying skeletal structure of queries. For the evaluation prob-
lem, the complexity may vary between polynomial time, NP, and
PSpACE, while for the parameterized evaluation it ranges between
FPT, W[1], and XNL. Concretely, for each class C of such underly-
ing query structures, ECRPQ(C) consists of all ECRPQ having some
element of C as its underlying structure. Under some mild hypothe-
sis, we characterize all the C under which evaluation of ECRPQ(C)
is polynomial time, NP, or PSPACE-complete. And similarly, those
C under which parameterized evaluation is FPT, W[1]-complete, or
XNL-complete. This can be regarded as the lifting to ECRPQ of the
following (now classical) result on CQs: For any class G of graphs,
evaluation of CQ(G) is in polynomial time iff parameterized eval-
uation of CQ(G) is FPT iff G has bounded treewidth [15].! While
the underlying structure of a CQ is simply “a graph”, for an ECRPQ
the structure is slightly richer. For our characterization, instead of
having one measure (i.e., treewidth) we will need to handle three
independent measures. Depending on which combinations of these
measures are bounded we will obtain different complexity classes.

Related works. The most relevant related work is [3], where it is
shown that the evaluation problem for ECRPQ is PSPACE-complete
and the containment problem is undecidable. [2] shows that the ex-
tension of ECRPQ with a single non-synchronous relation, such as
the suffix, infix or scattered subword relations, makes the evaluation
problem either undecidable or with non primitive recursive com-
plexity. [13] shows that the undecidability for containment holds
even for every simple queries, and that ECRPQ can be arbitrarily
more succinct than CRPQ.

Outline. Before giving the characterization statement we will
need to introduce more formally the query language and mea-
sures: we do this in the next preliminary Section 2. In Section 3 we
state the characterization results for the parameterized and non-
parameterized versions of the evaluation problem. The following
three sections are devoted to proving these results, in particular Sec-
tion 6 contains the proofs for the main theorems, using the bounds
and reductions of Sections 4 and 5. We conclude with Section 7.

2 PRELIMINARIES

For a set X, we use ¢(X) to denote the set of all non-empty subsets
of X, and ¢2(X) to the denote all the non-empty subsets of size
at most 2. We write “c.e” as short for computably enumerable
language (a.k.a. recursively enumerable). We write X* to denote all
finite words over the set X, and X* to denote k-tuples of elements
from X. We also write X** and X** as short for (X¥)* and (X*)*
respectively. By DFA and NFA we denote deterministic and non-
deterministic finite automata respectively, defined in the usual way.

1Under the assumption that W[1] # FPT and G is computably enumerable.

Graphs. A multi-hypergraph is a tuple G = (V, H, ) where
V is a finte set of vertices, H is a finite set of hyperedges, and
n:H— o(V).Ifn: H— p2(V), we say that G is a multigraph.
If 1 is also injective we say that it is a simple graph (or just graph),
and in this case we just write itas G = (V, E), where E = {y(h) : h €
H}. A tree is a connected graph with no cycles. By the subgraph
induced by V' C V we denote (V/,EN p2(V")).

Regular languages and synchronous relations. Let A be a finite al-
phabet and L ¢ A a special ‘blank’ symbol. Given words wy, ..., wy
over A, their convolution wi ® -+ ® wy is the smallest word
over (AU{L})? such that for every i < ¢, its projection onto
the i-th component yields a word from w; - {L}*. For example,
aab®c®bb = (a,c,b)(a, L,b)(b, L, L). A k-ary word relation R C
A*F is synchronous (a.k.a. regular, automatic) if {w; ® - - - ® wy. :
(W1, ...,wg) € R} is a regular language over (A U{1})’. In light
of this definition, we assume that k-ary synchronous relations are
represented as a NFA? over an alphabet (A U{L})*. Observe that,
in particular, a unary synchronous relation is a regular language.
The class of synchronous relations is known to be particularly
well behaved: synchronous relations are effectively closed under
all Boolean operators (also component-projection, alphabetic mor-
phism, etc.), and they have decidable emptiness, universality and
containment problems [5]. They also admit logical characterizations
[12] on what is known as Automatic structures [6]. Some classi-
cal examples of synchronous relations include the prefix, equality,
and equal-length binary relations, and some non-examples are the
suffix, factor, (scattered) subword or alphabet projection.

Conjunctive queries. A conjunctive query (CQ) is a formula of
the form q(%) = 3§ R1(21) A+ - - A R (Zy), where x and § are tuples
of pairwise distinct variables and each tuple z; ranges over the
variables of x7j. One standard abstraction of a CQ q as before is by
means of its Gaifman graph, which is the simple graph having the
variables as vertices and an edge between x and y whenever there
is an atom containing both x and y. In this way, for a set of graphs
C, we refer to CQ(C) as the class of CQ’s whose abstraction is in C.
Given a relational structure A, an assignment v from the variables
to the domain of A is satisfying for q if for every i, the relation
R; contains the tuple #; obtained by replacing every variable of z;
with its assignment according to v. A tuple # of elements of A is in
the answer of g to A if there exists a satisfying assignment x to f.
If q is Boolean (i.e., no free variables) then we write A |= g if there
exists some satisfying assignment.

ECRPQ on graph databases. A graph database is a finite edge-
labelled graph, that is, D = (V, E) where V is a finite set of vertices,
E C VX AXYV is the set of labeled edges, and A is a finite alphabet.
A path p of D from v to v, of length n > 0 is a (possibly empty)
sequence of edges from E of the form

(v, a1,01), (v1,a2,02), ..., (Vn—1, An, Vn).

There is always an empty path from o to v for any v € V. The label
label(p) of such a path is a; - - - a, € A*, or ¢ if the path is empty.
We fix some infinite sets of node variables and of path variables.
An ECRPQ is a query that can test for synchronous relations on

2The choice of representation by NFA, DFA, or regular expressions is unessential for
the complexity results we shall present.



paths between nodes of the graph. Let us first show an example
and then give the formal definition.

Example 2.1. Here is an ECRPQ:

q(x,x") =3y x I yax’ 5y Aeqlen(ny, m)
where ‘eq-len’ is the binary synchronous relation {(w, w’) € A* X
A* ¢ |w| = |w’|}. The evaluation of q on a graph database D
retrieves all the pairs of vertices (v,0”) such that for some vertex
u there is a path p; from v to u and a path p; from v’ to u such
that p; and py have the same length. Instead of eq-length we could
have chosen any other synchronous relation, such as, for example,
“equality”, or “edit-distance at most 14”. In this case it would mean
that the word of labels read by p1 and pz are in the chosen relation.

An extended conjunctive regular path query (ECRPQ) is a
pair (g, R) where R is a finite set of synchronous relations, each
R € R having arity arity(R) > 1, and specified as an NFA over
(A U{J_})“’ity(R), for some fixed alphabet A. On the other hand, ¢
is a query, possibly having some free variables x, of the form

q(x) = 3937 y(297) A p(). <1)
Here %, § are tuples which span over node variables and 7 over path
variables. The idea is that y tells us how node variables are con-
nected through path variables, while p describes the properties and
relations between path variables in terms of the regular languages
and relations of R. Concretely, the subformula y(x77), called the
reachability subquery, is a finite conjunction of reachability
atoms of the form z 2> z’, where z, 7’ are from %7 and x is from
7, with the restriction that no path variable 7 can appear in two
distinct reachability atoms. That is, node variables may repeat in
¥, but path variables may not. The subformula p(7) is called the
relation subquery and it is a finite conjunction of atoms of the
form R(7y,...,7), were R € R, r = arity(R) and my, ..., n, are
pairwise distinct path variables from 7.

Given a graph database D = (V, E) over an alphabet A, an as-
signment f, from X7 to V and an assignment f;, from 7 to paths of
D, we say that (fy, fp) is a satisfying assignment if (1) for every

reachability atom z L 2 of y we have that f;, () is a path from
fn(2) to (') in D; and (2) for every atom R(ry, . . ., 71y) of p the tu-
ple (w1, ..., wy) is in the relation R € R, where w; = label( fp (7)),
for every i. Assuming X = (x1,...,x¢), the answers g(D) of the
query q to the database D is the set of all (f,(x1), ..., fn(x¢)) € V¢
for every satisfying assignment (fu, fp). I g is Boolean, then we
say that D satisfies g (and we write D [ q) if there exists some
satisfying assignment.

A Conjunctive Regular Path Query (CRPQ) is an ECRPQ
such that: (1) every relation is of arity one (i.e., a regular language);
and (2) no path variable appears in more than one atom of the
relation subquery. That is, a CRPQ g(x) is a query of the form

V.5 TTn
g7 (21 —> 2 Ao Azp — 25) A (Li(m1) A=+ A Ly (7)),
which is usually more succinctly written as
L L
q®) =321 > 2| A Azg = 2]

In order to keep the technical developments down to the essential,
we henceforward assume that all queries are Boolean. However,

our results can be easily extended to UECRPQ, that is, finite unions
of possibly non-Boolean ECRPQ queries.

Two-level graphs. Observe that ECRPQs have two levels of atoms:

the reachability atoms stating a property of pairs of vertices x 4 v,
and the relational atoms R(7, ..., ;) stating properties of tuples
of paths. In order to capture the structural information of these
queries in the same way as done for CQs through its Gaifman graph,
we introduce here the notion of a two-level graph. A two-level graph
is a graph having a first sort of edges between vertices and a second
sort of edges between edges of the first sort.

Formally, a two-level multi-hypergraph (or 2L graph for
short) is defined as a tuple G = (V,E,H,n,v), where (V,E,n) is
a multigraph and (E, H, v) is a multi-hypergraph. In other words,
V,E, H are finite sets,  : E — ¢2(V) and v : H — 9(E). Intuitively,
E are “first-level” edges and H are “second-level” hyperedges. For
simplicity we shall always assume E N H = 0.

The abstraction of an ECRPQ query such as the one in (1) is
a 2L-graph (V,E, H, n,v), where (V, E, n) is the multi-hypergraph
on the node variables and (E, H, v) is the multi-hypergraph on the
path variables. That is:

V is the set of node variables x7,
E is the set of path variables 7,
H is the set of relation atoms of p,

n(r) ={zz}ifz Z, 2/ is an atom of v, and

v(A) ={m,...,m} if A=R(m,..., ) is an atom of p.
Given a class of 2L-graphs C we consider ECRPQ(C) as the set
of all ECRPQ whose abstractions are in C. On the other hand, the
abstraction of a CRPQ is a graph (V, E) having V as set of node

variables, and and edge x,y € E for every atom x 4 y in its
reachability subquery. Similarly, for a class C of graphs, we denote
by CRPQ(C) the set of CRPQ having an abstraction in C.
Treewidth A tree decomposition of a graph G = (V,E) is a
tree T = (V’, E’) together with a mapping A : V/ — ¢(V) such that
(i) for every {u,v} € E there is w € V' such that {u,0} C A(w);
(ii) for every v € V, the subgraph of T induced by {0’ € V' : v €
A(v")} is a tree.
For o’ € V’ we refer to A(v”) as the bag of v’. The width of such
tree decomposition is max, ¢y~ [A(v)|, that is, the maximum size
of a bag therein. The treewidth of a graph G, denoted by tw(G), is
the minimum width among all its tree decompositions. For a set of
graphs C, we define its treewidth as tw(C) = supgc tw(G), and
we write tw(C) = co when it is unbounded.

2.1 Parameterized decision problems

A parameterized problem is a set P C A* X N, where A is a
finite alphabet. If (x, k) € A* X N is an instance of a parameterized
problem, we refer to x and k as the input and parameter respectively.

Complexity classes. A parameterized problem is said to be fixed-
parameter tractable, or FPT, if every instance (x, k) € A* XN can
be solved in time f(k) - |x|¢ for some computable function f and
constant c. A (many-one) FPT-reduction between a parameterized
problem P to another one P’ (noted P <Pt P’) is an algorithm that
computes for every instance (x, k) of P an instance (x’, k”) of P’
such that (i) (x,k) € P iff (x’,k’) € P/, (ii)) kK’ < g(k) for some



computable function g : N — N, and (iii) the algorithm runs in
time f(k) - |x|¢, for some computable f : N — N and constant c.

We will consider here two other parameterized complexity classes,
namely W[1] and XNL. We will try to keep definitions at the mini-
mum needed. For our purposes we will not need the definition of
W/[1], but just that it may be thought of as the analog of NP in param-
eterized complexity. On the other hand, the class XNL, introduced
in [11] and studied in [10] under the name of [Uniform-XNL ]**7,
is the closure under FPT-reductions of the class of parameterized
problems P such that there is a computable function assigning to
each parameter k an NL algorithm solving the decision problem
{x : (x,k) € P}. For these classes we have FPT C W[1] C XNL,
and it is conjectured that these containments are strict.

Some complete parameterized problems. A complete problem for
XNL is the parameterized intersection non-emptiness problem. This
is the parameterized version of the classical PSPAcE-complete inter-
section non-emptiness problem for regular languages.

PrROBLEM Parameterized Intersection Non-Emptiness (p-IE)
INPUT A set S of DFA.
PARAMETER The cardinality of S.
QUESTION Is (Vg L(A) # 0?

It was shown in [20] that p-IE is complete for XNL under FPT-
reductions. We denote by IE the non-parameterized version of this
problem, which is PSPACE-complete [16].

For a class of query languages Q over relational structures, we
define the classical evaluation problem eval-Q and its parameterized
version p-eval-Q problems.

PROBLEM Q@ evaluation (eval-Q)
INPUT A relational structure D; a Boolean query g € Q.
QuesTION Does D | ¢?

ProOBLEM Parameterized Q evaluation (p-eval-Q)
INPUT A relational structure D; a Boolean query g € Q.
PARAMETER The size of g
QuesTION Does D = q?
It is known that eval-CQ is NP-complete and p-eval-CQ is W([1]-
complete, and it is folklore that this extends to CRPQ. Regarding
ECRPQ, its evaluation problem is complete for PSPACE.

PropOSITION 2.2 ([3]). eval-ECRPQ is PSPACE-complete.

In fact, a characterization for the evaluation problem for CQ and
CRPQ can be stated in terms of the underlying graph:

ProposITION 2.3 ([15]). For any c.e. class C of graphs,
(1) if tw(C) < oo, eval-CQ(C) is in polynomial time;
(2) otherwise, p-eval-CQ(C) is W[1]-complete

COROLLARY 2.4 (FOLKLORE). For any c.e. class C of graphs,
(1) if tw(C) < oo, eval-CRPQ(C) is in polynomial time;
(2) otherwise, p-eval-CRPQ(C) is W[1]-complete

PrRoOOF OF COROLLARY 2.4. Item 2 follows from the fact that on bi-
nary signatures CQ(C) € CRPQ(C), and item 1 from the existence
of a polynomial-time reduction from eval-CRPQ(C) to eval-CQ(C).
This relies on the fact that for every regular language L the relation
Ry, consisting of all pair of vertices (v,v”) such that there is a path
with label in L from v to v” is computable in polynomial time. O

This implies that, assuming FPT # W[1], CQ(C) [resp. CRPQ(C)]
has a tractable evaluation problem iff it has a tractable parameter-
ized evaluation problem iff tw(C) < co. This has been extended to
arbitrary classes of CQs in the following sense:

PRrOPOSITION 2.5 ([14]). For any c.e. class Q of CQs,

(1) if for some k every q € Q is equivalent to some ¢’ € CQ of
treewidth < k, eval-Q is in polynomial time;
(2) otherwise, p-eval-Q is W[1]-complete.

Item (1) above has been shown to hold also for CRPQ, where
equivalence has to be replaced by a well-suited notion of homo-
morphisms between CRPQ [18]. Proposition 2.5 assumes that the
arity of relations is bounded, and in fact a generalization of these
results also holds in the absence of such a constraint [9, 17], where
treewidth is replaced with a “more general” hypergraph measure.

For the purposes of the present work, we will sometimes focus
on CQs over binary relations, which we denote by CQ,;,. For tech-
nical reasons that will become apparent, it will be convenient to
use multigraphs as abstractions for CQy,;, (as opposed to graphs):
we define the multigraph of a CQ,;, query g as having the set
of variables as vertices, and for every two vertices x, x” it has k
edges {x,x’}, where k is the number of atoms R(z,z’) of q such
that {z, 2’} = {x, x"}. For example, the multigraph corresponding
to R(x,y) A S(z,y) AS(y,2z) AS(2,2) AR(z,z) € CQy,, is:

© O—E

Then, for a class C of multigraphs we define CQy;,(C) as the class
of all CQy,;,, queries whose underlying multigraph is in C. It is easy
to see that the previous results imply that the same characterization
holds, where the treewidth of a multigraph is simply the treewidth
of its underlying simple graph.

LEMMA 2.6 (COROLLARY OF [15]). For any c.e. class C of multi-
graphs such that tw(C) = oo, p-eval-CQy;,(C) is W[1]-complete.

Proor. This follows directly from a trivial adaptation of the
lower bound reduction of [15, Theorem 17]. O

3 CHARACTERIZATION RESULTS

We wish to obtain a characterization result as the one for CQ’s or
CRPQ’s already mentioned, of the form

“The evaluation problem for ECRPQ(C) is tractable if, and only if,
C has bounded f-measure.”

for a suitable 2L graph measure f. For the case of CQ’s and CRPQ’s
the right measure f is treewidth, as witnessed by Proposition 2.3
and Corollary 2.4. For ECRPQ’s, the measure involves treewidth
but also other measures, and the situation for complexity classes is
more complex. In particular, remember that for CQ’s and CRPQ’s we
have that (assuming W[1] # FPT) eval-CQ(C) is tractable iff p-eval-
CQ(CQ) is FPT. However, for ECRPQ’s, there is a mismatch between
“tractable evaluation” and “tractable parameterized evaluation”. For
instance, there are classes that are FPT for p-eval-ECRPQ(C) but
PSpace-complete for eval-CQ(C). Further, the complexity for the
parameterized evaluation of ECRPQ may be FPT, W[1]-complete
or XNL-complete while it can ‘only’ be either FPT or W[1] for CQ’s



and CRPQ’s. In a similar vein, the non-parameterized version may
vary between polytime, NP and PSpace-complete.

Going further: What measures on 2L graphs make sense for
characterizing the parameterized and combined complexity of the
evaluation for ECRPQ? Unsurprisingly, treewidth plays a funda-
mental role, but we also need to take into account two other mea-
sures. These two measures are the maximum size of connected
components in the underlying multi-hypergraph of the relation
subquery, either in terms of number of hyperedges it contains (de-
noted by ccpeqge) or in the number of vertices (ccyertex). Note that
neither a bound on the number of edges implies a bound on the
number of vertices nor the other way round, since we work with
multi-hypergraphs.

Before defining more formally these measures, we can already
give the general characterization statements we obtain.

THEOREM 3.1 (CHARACTERIZATION FOR P-EVAL-ECRPQ). For any
c.e. class C of 2L graphs,

(1) if ccyertex(C) = oo, then p-eval-ECRPQ(C) is XNL-complete;

(2) if ceyertex(C) < o0 and tw(C) = oo, then p-eval-ECRPQ(C) is
W[1]-complete;

(3) if ccvertex(C) < o0 and tw(C) < oo, then p-eval-ECRPQ(C) is
FPT.

Under the complexity theoretic hypothesis that W[1] # FPT
and some some mild assumptions on the class (cc-tameness, whose
definition follows), we also obtain a complete characterization for
the evaluation problem.

THEOREM 3.2 (CHARACTERIZATION FOR EVAL-ECRPQ). For every

cc-tame class C of 2L graphs, and assuming W[1] # FPT,

(1) if ccvertex(C) = 00 0F CCpegee(C) = oo, then eval-ECRPQ(C) is
PSpACE-complete;

(2) if ccvertex(C) < 00, cCpegge(C) < o0 and tw(C) = oo, then eval-
ECRPQ(C) is in NP and not in polynomial time;

(3) if ccvertex(C) < 09, CCpegge(C) < 00 and tw(C) < oo, then eval-
ECRPQ(CQ) is in polynomial time.

In the statement above, we say that a class C of 2L graphs is
cc-tame, if either ccyerrex(C) + cChegge(C) < oo or there exists a
polynomial time function f : N — C such that ccyerex(f(n)) +
CChedge(f(n)) = n for all n. In other words, that there is some
tractable algorithm to produce elements of C witnessing big con-
nected components.>

For data complexity, remember that RPQ, CRPQ and ECRPQ
are all NL-complete. In the next paragraphs we give the precise
definition of treewidth, ccyertex and CChedge for (classes of) 2L graphs.

2L graph measures

Fora2Lgraph G = (V,E, H,n,v),let G be the multigraph (E, H, v),
and let G"°% be the graph (V, E’), where E’ consists of all the sets
{v,0’} for which there are h,h’ € H and e,e’ € E such that (1)

3This cc-tameness condition is solely used for the PSpack-hardness statement, and
its purpose is simply to show that it takes a very weak extra hypothesis to obtain
PSpace-hardness —and, in fact, the condition could be replaced with any hypothesis
enforcing that elements of C with big connected components can be produced in
polynomial time. Indeed, without the cc-tameness hypothesis we would obtain the
exact same theorem statement, with the only difference that “PSpAcE-complete” is
replaced with “in PSPACE”.

veev €e,(2)ech e €h’,and (3) hand h’ belong to the same
connected component in G” ¢l Here is an illustration for a 2L graph
G = (V,E, H,n,v), where edges of nj are depicted with full lines and
hyperedges of v as dashed blobs.

The intuition is that G"°% is the graph resulting from replacing con-
nected components of G with cliques on their incident vertices.
The treewidth tw(G) of a 2L graph G is the treewidth of G"°%, and
for a class C we extend it as usual: tw(C) = supg ¢ tw(G). We also
define the measures ccyertex and ccpegge of 2L graphs which count

the sizes of connected components in G We define CCyertex(G) as
the maximum number of vertices of a connected component of G,
and we define ccpegee(G) as the maximum number of hyperedges

contained in a connected component of G” ¢l In the example above,
CCyertex(G) = 3 and cchedge(G) = 2, both of them witnessed by the
connected component of {, 73, 776 }. For a class C of 2L-graphs,
we let C™ = {G™! : G € C} and C"0de = {GM0de . G € C}.

4 UPPER BOUNDS

For any 2L-graph G, let G be the result of merging all hyperedges
of G™ in the same connected component. Concretely, assuming
G=(V,E,H,n,v)letG = (V,E H,n,v), where

H = {h¢ C H : C is a maximal connected component of G"}

and V(hc) = {e € E : e € | JC} for every h¢c € H. Observe that ¢
uses relations of arity bounded by ccyerrex(G). In the proofs that
follow we will use the following fact.

LEMMA 4.1. There is a PSPACE procedure which produces, for any
ECRPQ q with abstraction G, an equivalent ECRPQ § with abstrac-
tion G. Further, if ccyertex(G) and CChedge(G) are considered as being
constants, the algorithm runs in polynomial time.

ProoF oF LEMMA 4.1. Consider an edge hc € ﬁ, where C =
{h1,..., he} is a maximal connected component of G™. and con-
sider the atoms R;(71), . .., Re(7¢) from the relation subquery of q
corresponding to C. Suppose that 71, . . ., ¢ use the path variables
71, ..., 7y, and that each 7; is of length r; (i.e., it denotes an r;-ary
relation). We build an r-ary relation Re(7) for = = 71, ..., 7, such
that for every mapping f : 7 — A" we have

f(#;) € R; for every i < ¢ if, and only if, f(7) € Rc.

Consider the NFA A; = (Q;, qé, i, F;) over (A U{L})"i correspond-
ing to each R; of arity r;. Let || = r.

Foreveryi < ¢ lety;: {1,...,ri} = {1,...,r} be the mapping
sending j to j’ if the j-th variable of 7; is 7.

We define the relation R via the following NFA A = (Q, qo, 5, F)
over (AU{L})", where

* Q=01 X XQ

* g0 =(qp---9p)

o F:{(ql,...,qf):ql GF],...,q[ EF[}

° (q1,---,qr) L), q1,---»q;) € ¢ if we have, for every

’

(@y; (1)>-8y; () .
—————¢qjiné;.

i < ¢, a transition g;



The query ¢ is then be built by replacing each Ry (71), ..., Re(7¢)
with Re, for every maximal connected component C.

The procedure is in polynomial space, since every element of
Q, 8, F can be described in polynomial space and the membership
to these three sets is in polynomial time. Observe that if ccyertex(G)
and ccpege(G) are constant, so is r and ¢ in the construction above.
Hence, A can be built in polynomial time. O

LEMMA 4.2. p-eval-ECRPQ is in XNL.

Proor. Consider the following procedure which produces, for
every ECRPQ g, an NL algorithm for {D : D |= g}. Fix an arbitrary
ECRPQ ¢ with abstraction G, and suppose we are given a graph
database D as input. To simplify the algorithm, as a first step we
transform ¢ into an equivalent ECRPQ ¢’ such that every connected
component of G™ consists of only one hyperedge using Lemma 4.1.
This transformation is in constant time since q is fixed.

We now guess a mapping v from the node variables of g’ to the
nodes of the input database D in NSPACE(|q’| - log(|D])), hence in
NL since q is fixed. Next, we verify that v is a satisfying assignment.
For each atom R(7y,...,7,) in the relation subquery such that

{xi I, yi}1<i<p are the corresponding atoms in the reachability
subquery, we non-deterministically guess simultaneously a path
pi from v(x;) to v(y;) for each i < ¢ (using ¢ log-sized pointers to
navigate the paths in D) and we verify that the labels of the guessed
paths p1, ..., pe are in the relation R. Since no two relations share a
path variable this implies that there is a satisfying assignment and
thus that D = g; and since ¢ is bounded by a constant, this last step
is also in NL. O

LEmMMA 4.3. Given a class C of 2L graphs such that ccyerex(C) < 00

(1) there is an FPT reduction from p-eval-ECRPQ(C) to p-eval-
cQ(cr®);

(2) if further ccpegge(C) < oo, there is polynomial time reduction
from eval-ECRPQ(C) to eval-CQ(C nodey

ProoOF. Let G € C be the abstraction of an ECRPQ g and D be a
graph database over an alphabet A. We show how to produce a CQ
q’ (depending only on q) and a relational database D’ (depending
on q and D) such that

e DEqiff D' E ¢/,

e the underlying Gaifman graph of ¢’ is G4, and

o all relations used in q” have arity < 2 - ccyertex(G).
Further, if ccpegge(C) < o0, the construction runs in polynomial
time. We first produce an equivalent query § = g having G as
abstraction using Lemma 4.1, which is in PSPACE, or in polynomial
time if ccyertex(G) and Cchedge(G) are constant.

We now show how to build q’, which will have one atom with
relation R’ for each atom with relation R in the relation subquery of
q.Let R(my, . .., 7my) be an atom of the relation subquery of ¢, where
for every i there is an atom x; NN y; in the reachability subquery
of g. We then produce the atom R’(x1,y1, . .., Xn, yn) in ¢’. The CQ
q’ is obtained as the conjunction of all such atoms R’. Observe that
the Gaifman graph of g’ is precisely G4,

Finally, the relational database D’ is built using these relations
R’, where we populate each relation R’ of arity 2n as follows

R = {(u1,01,...,un,0p) : for every i there is a path from u; to v;
in D with label w; € A" such that (wy,...,w,) € R}

We then obtain that D |= q iff D’ = ¢’. Since ccyertex(G) is bounded
by a constant, so is the arity of the relations in ¢’ and §. Thus, D’ can
be produced from ¢ in O(|D|% ¢wertex(G)) that is, in polynomial time.
That is, D’ is built in time f(|q|) - |D|%-cCvertex(G) | where f is the time
needed to compute ¢ from q. In other words, this is an FPT reduction
or even a polynomial reduction if we assume that ccpeqge(G) is
bounded by a constant (and thus that f is polynomial). O

5 LOWER BOUNDS

5.1 Combined complexity

We begin with identifying the hardest, PSpAce-complete, cases of
eval-ECRPQ. As a consequence of Lemma 4.3(2) of the previous
section, as soon as CCyertex(C) and cchedge(C) are bounded, the
evaluation problem becomes an NP problem. We now show that,
under cc-tameness, the remaining case is PSPACE-complete.

LEMMA 5.1. For every cc-tame class C of 2L graphs, if ccyertex(C) +
CChedge(C) = oo then eval-ECRPQ(C) is PSPACE-complete.

Proor. Since eval-ECRPQ is in PSpAcE by Proposition 2.2, the
statement boils down to showing that eval-ECRPQ(C) is PSPACE-
hard. We reduce from the PSPACE-complete problem of intersection
non-emptiness (IE) for regular languages over a fixed alphabet A.
Let the IE instance be given as n regular languages Ly, ..., L,. It
follows that there exists a computable 2L graph G € C such that
G'® contains a ‘big’ connected component C, having either (1) at
least n vertices, or (2) at least one vertex incident to n hyper-edges
(see Lemma A.1 in appendix). In both cases we will construct, in
polynomial time, an ECRPQ g whose abstraction is G and a graph
database D such that the following holds.

Claim 5.1. D [=q if,andonlyif,LiN---N Ly, # 0.

Case (1) If C has m vertices ny, ..., m; with m > n, we define
each relation R(7;,, . .., 7, ) corresponding to a k-ary hyperedge
{mi,, ..., mi, } to be the set of all k-tuples

(Su#---#8,...,Sut---#$) € (AU{s,#)
—— ——
i1 i
for every u € A*. We now show that the relation R is synchro-

nous and can be built in polynomial time. Let n = maxj<,< i

We define R via the NFA A = (Q,qo.6,{qr}) over the alphabet
(AU{$,# L})F where

Q={q0.q1,-- . qn+1. 95}
and § has the following transitions:
(8....9)
® go —q1;
(a,...,a)
e g — g1 foreverya € A;

Z1yeens z
® g; Ll—ﬁ)% gi+1 for every 1 < i < n where, for every j:

1) zj=#ifi <ij,2)zj=%ifi=ij+1,and(3)zj = L
otherwise;



® gn+1 Lzl—zk)a qf where, forevery j: (1) zj = $if n+1 = ij+1

and (2) zj = L otherwise.
Observe that this NFA can be built in polynomial time and that it
denotes the relation R of all k-tuples

(Sus---#$,... $us---#8) € (AU{$,#})*k
N—— N——

i ir
for every u € A*.

All other relations, corresponding to hyperedges outside C, are
simply ‘universal’. That is, we define the relation R’ (71'{, .. .,77,":)
corresponding to a hyperedge outside the connected component C
to be (A U{$, #})*’. In this way we have produced, in polynomial
time, an ECRPQ g whose abstraction is G.

Without loss of generality we assume that n = m, note that
this can be guaranteed by extending the intersection problem with
m—n ‘dummy’ languages A*. For each language L; let us define the
graph database D; as the transition graph of the NFA recognizing
L;, plus: (1) one distinguished vertex v, (2) i other vertices vy, . .., v;,

(3) edges v LR qo and v; 5, v, and (4) a path q¢ 4 v1 L4 v;
of length i, for every final state g . Here’s an example:

Finally, we define D as the union of Dy, ..., Dy, which is disjoint
with the sole exception of the distinguished vertex v. We finish this
first part of the proof by showing that Claim 5.1 holds.

If D | g, consider the satisfying assignment of the m path
variables 71, . .., 7y, in the connected component C. These define
m words u1,...,um € (AU{$,#})* of the form u; = $w#!$ for a
given w, by definition of the relation R. Further, by the shape of D,
the path 7; must go through the sub-database D; of D, for each i.
Hence, w € L; for every i, witnessing that (; L; # 0. Conversely,
observe that for any w € (); L; the assignment sending

e every node variable to v,

e every path variable 7; from C to the path starting and ending
in v, going through D; along the path reading w from the
initial state to a final state (it exists since w € L;), and

e every other path variable 7" outside C to any arbitrary path
starting and ending in v

is a satisfying assignment, and thus D |= q.

Case (2) If, on the other hand, C contains an element 7 incident
to n hyperedges hy, ..., hy, we define a relation R; for each hyper-
edge h; as follows. If h; is incident to k > 0 other vertices v(h;) =
{m, m1,..., 1}, we produce an atom R; (7, 71, ..., 1) defined by
the synchronous relation {(u, u1,...,u;) : v € Ly and uy, ..., u; €
A*} C A***+D) In a similar way as before, we define all other rela-
tions corresponding to hyperedges outside C as being universal, and
we thus obtain, in polynomial time, an ECRPQ g whose abstraction
is G. Let D be the graph database having only one vertex, and a
self-loop labeled a for each a € A. We then have that Claim 5.1 also
holds in this case. Indeed, q is satisfiable iff D |= qiff (); L; # 0. O

5.2 Parameterized complexity

The lower bounds for the parameterized complexity will be based
on a reduction from parameterized evaluation problem for CQ’s
on graph databases. However, in order to present this reduction
in a clear and modular way, we will need to introduce yet another
multi-graph representation of a given 2L graph G, which roughly
corresponds to collapsing connected components of G” el into single
vertices.
Concretely, given a 2L graph G = (V,E,H, n,v) let Geollapse e

the multi-graph (VUC, {(v,€) : e € E,v € n(e)}, ), where

e C C 2" is the set of maximal connected components of G,

o ={(v,e) > {v,c} :ceC,hec,ech}.
For a class C of 2L-graphs, let C0lapse = (Geollapse . G ¢ C}. Here
is an example (with similar visual encoding as the example of p. 5).

We will later exploit the following simple fact that, under the
hypothesis that C has bounded ccyertex, C has bounded treewidth
if ¢collapse has hounded treewidth.

LEMMA 5.2. For every class C of 2L graphs, if cCyertex(C) < oo and
tw(cnode) = oo, then tW(Ccollapse) = oo,

PROOF. Assume ccyertex(C) = n < 00. We show the counterposi-
tive tw(CUaPse) < 0o = tw(C"%) < co. Given a tree decomposi-
tion of G<°U4Pse of width k, consider the result of replacing, on every
bag, each vertex c corresponding to a connected component of Gl
with the set of all the vertices incident to ¢ (at most 2n). Since each
bag is of size < k + 1 we obtain bags of size < (k +1) - 2n. It follows
then that it is a tree decomposition of width < (k+1)-2n—-1. O

We now show a reduction from the parameterized evaluation of
CQpin (Ccollapw).

LEmMA 5.3. For any c.e. class C of 2L graphs, there exists an FPT
reduction from p-eval-CQy;, (C°ePse) to p-eval ECRPQ(C).

PROOF. Given g € CQy;,(C!5) and a database D, we first
find G € C such that G°!laPse is the multigraph of g (computable
since C is c.e.). We now produce an ECRPQ query g whose ab-
straction is G, and a graph database D such that D = q¢ iff D k= g.

Without loss of generality, we assume that for every relation R
of D we have also its inverse R™! (i.e., that the relation R~! is part of
the database alphabet, and it is interpreted as {(v,0") : (v”,0) € R}),
otherwise we add it to the database.

Let us recall the shape of a multigraph of the form
(VUG E’, p). It has two sorts of vertices: ‘node’ vertices from V and
‘component’ vertices from C, corresponding to maximal connected

Geollapse —

components of G™. It is a partition, in the sense that edges go
always between these two sorts of vertices, and they are the result
of splitting each edge n(e) = {v,0’} into two edges: {v,c} and
{ce, v}, where c, € C is the connected component of e in Gl we
can then assume that the query q is of the form

g =3% Ri(x1,y1) AR{(y1,x]) A+ ARe(xe,ye) A Rp(ye, xp)



where the x;’s and x/’s correspond to node variables and the y;’s
to component variables. Observe that we can ensure these precise
directions of ¢ since we have the inverses: otherwise, we could
transform q into an equivalent query with this form, having the
same underlying multi-graph.

Let g be any ECRPQ query whose abstraction is G. Let A be
the alphabet of all the relation names of D, plus two new symbols:
0 and 1. We will now show how to implement the relations over
A. Remember that for every atom R(sy,..., ) of the relation
subquery of qg (where r = arity(R)) and for every 1 < j < r, there

is (exactly) one atom of the form x;j, SN xJ’.{ in the reachability

subquery of qg. Thus, for each such R(, .. l 7r) we produce the
following synchronous relation

R= {(lewR;.,, . ..,RjrwR;.,) cwe {0,1}T} C AY.
1 r
Intuitively, R is implemented to ensure that, in the context of the
R;,
evaluation of the database we construct, there are paths xj, SN

’

Yj, LN x]f, for each i, where all the y;,’s are equal, and identified

by a word w € {0, 1}*. We have now defined ¢g, and we are left
with defining D, which we will define as an extension D 2 D over
the expanded alphabet A, consisting of adding simple cycles labeled
with words over {0, 1}. Suppose D has (active) domain {oy, ..., o5}
D is the result of adding a simple cycle incident to v; reading the
n’ = [log(n)]-bit binary expansion of i, that is, a word over the
alphabet {0, 1}",. This involves adding (n” — 1) - n new vertices to
D, and can be done in polynomial time. For instance:

R P R
D : @ 17‘(1 @ Ry ® - @ D: @J} R: 1 Ry u < @ l !
lflézga., Ry #,{ Ji1 R IR, Ol\dﬂ Ry Ol\d‘l Ry N1 !
2 0 O
® © B T O T Toow

Observe that this is an FPT procedure since (a) D is generated
in polynomial time in |D| and does not depend on g, and (b) the
procedure to generate g¢ is effective since C is c.e. and does not
depend on D. We finally show that this is a sound reduction.

Claim 5.2. D = q¢ if, and only if, D = q.

& Assume D [ q through a satisfying mapping y from the vari-
ables of ¢ to the nodes of D. In other words, for every 1 < i < £ we
have that R; (u(x;), p(y;)) and R} (u(y;), p(x})) are in D. Remember
that G is the abstraction of g, and Geollapse i ohtained from G by
splitting edges and adding component vertices. Let R(y, .. ., 7r)
(where r = arity(R)) be an atom of the relational subquery of q¢,

and let 1 < i < r. Let the clause containing 7; in the reachability
subquery of gg be of the form x j, iR xjf, . We then know that there
is a subquery of g of the form Rj, (xj,,yj,) A R;.k (Yji> xj’.},{), where
yj, is the variable corresponding to the connected component of
;. Hence, by our construction of D, there exists a path
Rjk w }k
RO == wlys) = plyj) — plxj)

where w € {0, 1}*corresponds to reading the {0, 1}-labeled simple
cycle attached to the vertex y(yj, ). Denote this path by f, (7;), and
let f, = pi. Then fy, f, serves as a satisfying assignment for g on
D.

= Conversely, given satisfying assignments fy, f, for the node
and path variables of g on D, one can easily build a satisfying
assignment 1 for g on D. Restricted to node variables, p(x) = f,(x).
Given a component variable y of g corresponding to a connected
component ¢ of G, consider any path variable 7 of ¢ such that
label(f,()) = RwR’ for some R, w, R’, where w is the binary en-
coding of the number i (by construction, all such r in ¢ will read the
same w). Then, we can send the variable y to v;. Foreach 1 < i < ¢,
the existence of the D path

Ri R;
fa(x) = fa(yi) = fal(x))

shows that R; (u(x;), p(yi)) AR (u(x]), u(y;)) holds true in D. Thus,
4 is an assignment witnessing D = gq. O

LEMMA 5.4. Foranyc.e. class C of 2L graphs such that ccyertex(C) =
oo, p-eval-ECRPQ(C) is XNL-hard.

Proor. We show an FPT reduction from the p-IE problem (cf. § 2),
which is XNL-complete under FPT reductions [20]. We divide the
reduction into two cases: (a) the case where the size of hyperedges
in {G" : G € C} is bounded and (b) the case in which for every
n € N there exists G € C containing a hyperedge of size > n.

(a) Bounded hyperedges Given k DFA Aj, ..., A over an alpha-
bet A, we want to test whether L(A;) N --- N L(Ay) # 0 where
k is the parameter. We can first look for a 2L graph G € C such
that G™¢! contains a connected component having a “long path”.
That is, a 2L graph G = (V, E, H, n, v) with a set of k hyperedges
hi,...,hx € H of size > 2, and k — 1 edges uy,...,up_1 € E
such that each u; is in hj, hjy+1, and nowhere else. In other words,
ui € (v(hi) Nv(hir1)) \ Ujg(iir1) v(hj) for every i. Observe that,
since ccyertex(C) = oo and the sizes of hyperedges are bounded, we
must necessarily find such 2L graph G. Further, this is computable
since C is c.e.

We now produce an ECRPQ g over an alphabet B = A U{#, $}
with abstraction G. Let hg,q, ..., hx be the remaining hyperedges
of H, and let g = ¢ A A1<i<n Ri(%;) be such that (1) q abstracts
to G, mapping R;(%;) to h; for every i, where ¢ is the reachability
subquery, and (2) u; is the last element of #; and the first element
of #j1 for every 1 < i < k. Observe that such q exists and that it
can be trivially produced from G in polynomial time. In order to
complete the definition of ¢, we need to define the synchronous
relation corresponding to each R;. For i < k, we define the relation
R; € B*" of arity r as follows

Ri={(¢w$,up ..., ur—p, #w$™) : we A%uy, ..., ur_y € B*}

and for i > k, we let R; = B*", where r = arity(R;). Each R; is
synchronous and can be built in polynomial time. Now we define a
graph database D such that D [ q iff (); L; # 0. For each i < n, we
build a graph database D; over the alphabet B, which consists of
the transition graph A; plus i vertices v, ol .. .,v;:_l, one edge from
v to the initial state of A; reading #, and for every final state vertex
gy of A; a path from g to v going through vi, ey le reading the
word $. Here is an example of D3, assuming A3 has 2 final states.
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We finally define D = | J; D;, which is a disjoint union except for v.
Consider, for each u; (remember u; is a path variable of g), the
source node variable x; and the target node variable y; such that

X; 4, y; is an atom in the reachability subquery of ¢q. Let X =
{X1,..., X, Y1, ..., yx }. For any mapping f; from the node variables
of g to the vertices of D such that f;, (x) = v for every x € X, observe
that there is some f, such that (fy, fp) is a satisfying assignment
for q if, and only if, L(A1) N -+ - N L(Ag) # 0. On the other hand,
any assignment f,, in which some node variable x € X is not
mapped to v cannot be part of any satisfying assignment (fn, fp),
because the relations R; (i < k) demand the first and last symbols of
label(fp(u;)) to be # and $ respectively, and this can only happen if
fp(u;) starts and ends at v —in other words, if f, (x;) = fn(y;) = 0.
We have then produced D and g such that D, g is a ‘yes’ instance
of p-eval-ECRPQ(C) if, and only if, {A;}; < is a ‘yes’ instance of
the p-IE problem. Further, the size of q depends only on k and the
class C (which is fixed) and can be bound via a computable function
(since C is c.e.), and the database D can be produced in polynomial
time (in fact, linear) with respect to the size of {A;};<x. All in all,
this means that this is an FPT reduction.

(b) Unbounded hyperedges The FPT reduction just shown can be
adapted to this case by simply finding a 2L graph G with a hyperedge
h of size r > k, implementing the graph G as an ECRPQ q as before,
this time with a relation R corresponding to h implemented as

R={#ws$L#wss .. #wsk weA}xB0 c (B

and defining all other relations R’ as universal: R’ = B*@ity(K)
Note that R can be produced in polynomial time as a synchronous
relation, and we still have D | q iff (; L(A;) # 0. O

6 PUTTING ALL TOGETHER

We finally show how all ingredients fit together to prove the results
promised in Section 3.

THEOREM 3.1 (CHARACTERIZATION FOR P-EVAL-ECRPQ). For any
c.e. class C of 2L graphs,
(1) if ccvertex(C) = oo, then p-eval-ECRPQ(C) is XNL-complete;
(2) if ccyertex(C) < o0 and tw(C) = oo, then p-eval-ECRPQ(C) is
W[1]-complete;
(3) if ccyertex(C) < o0 and tw(C) < oo, then p-eval-ECRPQ(C) is
FPT.

Proor. (1) The upper bound follows from Lemma 4.2 and the
lower bound from Lemma 5.4.

(2) For the lower bound, suppose ccyertex(C) = ¢ and tw(C) = .
By Lemma 5.2, this implies tw(C C"”“ps‘e) = o0, and thus we have
that p-eval-CQy;, (C!laPse) js W[1]-complete by Corollary 2.6. Ap-
plying the FPT reduction of Lemma 5.3, we obtain that p-eval-
ECRPQ(C) is W[1]-hard. The upper bound follows from Lemma 4.3(1)
combined with the upper bound of Proposition 2.3(2).

(3) Since tw(C"°%) < co, observe that p-eval-CQ(C"%) is FPT
(further, in polynomial time) by Proposition 2.3(1). Hence, the FPT
reduction of Lemma 4.3(1) yields an FPT algorithm. O

THEOREM 3.2 (CHARACTERIZATION FOR EVAL-ECRPQ). For every
cc-tame class C of 2L graphs, and assuming W[1] # FPT,

(1) if ccvertex(C) = 00 OF cCpegge(C) = oo, then eval-ECRPQ(C) is
PSPACE-complete;

(2) if cevertex(C) < 00, cCpedge(C) < o0 and tw(C) = oo, then eval-
ECRPQ(C) is in NP and not in polynomial time;

(3) if cevertex(C) < 09, cChedge(C) < 00 and tw(C) < oo, then eval-
ECRPQ(C) is in polynomial time.

ProoOF. (1) The lower bound is given by Lemma 5.1, and it is
the only place where cc-tameness is used. The upper bound follows
from the PSpacE upper bound of eval-ECRPQ of Proposition 2.2.

(2) For the lower bound, observe that if eval-ECRPQ(C) was in
polynomial time, then in particular p-eval-ECRPQ(C) would be
FPT. The previous Theorem 3.1(2) has established that, however, p-
eval-ECRPQ(C) is W[1]-complete, and thus this would imply FPT =
W/[1], contradicting the hypothesis. The upper bound follows from
the polynomial time reduction to eval-CQ of Lemma 4.3(2), com-
bined with the fact that eval-CQ is in NP [7].

(3) This follows again by the polynomial time reduction to eval-

CQ(C"%) of Lemma 4.3(2), combined with the fact that, since
tw(C) = tw(C"%) < oo, eval-CQ(C™%) is in polynomial time by
Proposition 2.3(1) [8]. O

7 CONCLUSION

We have studied ECRPQ, a previously studied expressive extension
of CRPQ with path relations. We have classified the complexity of
the (parameterized) evaluation problem for fragments of ECRPQ, as
defined by their underlying structure. Contrary to CQ and CRPQ,
the different scenarios in this case are more elaborate, and in par-
ticular tractable evaluation does not coincide with tractable param-
eterized evaluation. However, they can be succinctly described by
means of three measures: treewidth, and the sizes (either as #edges
or #vertices) of connected components of the relations used.

The characterization results can be extended in a standard way
to non-Boolean queries having free node variables (considering the
corresponding decision problem of whether a tuple of vertices is in
in the answerset), and to finite unions of ECRPQ (a.k.a. UECRPQ).
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A APPENDIX

LEMMA A.1. Let C be a cc-tame class of 2L graphs such that
cCvertex(C) = 00 OF CCpege(C) = oo. Then, for every n € N, there
exists a computable 2L-graph G € C such that G" contains some
connected component ¢ having either (i) n vertices, or (ii) a vertex
incident to n hyperedges.

Proor. Recall that C is cc-tame and ccyertex(C) +CChedge(C) = 0o
So there exists a computable function f such that for all k € N,
cevertex(F(K)) + Cehedge(F(K)) = n. Let G = f(n+ (n—1)2). Then
G is computable (by the computability of f).

We argue that G/ contains a connected component ¢ which has
either at least n vertices (Case (i)), or at least one vertex incident
to n hyperedges (Case (ii)). If (i) is not true, then every connected
component of G contains at most (n—1) vertices, s0 cCyertex(G) <
n—1. Further, if (ii) is not true, then every vertex in G” ¢l 5 incident to
at most (n—1) hyperedges, 50 ccpegee(G) < (n— 1)2. Therefore, the
largest possible value of ccvertex(G) + cChedge(G) is (n—1) +(n — 1)2.
However, G = f(n+ (n — 1)%) and by definition f satisfies

cevertex(f(n+ (n = 1)%)) + cCpedge(f(n+ (n = 1)?) 2 n+ (n = 1)%)

This is a contradiction. Therefore, either (i) or (ii) is true. O
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