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Abstract—The field of digital pathology emerged with the
introduction of whole slide imaging scanners and lead to the de-
velopment of new tools for analyzing histopathological slides. The
availability of digital representation of the slides has motivated
the development of artificial intelligence methods to automatically
identify microscopic structures in order to support pathologists
in their diagnosis. Unlike many existing approaches targeting the
detection of microscopic structures on static images at a given
and fixed magnification level, our work focuses on the real-time
detection of the structures at different scales. Indeed, real-time
detection at different scales brings additional challenges but also
better mimics the way pathologists work as they continuously
move the slides and change the magnification level during their
analysis. In this paper, we focus on renal pathology and more
specifically on the real-time detection of glomeruli at different
scales. Our method is based on the deep learning object detection
model YOLOV3 pre-trained on the COCO dataset and fine tuned
to detect glomeruli. We investigate the benefits of using multi-
scale images to improve the network ability to detect glomeruli
at variable magnification levels in real time.

Index Terms—real-time glomerulus detection, digital pathol-
ogy, deep convolutional networks

I. INTRODUCTION

According to the Organ Procurement and Transplantation
Network (OPTN) [1], 113,021 patients were on a waiting list
for organs in 2019. Among them, 94,715 (83,8%) needed a
kidney transplantation while at the same time only 13,408
donations of kidney graft were made. As a consequence, the
median waiting time is between a year and a half, and three
years. In this process, kidney graft rejection occurred in 21, 5%
cases after five years following the transplantation.

In order to early detect and prevent graft rejection, a
common procedure is to perform a kidney biopsy and observe
the tissue through a microscope. Pathologists generally focus
on observing glomeruli, whose main function is the filtration
of urine. Glomeruli identification and examination in the slides
inform the pathologists about the current state of the kidney
and can help detecting rejection at early stage.

In recent years, the field of pathology evolved with the
advent of digital pathology and the introduction of whole slide
imaging scanners which lead to the development of new tools
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Fig. 1. Examples of glomeruli as they appear in WSI with variety of size,
shape and texture (PAS staining).

for analyzing histopathology slides. The availability of digital
representation of the slides has motivated the development
of artificial intelligence methods to automatically identify
microscopic structures in order to support pathologists in their
diagnosis. However, analyzing Whole Slide Images (WSIs) has
two significant challenges. First, WSIs are difficult to handle
due to their large size (up to 70,000 pixels per side). Second,
during the WSI creation process, the tissues are manually
sliced which can lead to tissue deformation. Those geometric
transformations can affect glomeruli size, shape and texture.
Figure 1 shows examples of different glomeruli as they appear
in WSI.

Unlike many existing approaches that target the detection
of microscopic structures on static images at a given and
fixed magnification level [2]-[4], our work focuses on the
real-time detection of the structures at different scales. Real-
time detection at different scales brings additional challenges
but also better mimics the way pathologists work as they
continuously move the slides and change the magnification
level during their analysis. Our method is based on the deep
learning object detection model YOLOV3 pre-trained on the
COCO dataset [5] and fine tuned to detect glomeruli. As shown
in [6], pathologists assisted by AI improved their overall
performance during a diagnosis. Based on this observation,
this work is a proof-of-concept of what could be done in the
future to help pathologists in their daily work as in [7].

The paper is organized as follows: in Section II our method
for real-time multi-scale glomeruli detection is presented.
Then, some experiments on renal WSIs are described in
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Fig. 2. The YOLOV3 architecture with Darknet-53 as backbone. The architecture is composed of 106 fully convolutional layers.

Section III and discussed in Section IV to highlight the
potential benefits of this approach in pathology.

II. METHOD
A. Real-time object detection

Numerous methods have been proposed for real-time ob-
ject detection: the real-time object detector SSD [8] and
RetinaNet [9] detect multiple objects in images by taking
information at one single shot. Whereas SSD, R-CNN [10]
uses a two-stage architecture to extract 2,000 region proposals
and detect object in each proposal. R-CNN authors use a
CNN followed by a SVM to detect and classify objects. To
overcome the long time required to train the CNN, R-CNN
authors remove the 2,000 region proposals and directly feed
the CNN with the entire image. This improvement leads to the
state-of-the-art real-time object detection architecture called
Faster-RCNN [11]. Furthermore, Kawazoe et al. [12] show the
superiority of Faster-RCNN for glomeruli detection task. Due
to its two-stage detector, Faster-RCNN is one of the slowest
real-time method compared to SSD, RetinaNet and YOLO [13]
as shown in [14]. Our goal being to perform detection in
real-time on images displayed by a microscope, we want a
fast architecture. We made a trade-off between quality of the
detection and speed. Therefore, we privilege YOLO for its
performance close to Faster-RCNN and its speed superior to
Faster-RCNN.

B. YOLOv3 architecture

To perform detection, YOLO uses features from 3 different
scales as shown in Figure 2. For each input image, the

architecture uses multiple downsampling layers to reduce the
image size to scale 1. Objects of interest are detected at this
level with stride 32. Then, the image is upsampled to scale 2
and the network performs detection with stride 16. Finally
the image is upsampled again and detection is performed
with stride 8 at scale 3. The feature maps from the three
different scales are extracted and concatenated. At each scale,
the network predicts three bounding boxes locations z, y, w, h
along with the class probability. To filter all those predictions,
a confidence score is defined (see Equation 2) as the product
of the class probability multiplied by the Intersection Over
Union (/OU) between the predictions and the ground truth:

pred N truth
10U = ——FF— 1
pred U truth 0
ConfidenceScore = Pr(Class;) * IOU;:%}L )

In other words, a high confidence score means a high
probability for a bounding box to belong to an object given by
the network. Hence, the detections with a low confidence score
are often low quality detections. A threshold is established
to remove those detections with a low confidence. After this
step, it remains multiple detections to the same object. To
resolve this problem, non-maximum suppression (NMS) [15]
algorithm is used to remove the redundant detection belonging
to the same object. In this way, it remains only one single
bounding box per object in the image.



Fig. 3. The first row (1) shows examples of patches with a size of 736x1280 pixels took at different scales. The second row (2) shows the associated ground
truth with in black the tissue and in white the glomeruli (columns (a) to (d) are respectively at 40X, 20X, 10X and 5X magnification).

C. Implementation

We use YOLOvV3 implementation provided by [16] which
is programmed in Python using Keras [17]. We employ a
transfer learning approach called fine tuning to transfer the
neural network weights from the model pre-trained on COCO
[5] dataset to our dataset (COCO is one of the largest images
dataset for the detection task, regrouping 123,287 images
which contains 886,284 instances). Then, the model is trained
on glomeruli images to be adapted to our task. Fine tuning
is very useful in our context where data are hard to obtain.
Thus, it allow us to use a modest size dataset and still have
an efficient and relevant model as in [18].

In our implementation, we train our network with field-of-
view images as it better mimics the way a pathologist see a
part of a slide under a virtual microscope during a diagnosis.
We take a standard monitor size of 720p as reference to feed
our network. Hence, each WSI is divided in patches of the
same size (736'x1280 pixels). In order to analyze the network
performance and the impact of each scale, we create 5 distinct
datasets to lead our experiments. Four datasets contain images
at one single scale (40X, 20X, 10X and 5X magnification)
and the last dataset contains images from all those scales.
An example of patches and their associated ground truths are
presented in Figure 3.

We expect that using multi-scale images will help the
network to generalize its ability to detect glomeruli at different
magnification levels in real time as shown in [19] as we want
our model to be able to detect glomeruli at different scales.

D. Data augmentation

To mitigate the lack of data and increase the dataset di-
versity, we used the Augmentor [20] library to perform data
augmentation on our dataset. We privilege transformations
which could appear in reality due to human or mechanical
manipulations as in [21]:

'The YOLOV3 network downsamples input images by 32. Hence, the input
images must be multiple of 32. So we choose 736x1280 pixels instead of
720x1280 pixels

« affine: random rotation and horizontal/vertical flip;
 contrast: random variation of shadow and light.

We apply the chosen data augmentation methods to every
images in our datasets and we remove the images produced
without glomerulus. This process increase our total number of
images by 6 for each dataset as shown in Table I.

III. EXPERIMENTS AND RESULTS
A. Data

WSIs used in experiments were collected by Hannover Med-
ical School (MHH) from 10 patients who received a kidney
graft which failed. Kidney were extracted by nephrectomy
after complete loss of function. The collected tissues were
retained in paraffin, then samples were cut in 3 pm slices.
Staining instrument (Ventana Benchmark Ultra) were used to
stain slides with PAS staining. This process highlights the
tissue structures. A digital whole slide scanner (Aperio AT2)
created 40X magnification images from slides. Largest image
size is 113,543 x 76,898 pixels. Every WSI has been annotated
by pathology experts thanks to Cytomine [22].

For our experiments, we use 10 WSIs containing between 86
to 443 glomeruli as presented in Table II. To tackle overfitting,
we use cross-validation with 5 folds (K = 5). The Table II
also shows the number of glomeruli by cross-validation fold
which vary between 400 and 718 glomeruli. During the cross-
validation process, each WSI is presented to the network as a
test data once as shown in Table III.

Next, we create 5 distinct datasets to feed our networks.
Four of them contain images (736x1280 pixels) of one single
scale (40X, 20X, 10X and 5X magnification). The last dataset
contains multi-scale images from all the previous datasets.

B. Experiments

We train a network with YOLOv3 architecture on each
dataset (40X, 20X, 10X, 5X, multi-scale) to observe the im-
pacts of using multi-scale images. We set the same parameters
and hyper-parameters during the training part to compare the
networks performance. The COCO model provide by YOLO



Dataset

Number of images 40X 20X 10X 5X Total

Before data augmentation 5,701 2,768 1,130 412 10,011

After data augmentation 35,185 16,851 7,372 2,883 62,272
TABLE I

NUMBER OF IMAGES IN EACH DATASET BEFORE AND AFTER DATA AUGMENTATION.

Patient ID  #glomeruli Fold #glomeruli
per WSI number per fold
10 192 1 400
11 208
12 86 2 506
13 420
14 208 3 436
15 228
16 443 4 718
17 275
18 360 5 461
19 101
TABLE II

THE NUMBER OF GLOMERULI PER WSI AND FOLD.

Split number ~ Train Validation ~ Test

First split 3,4,5 2 1

Second split 1,4,5 3 2

Third split 1,2,5 4 3

Fourth split 1,2,3 5 4

Fifth split 2,3, 4 1 5
TABLE III

THE DISTRIBUTION OF FOLDS IN PATIENTS IN TRAIN, VALIDATION AND

TEST SPLIT.

authors is used as pre-trained model. To get a stable loss, we
freeze all the layers except 3. Then, we train our networks
with a learning rate of 0.001, a batch of 1 and 50 epochs. We
then fine tune our network by unfreezing the layers and retrain
it with a lower learning rate of 0.0001, a batch of 1 and 50
epochs. To force YOLOV3 to learn the correct information, we
experimentally choose an IOU of 0.3 and a confidence score
of 0.2 during the training process. Those values are the best to
filter bad predictions and keep the majority of best detections
as shown in [23] and [24]. We evaluate the model with the
same IOU and confidence values. Adam optimizer and YOLO
loss proposed by YOLO authors are used.

The entire process is performed on Nvidia GTX 1080 GPU
cards provided by the computer center Mesocentre and last
4 to 72 hours depending of the dataset used. To evaluate the
model, we compute Precision and Recall from True positive
(TP), False positive (FP) and False negative (FN) instances.
We show an example of detections made by the model on
several patches in Figure 4.

C. Results

Once training is over, each network is tested on each dataset
(40X, 20X, 10X, 5X, multi-scale). We use the same IOU and
confidence score as training to evaluate the networks. Then
as a first step, the TP, FP and FN obtained by our models
on the test images are drawn to visually evaluate the results

Fig. 4. Example of detection made by one of our model on field-of-view
images from a WSI stained in PAS. We draw a black dotted line to show the
bound of images. Green bounding boxes show the correct predictions made
by the network, red are incorrect detection and blue missed glomeruli.

as shown in Figure 5. Secondly, we compute Fl-scores (five-
fold cross validation) shown in Table IV. An example of real-
time detection performed by our network trained with 5X
magnification images on a video is available here”.

IV. DISCUSSION

The results show that the network trained on 20X magni-
fication images gives the best Fl-score on 40X magnification
images. According to these results, 20X magnification images
have more relevant information to improve the understanding
ability of the network at 40X magnification. In a different way,
the network trained on 5X magnification images is the best for
datasets containing 20X, 10X and 5X magnification images.
Again, this observation shows that some magnification levels
are more relevant for the network and it seems a good idea to
train the network using images with a lower magnification.

Unlike the results found by Song et al. [19] where the multi-
scale approach got the best F1-scores, in our experiments, the
5X and multi-scale networks have the same Fl-score when
they are used on multi-scale dataset. The multi-scale network
seems to fail to generalize on several magnification level.

Furthermore, some F1-scores in Table IV are close to or
equal 0. That happens when we test a model with a dataset
which contains images with a much lower magnification. This
observation show our networks can easily detect glomeruli
with a higher magnification level rather than a lower magni-
fication level. As a consequence, to properly detect objects of
interest with an Al assisted microscope, it seems interesting
to use images with an low magnification level for the train the
network. One last thing to note, the best performance are given

2 http://jonathan-weber.eu/cp/cbms2020/
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Datasets used for testing

Magnification 40X 20X 10X  5X  40X,20X,10X,5X
40X 0.38 0.18 0 0 0.32
Datasets used 20X 044 040 0.03 0 0.35
for training 10X 0.35 044 056 0.18 0.43
5X 0.1I8 053 0.78 0.77 0.48
40X,20X,10X,5X 043 049 061 046 0.48
TABLE IV

F1-SCORES RESULTS FOR YOLOV3 TRAINED AND TESTED ON DATASET OF DIFFERENT SCALES.

D True positive (TP)
D False positive (FP)
D False negative (FN)

Fig. 5. Example of detection made by the network trained and tested on 5X magnification images. The images are merged together to reconstruct the original
WSI of the patient 15. Green bounding boxes show the correct predictions made by the network, red are incorrect detection and blue missed glomeruli.

by 5X network which is trained with less than 500 original
images (a low magnification level produces less images).

In Figure 5, we observe many missed glomeruli. This is due
to the fact that the detections performed by the network are
filtered by the confidence and the IOU threshold. Filtering the
detections decreases the number of glomeruli found, but it also
decreases the number of false detections found by the network.
So there is a trade-off to get the best F1-Score possible.

V. CONCLUSION

The recent research in analysis of WSI in digital pathology
has shown good results for computer vision task in medical
images. However, to assist the pathologist in his/her daily
work, those tasks, like glomeruli detection, must be realized
in real-time directly on microscope. In this paper, we pro-
posed a real-time detection method for glomeruli in renal

pathology. Considering that in a real case the pathologist
continuously changes the magnification level, we explore
multi-scale method to enhance the network performance. Our
experimental results indicate that the choice of magnification
level for training is crucial to obtain good results. To improve
detection performance, future works could investigate ensem-
ble learning to combine networks output at different scales.
Moreover, we can imagine to deal with additional challenges
such as multi-stain WSI and multiclass glomeruli (healthy,
sclerotic, partially sclerotic) in order to determine in real-time
the state of a kidney according to Banff classification. Finally,
it would be interesting to deploy the approach in clinical
research setting and to assess its influence through interviews
with pathologists.
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