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Abstract
We study first-order logic over unordered structures whose elements carry two data values from an
infinite domain. Data values can be compared wrt. equality so that the formalism is suitable to
specify the input-output behavior of various distributed algorithms. As the logic is undecidable in
general, we introduce a family of local fragments that restrict quantification to neighborhoods of a
given reference point. Our main result establishes decidability of the satisfiability problem for one
of these non-trivial local fragments. On the other hand, already slightly more general local logics
turn out to be undecidable. Altogether, we draw a landscape of formalisms that are suitable for the
specification of systems with data and open up new avenues for future research.
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1 Introduction

Data logics have been introduced to reason about structures whose elements are labeled with
a value from an infinite alphabet (e.g., XML documents) [26]. Expressive decidable fragments
include notably two-variable logics over data words and data trees [5, 6]. The decidability
frontier is fragile, though. Extensions to two data values, for example, quickly lead to
an undecidable satisfiability problem. From a modeling point of view, those extensions
still play an important role. When specifying the input-output behavior of distributed
algorithms [13,23], processes get an input value and produce an output value, which requires
two data values per process. In leader election or renaming algorithms, for instance, a process
gets its unique identifier as input, and it should eventually output the identifier of a common
leader (leader election) or a unique identifier from a restricted name space (renaming).

In this paper, we consider a natural extension of first-order logic over unordered structures
whose elements carry two data values from an infinite domain. There are two major differences
between most existing formalisms and our language. While previous data logics are usually
interpreted over words or trees, we consider unordered structures (or multisets). When each
element of such a structure represents a process, we therefore do not assume a particular
processes architecture, but rather consider clouds of computing units. Moreover, decidable
data logics are usually limited to one value per element, which would not be sufficient to
model an input-output relation. Hence, our models are algebraic structures consisting of a
universe and functions assigning to each element two integers. We remark that, for many
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2 Local First-Order Logic with Two Data Values

distributed algorithms, the precise data values are not relevant, but whether or not they
are the same is. Like [5, 6], we thus add binary relations that allow us to test if two data
values are identical and, for example, whether all output values were already present in the
collection of input values (as required for leader election).

The first fundamental question that arises is whether a given specification is consistent.
This leads us to the satisfiability problem. While the general logic considered here turns
out to be undecidable already in several restricted settings, our main result shows that an
interesting fragment preserves decidability. The fragment is a local logic in the sense that
data values can only be compared within the direct neighborhood of a (quantified) reference
process. The first value at the reference point can be compared with any second value in the
neighborhood in terms of what we call the diagonal relation. In this work, we do not allow
the symmetrical relation, but we hope we could adapt our technique to this case as well.

However, we do not restrict comparisons of first values with each other in a neighborhood,
nor do we restrict comparisons of second values with each other. Note that adding only one
diagonal relation still constitutes an extension of the (decidable) two-variable first-order logic
with two equivalence relations [18–20]: equivalence classes consist of those elements with
the same first value, respectively, second value. In fact, our main technical contribution is
a reduction to this two-variable logic. The reduction requires a careful relabelling of the
underlying structures so as to be able to express the diagonal relation in terms of the two
equivalence relations. In addition, the reduction takes care of the fact that our logic does
not restrict the number of variables. We can actually count elements up to some threshold
and express, for instance, that at most five processes crash (in the context of distributed
algorithms). This is a priori not possible in two-variable logic.

More Related Work. Orthogonal extensions for multiple data values include shuffle
expressions for nested data [3] and temporal logics [10, 17]. Other generalizations of data
logics allow for an order on data values [24, 27]. The application of formal methods in
the context of distributed algorithms is a rather recent but promising approach (cf. for a
survey [21]). A particular branch is the area of parameterized systems, which, rather than
on data, focuses on the (unbounded) number of processes as the parameter [4, 12]. Other
related work includes [11], which considers temporal logics involving quantification over
processes but without data, while [1] introduces an (undecidable) variant of propositional
dynamic logic that allows one to reason about totally ordered process identifiers in ring
architectures. First-order logics for synthesizing distributed algorithms were considered
in [7,14]. A counting extension of two-variable first-order logic over finite data words with
one data value per position has been studied in [2].

Outline. Section 2 introduces basic notions such as structures and first-order logic, and our
local first-order logic and the associated satisfiability problem(s). We identify and solve the
decidable case in Section 3. In Section 4, we show that minor extensions of our logic result in
undecidability. We conclude in Section 5. Some proof details can be found in the appendix.

2 Structures and First-Order Logic

2.1 Structures and First-Order Logic

Let Σ be a finite set of unary relation symbols, sometimes called unary predicates. A data
structure over Σ is a tuple A = (A, f1, f2, (Pσ)σ∈Σ) (in the following, we simply write
(A, f1, f2, (Pσ))) where A is a nonempty finite set, Pσ ⊆ A for all σ ∈ Σ, and f1 and f2
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are mappings A → N assigning a data value to each element. We let ValA = {f1(a) | a ∈
A} ∪ {f2(a) | a ∈ A}. The set of all data structures over Σ is denoted by Data[Σ].

While this representation of data structures is often very convenient to refer to the first
or second data value of an element, a more standard way of representing mathematical
structures is in terms of binary relations. For every (i, j) ∈ {1, 2} × {1, 2}, the mappings f1
and f2 determine a binary relation i∼A

j ⊆ A × A as follows: a i∼A
j b if fi(a) = fj(b). We

may omit the superscript A if it is clear from the context. This representation is particularly
useful when we consider logics as specification languages.

Let Γ ⊆ {1, 2} × {1, 2} be a set of binary relation symbols, which determines the binary
relation symbols i∼j at our disposal, and let V = {x, y, . . .} be a countably infinite set of
variables. The set FO[Σ; Γ] of first-order formulas interpreted over data structures over Σ is
inductively given by the grammar φ ::= σ(x) | x i∼j y | x = y | φ ∨ φ | ¬φ | ∃x.φ, where x
and y range over V, σ ranges over Σ, and (i, j) ∈ Γ. We use standard abbreviations such as
∧ for conjunction and → for implication. We write φ(x1, . . . , xn) to indicate that the free
variables of φ are among x1, . . . , xn. A formula without free variables is called a sentence.

For A = (A, f1, f2, (Pσ)) ∈ Data[Σ] and a formula φ ∈ FO[Σ; Γ], the satisfaction relation
A |=I φ is defined wrt. an interpretation function I : V → A. The purpose of I is to assign
an interpretation to every (free) variable of φ so that φ can be given a truth value. For x ∈ V
and a ∈ A, the interpretation function I[x/a] maps x to a and coincides with I on all other
variables. We then define:

A |=I σ(x) if I(x) ∈ Pσ A |=I φ1 ∨ φ2 if A |=I φ1 or A |=I φ2

A |=I x i∼j y if I(x) i∼A
j I(y) A |=I ¬φ if A ̸|=I φ

A |=I x = y if I(x) = I(y) A |=I ∃x.φ if there is a ∈ A with A |=I[x/a] φ

Finally, for a sentence φ (without free variables), we write A |= φ if there exists an
interpretation function I such that A |=I φ.

▶ Example 1. Assume a unary predicate leader ∈ Σ and (1, 2) ∈ Γ. We use the first
data value to denote the input of a distributed algorithm and the second data value to
denote the output. The following formula from FO[Σ; Γ] expresses correctness of a leader-
election algorithm: (i) there is a unique process that has been elected leader, and (ii) all
processes agree, in terms of their output values, on the identity (the input value) of the
leader: ∃=1x.leader(x) ∧ ∀y.∃x.(leader(x) ∧x 1∼2 y). Here ∃=1x is a shortcut for “there
exists exactly one x”. Its definition is provided later on. ⋄

Note that every choice of Γ gives rise to a particular logic, whose formulas are interpreted
over data structures over Σ. Instead of FO[Σ; {(1, 1), (2, 2)}], we may also simply write
FO[Σ; (1, 1), (2, 2)] and so on. We will focus on the satisfiability problem for these logics. Let
F denote a generic class of first-order formulas, parameterized by Σ and Γ. In particular, for
F = FO, we have that F [Σ; Γ] is the class FO[Σ; Γ].

▶ Definition 2. The problem DataSat(F ,Γ) for F and Γ is defined as follows: Given a
finite set Σ and a sentence φ ∈ F [Σ; Γ], is there A ∈ Data[Σ] such that A |= φ ?

The following negative result, which was shown in [16, Theorem 1], calls for restrictions
of the general logic:

▶ Theorem 3 ([16]). DataSat(FO, {(1, 1), (2, 2)}) is undecidable, even when requiring that
Σ = ∅.
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A Normal Form. When Γ = ∅, satisfiability of monadic first-order logic is decidable [9,
Corollary 6.2.2] and the logic actually has a useful normal form. Let φ(x1, . . . , xn, y) ∈
FO[Σ; ∅] and k ≥ 1 be a natural number. We use ∃≥ky.φ(x1, . . . , xn, y) as an abbreviation
for ∃y1 . . . ∃yk.

∧
1≤i<j≤k ¬(yi = yj)∧

∧
1≤i≤k φ(x1, . . . , xn, yi). Thus, ∃≥ky.φ says that there

are at least k distinct elements y that verify φ. We call a formula of the form ∃≥ky.φ a
threshold formula. We also use ∃=ky.φ as an abbreviation for ∃≥ky.φ ∧ ¬∃≥k+1y.φ.

When Γ = ∅, the out-degree of every element is 0 so that, over this particular signature, we
deal with structures of bounded degree. The following lemma will turn out to be useful. It is
due to Hanf’s locality theorem [15,22] for structures of bounded degree (cf. [8, Theorem 2.4]).

▶ Lemma 4. Every formula from FO[Σ; ∅] with one free variable x is effectively equivalent
to a Boolean combination of formulas of the form σ(x) with σ ∈ Σ and threshold formulas of
the form ∃≥ky.φU (y) where U ⊆ Σ and φU (y) =

∧
σ∈U σ(y) ∧

∧
σ∈Σ\U ¬σ(y).

Extended Two-Variable First-Order Logic. An orthogonal way to obtain decidability is to
restrict to two variables and Γ = {(1, 1), (2, 2)}. The two-variable fragment FO2[Σ; Γ]
contains all FO[Σ; Γ] formulas that use only two variables (usually x and y). In a two-variable
formula, however, each of the two variables can be used arbitrarily often. The satisfiability
problem of two-variable logic over arbitrary finite structures with two equivalence relations
is decidable [20, Theorem 15]. By a straightforward reduction to this problem, we obtain:

▶ Theorem 5 ([20]). The problem DataSat(FO2, {(1, 1), (2, 2)}) is decidable.

Actually, this result can be generalized to extended two-variable first-order logic. A formula
belongs to ext-FO2[Σ,Γ] if it is of the form φ∧ψ where φ ∈ FO[Σ; ∅] and ψ ∈ FO2[Σ,Γ]. To
obtain the next result, the idea consists in first translating the formula φ ∈ FO[Σ; ∅] to a
two-variable formula thanks to new unary predicates.

▶ Proposition 6. The problem DataSat(ext-FO2, {(1, 1), (2, 2)}) is decidable.

2.2 Local First-Order Logic

We are interested in logics that combine the advantages of the logics considered so far, while
preserving decidability. With this in mind, we will study local logics, where the scope of
quantification is restricted to the neighborhood of a given element.

The neighborhood of an element a includes all elements whose distance to a is bounded
by a given radius. It is formalized using the notion of a Gaifman graph (for an introduction,
see [22]). In fact, we use a variant that is suitable for our setting and that we call data
graph. Fix sets Σ and Γ. Given a data structure A = (A, f1, f2, (Pσ)) ∈ Data[Σ], we define
its data graph G(A) = (VG(A),EG(A)) with set of vertices VG(A) = A× {1, 2} and set of edges
EG(A) = {((a, i), (b, j)) ∈ VG(A) × VG(A) | a = b and i ̸= j, or (i, j) ∈ Γ and a i∼j b}. The
graph G(A) is illustrated in Figure 1.

We define the distance dA((a, i), (b, j)) ∈ N∪{∞} between two elements (a, i) and (b, j)
from A× {1, 2} as the length of the shortest directed path from (a, i) to (b, j) in G(A). In
fact, as the graph is directed, the distance function might not be symmetric. For a ∈ A and
r ∈ N, the radius-r-ball around a is the set BA

r (a) = {(b, j) ∈ VG(A) | dA((a, i), (b, j)) ≤ r for
some i ∈ {1, 2}}. That is, it contains the elements of VG(A) that can be reached from (a, 1)
or (a, 2) through a directed path of length at most r. In the left-hand side of Figure 1, BA

1 (a)
is given by the blue nodes.

Consider an injective mapping π : A× {1, 2} → N \ValA. We define the r-neighborhood
of a in A as the structure A|ra = (A′, f ′

1, f
′
2, (P ′

σ)) ∈ Data[Σ]. Its universe is A′ = {b ∈
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1
2
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1

3
2

1
4

3
5

1
2
a

8
1

9
2

1
6

Figure 1 On the left: A data structure A and its data graph G(A) when Γ = {(1, 1), (2, 2), (1, 2)}.
Unidirectional edges are dashed. The blue nodes represent BA

1 (a). On the right is A|1a.

A | (b, i) ∈ BA
r (a) for some i ∈ {1, 2}}. Moreover, f ′

i(b) = fi(b) if (b, i) ∈ BA
r (a), and

f ′
i(b) = π((b, i)) otherwise. Finally, P ′

σ is the restriction of Pσ to A′. To illustrate this
definition, we use again Figure 1. The structure A|1a is given by the four elements that
contain at least one blue node. However, the values of the red nodes have to be replaced by
pairwise distinct fresh values not contained in {1, . . . , 5}. Note that the precise values do not
matter.

We are now ready to present the logic r-Loc-FO[Σ; Γ], where r ∈ N, interpreted over
structures from Data[Σ]. It is given by the grammar

φ ::= ⟨⟨ψ⟩⟩r
x | x = y | ∃x.φ | φ ∨ φ | ¬φ

where ψ is a formula from FO[Σ; Γ] with (at most) one free variable x. For A ∈ Data[Σ] and
interpretation function I, we define A |=I ⟨⟨ψ⟩⟩r

x if A|rI(x) |=I ψ.

▶ Example 7. We can rewrite the formula from Example 1 so that it falls into the fragment
1-Loc-FO[Σ; (1, 1), (2, 2), (2, 1)]: ∃=1x.⟨⟨leader(x)⟩⟩1

x ∧ ∀y.⟨⟨∃x.leader(x) ∧ y 2∼1 x⟩⟩1
y. The next

formula specifies an algorithm in which all processes suggest a value and then choose a new
value among those that have been suggested at least three times: ∀x.⟨⟨∃≥3y.x 2∼1 y⟩⟩1

x. We
can also specify partial renaming, i.e., two output values agree only if their input values
are the same: ∀x.⟨⟨∀y.(x 2∼2 y → x 1∼1 y)⟩⟩1

x. Conversely, ∀x.⟨⟨∀y.(x 1∼1 y → x 2∼2 y)⟩⟩1
x

specifies partial fusion of equivalences classes. ⋄

3 Decidability With One Diagonal Relation

We will show in this section that DataSat(1-Loc-FO, {(1, 1), (2, 2), (1, 2)}) (or, symmetrically,
DataSat(1-Loc-FO, {(1, 1), (2, 2), (2, 1)})) is decidable. To this end, we will give a reduction
to DataSat(ext-FO2, {(1, 1), (2, 2)}). The rest of this section is devoted to this reduction.

Henceforth, we fix a finite set Σ as well as Γ = {(1, 1), (2, 2), (1, 2)} and the diagonal-free
set Γdf = {(1, 1), (2, 2)}. Moreover, we let Θ range over arbitrary finite sets such that Σ ⊆ Θ
and Θ ∩ {eq, ed} = ∅, where eq and ed are special unary symbols that are introduced below.

We start with some crucial notion. Suppose Γ′ ⊆ Γ (which will later be instantiated
by either Γdf or Γ). Consider a data structure A = (A, f1, f2, (Pσ)) ∈ Data[Θ] with Σ ⊆ Θ.
Given U ⊆ Σ and a nonempty set R ⊆ Γ′, the environment of a ∈ A is defined as

EnvA,Σ,Γ′(a, U,R) =
{
b ∈ A | U = {σ ∈ Σ | b ∈ Pσ} and R = {(i, j) ∈ Γ′ | a i∼A

j b}
}

.

Thus, it contains the elements that carry exactly the labels from U (relative to Σ) and to
which a is related precisely in terms of the relations in R (relative to Γ′).

▶ Example 8. Consider A ∈ Data[Σ] from Figure 2(a) where Σ = ∅. Then, the set
EnvA,Σ,Γ(a, ∅, {(1, 1), (1, 2)}) = EnvA,Σ,Γdf

(a, ∅, {(1, 1)}) contains exactly the yellow elements
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: {(1, 1)}

: {(2, 2)}

: {(1, 2)}

: {(1, 1), (2, 2)}

: {(1, 1), (1, 2)}

: {(2, 2), (1, 2)}

: {(1, 1), (2, 2), (1, 2)}

Figure 2 (a) A data structure over Σ = ∅. (b) Adding unary predicates for a given element a.
(c) Adding counting constraints to a. (d) A well-typed data structure from Data[{eq} ∪ C3].

(with data-value pairs (1, 1)), and EnvA,Σ,Γ(a, ∅, {(1, 2)}) contains the two blue elements
(with data-value pairs (2, 1) and (3, 1)). ⋄

Let us now go through the reduction step by step.

Step 1: Transform Binary into Unary Relations

In the first step, we get rid of the binary relations by representing them as unary ones. In
fact, in a formula ⟨⟨ψ⟩⟩1

x from 1-Loc-FO[Σ; Γ], ψ only talks about elements that are directly
related to a = I(x) in terms of pairs from Γ. In fact, we can rewrite ψ into ψ′ so that all
comparisons are wrt. x, i.e., they are of the form x i∼j y. Then, a pair (i, j) ∈ Γ can be seen
as a unary predicate that holds at b iff a i∼j b. In this way, we eliminate the binary relations
and replace ψ′ with a first-order formula ψ′′ over unary predicates.

▶ Example 9. Adding unary relations to a data structure for a given element a is illustrated
in Figure 2(b) (recall that Σ = ∅). ⋄

Thanks to the unary predicates, we can now apply Lemma 4 (which was a consequence
of locality of first-order logic over unary symbols only). That is, to know whether ψ′′ holds
when x is interpreted as a, it is enough to know how often every unary predicate is present
in the environment of a, counted only up to some M ≥ 1. However, we will then give
up the information of whether the two data values at a coincide or not. Therefore, we
introduce a unary predicate eq, which shall label those events whose two data values coincide.
Accordingly, we say that A = (A, f1, f2, (Pσ)) ∈ Data[Θ ∪ {eq}] is eq-respecting if, for all
a ∈ A, we have a ∈ Peq iff f1(a) = f2(a).

Once we add this information to a, it is enough to know the size of EnvA,Σ,Γ(a, U,R)
for every U ⊆ Σ and nonempty R ⊆ Γ, measured up to M . To reason about these
sizes, we introduce a unary predicate HU,R,mI for all U ⊆ Σ, nonempty sets R ⊆ Γ, and
m ∈ {1, . . . ,M} (which is interpreted as “≥m”). We also call such a predicate a counting
constraint and denote the set of all counting constraints by CM (recall that we fixed Σ and
Γ). For a finite set Θ with Σ ⊆ Θ, we call A = (A, f1, f2, (Pσ)) ∈ Data[Θ ∪ CM ] cc-respecting
if, for all a ∈ A, we have a ∈ PHU,R,mI iff |EnvA,Σ,Γ(a, U,R)| ≥ m.

Finally, we call A ∈ Data[Θ ∪{eq}∪CM ] well-typed if it is eq-respecting and cc-respecting.
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Figure 3 (a) Adding diagonal elements. (a)←(b) Making a data structure eq-respecting.

▶ Example 10. In Figure 2(c), where we suppose M = 3 and Σ = ∅, the element a
satisfies the counting constraints H∅, {(2, 2)}, 1I, H∅, {(1, 1), (2, 2)}, 1I, H∅, {(1, 2)}, 2I, and
H∅, {(1, 1), (1, 2)}, 3I, as well as all inherited constraints for smaller constants (which we
omitted). We write H∅, R,mI as R ≥ m. In fact, pairs from R are represented as black
bars in the obvious way (cf. Figure 2(d)); moreover, for each constraint, the corresponding
elements have the same color. Finally, the data structure from Figure 2(d) is well-typed, i.e.,
eq- and cc-respecting. Again, we omit inherited constraints. ⋄

To summarize, we have the following reduction:

▶ Lemma 11. For each formula φ ∈ 1-Loc-FO[Σ; Γ], we can effectively compute M ∈ N and
χ ∈ FO[Σ ∪ {eq} ∪ CM ; ∅] such that φ is satisfiable iff χ has a well-typed model.

Step 2: Well-Diagonalized Structures

In CM , we still have the diagonal relation (1, 2) ∈ Γ. Our goal is to get rid of it so that
we only deal with the diagonal-free set Γdf = {(1, 1), (2, 2)}. The idea is again to extend a
given structure A, but now we add new elements, one for each value n ∈ ValA, which we tag
with a unary symbol ed and whose two data values are n. Diagonal equality will be ensured
through making a detour via these ‘diagonal’ elements (hence the name ed).

Formally, when we start from some A = (A, f1, f2, (Pσ)) ∈ Data[Θ ∪ {eq}], the data
structure A + ed ∈ Data[Θ ∪ {eq, ed}] is defined as (A′, f ′

1, f
′
2, (P ′

σ)) where A′ = A ⊎ ValA,
f ′

i(a) = fi(a) for all a ∈ A and i ∈ {1, 2}, f ′
1(a) = f ′

2(a) = a for all a ∈ ValA, P ′
σ = Pσ for all

σ ∈ Θ \ {eq}, P ′
ed = ValA, and P ′

eq = Peq ∪ ValA.

▶ Example 12. The structure A + ed is illustrated in Figure 3(a), with Θ = ∅. ⋄

With this, we say that B ∈ Data[Θ ∪ {eq, ed}] is well-diagonalized if it is of the form
A + ed for some eq-respecting A ∈ Data[Θ ∪ {eq}]. Note that then B is eq-respecting, too.

▶ Example 13. The data structure A + ed from Figure 3(a) is well-diagonalized. The one
from Figure 3(b) is not well-diagonalized (in particular, it is not eq-respecting). ⋄

We will need a way to ensure that the considered data structures are well-diagonalized.
To this end, we introduce the following sentence from FO2[Θ ∪ {eq, ed}; Γdf ]:

ξΘ
ed :=

∧
i∈{1,2} ∀x.∃y.(ed(y) ∧ x i∼i y) ∧

(
∀x.∀y.(ed(x) ∧ ed(y) ∧ x i∼i y) → x = y

)
∧ ∀x.eq(x) ↔ ∃y.(ed(y) ∧ x 1∼1 y ∧ x 2∼2 y)
∧ ∀x.ed(x) →

∧
σ∈Θ ¬σ(x)

Every structure that is well-diagonalized satisfies ξΘ
ed. The converse is not true in general. In

particular, a model of ξΘ
ed is not necessarily eq-respecting. However, if a structure satisfies a
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formula φ ∈ FO[Θ ∪ {eq, ed}; Γdf ], then it is possible to perform a permutation on the first
(or the second) values of its elements while preserving φ. This allows us to get:

▶ Lemma 14. Let B ∈ Data[Θ ∪ {eq, ed}] and φ ∈ FO[Θ ∪ {eq, ed}; Γdf ]. If B |= φ ∧ ξΘ
ed,

then there exists an eq-respecting A ∈ Data[Θ ∪ {eq}] such that A + ed |= φ.

▶ Example 15. Consider Figure 3 and let Θ = ∅. The data structure from Figure 3(b)
satisfies ξΘ

ed, though it is not well-diagonalized. Suppose it also satisfies φ ∈ FO[{eq, ed}; Γdf ].
By permutation of the first data values, we obtain the well-diagonalized data structure in
Figure 3(a). As φ does not talk about the diagonal relation, satisfaction of φ is preserved. ⋄

Finally, we can inductively translate φ ∈ FO[Θ ∪ {eq}; ∅] into a formula [[φ]]+ed ∈ FO[Θ ∪
{eq, ed}; ∅] that avoids the extra ‘diagonal’ elements: [[σ(x)]]+ed = σ(x), [[x = y]]+ed = (x = y),
[[∃x.φ]]+ed = ∃x.(¬ed(x) ∧ [[φ]]+ed), [[φ ∨ φ′]]+ed = [[φ]]+ed ∨ [[φ′]]+ed, and [[¬φ]]+ed = ¬[[φ]]+ed.
We immediately obtain:

▶ Lemma 16. Let A ∈ Data[Θ ∪ {eq}] and φ ∈ FO[Θ ∪ {eq}; ∅] be a sentence. We have
A |= φ iff A + ed |= [[φ]]+ed.

Step 3: Getting Rid Of the Diagonal Relation

We will now exploit well-diagonalized data structures to reason about environments relative
to Γ in terms of environments relative to Γdf . Recall that Θ ranges over finite sets such that
Σ ⊆ Θ.

▶ Lemma 17. Let A = (A, f1, f2, (Pσ)) ∈ Data[Θ ∪ {eq}] be eq-respecting and B = A + ed.
Moreover, let a ∈ A, U ⊆ Σ, and R ⊆ Γ be a nonempty set. We have EnvA,Σ,Γ(a, U,R) =

EnvB,Σ,Γdf
(a, U,Γdf ) \ Ped if a ∈ Peq and R = Γ (1)

EnvB,Σ,Γdf
(a, U,Γdf ) if a /∈ Peq and R = Γdf (2)

EnvB,Σ,Γdf
(a, U, {(1, 1)}) ∩ (Peq \ Ped) if a /∈ Peq and R = {(1, 1), (1, 2)} (3)

EnvB,Σ,Γdf
(a, U, {(2, 2)}) if a ∈ Peq and R = {(2, 2), (1, 2)} (4)

EnvB,Σ,Γdf
(a, U, {(2, 2)}) \ Ped if a /∈ Peq and R = {(2, 2)} (5)

EnvB,Σ,Γdf
(a, U, {(1, 1)}) \ Peq if R = {(1, 1)} (6)

EnvB,Σ,Γdf
(d, U, {(2, 2)}) if a /∈ Peq and R = {(1, 2)} (7)

for the unique d ∈ Ped such that d 1∼B
1 a

∅ otherwise (8)

▶ Example 18. Let us go through some cases of Lemma 17 using Figure 3(a), and letting
Σ = Θ = ∅.
(1) Let a = a1 and R = Γ. Then, EnvA,Σ,Γ(a, ∅, R) = {a1, a2, a3}. We also have that

EnvB,Σ,Γdf
(a, ∅,Γdf ) = {a1, a2, a3, b1}: These are the elements that coincide with a

exactly on the first and the on the second data value when we dismiss the diagonal
relation. Of course, as we consider B, this includes b1, which we have to exclude. Thus,
EnvA,Σ,Γ(a, ∅, R) = EnvB,Σ,Γdf

(a, ∅,Γdf ) \ Ped.
(6) Let a = a4 and R = {(1, 1)}. We have EnvA,Σ,Γ(a, ∅, R) = {a8}. Looking at B and

discarding the diagonal relation would also include b3 and any element with data-value pair
(3, 3). Discarding Peq, we obtain EnvB,Σ,Γdf

(a, ∅, {(1, 1)}) \ Peq = {a8, b3} \ {b3} = {a8}.
(7) Let a = a7 and R = {(1, 2)}. Then, EnvA,Σ,Γ(a, ∅, R) = {a4, a5}, which is the set of

elements whose second data value is 1 and whose first data value is different from 1. The
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Figure 4 Counting intersections for M = 3 and elements with label p

idea is now to change the reference point. Take the unique d ∈ Ped such that d 1∼B
1 a.

Thus, d = b1. The set EnvB,Σ,Γdf
(b1, ∅, {(2, 2)}) gives us exactly the elements that have

1 as the second data value and a first value different from 1, as desired. ⋄

Let us wrap up: By Lemmas 11 and 17, we end up with checking counting constraints in
an extended data structure without using the diagonal relation.

Step 4: Counting in Two-Variable Logic

The next step is to express these constraints using two-variable formulas. Counting in
two-variable logic is established using further unary predicates. These additional predicates
allow us to define a partitioning of the universe of a structure into so-called intersections.
Suppose A = (A, f1, f2, (Pσ)) ∈ Data[Θ ∪ {eq, ed}], where Σ ⊆ Θ. Let a ∈ A \Ped and define
ℓΣ(a) = {σ ∈ Σ | a ∈ Pσ}. The intersection of a in A is the set {b ∈ A \ Ped | a 1∼1 b ∧
a 2∼2 b ∧ ℓΣ(a) = ℓΣ(b)}. A set is called an intersection in A if it is the intersection of some
a ∈ A \ Ped.

▶ Example 19. Consider Figure 4 and suppose Σ = {p}. The intersections of the given data
structure are gray-shaded. ⋄

Let us introduce the various unary predicates, which will be assigned to non-diagonal
elements. There are three types of them (for the first two types, also see Figure 4):

1. The unary predicates Λγ
M = {γ1, . . . ,γM } have the following intended meaning: For all

intersections I and i ∈ {1, . . . ,M}, we have |I| ≥ i iff there is a ∈ I such that a ∈ Pγi
. In

other words, the presence (or absence) of γi in an intersection I tells us whether |I| ≥ i.
2. The predicates Λα

M = {αj
i | i ∈ {1, . . . ,M} and j ∈ {1, . . . ,M + 2}} have the following

meaning: If a is labeled with αj
i , then (i) there are at least j intersections sharing the

same first value and the same label set ℓΣ(a), and (ii) the intersection of a has i elements
if i ≤ M − 1 and at least M elements if i = M . Hence, in αj

i , index i counts the elements
inside an intersection, and j labels up to M + 2 different intersections. We need to go
beyond M due to Lemma 17: When we remove certain elements (e.g., Peq) from an
environment, we must be sure to still have sufficiently many to be able to count until M .

3. Labels from Λβ
M = {βj

i | i ∈ {1, . . . ,M} and j ∈ {1, . . . ,M + 1}} will play a similar role
as those in Λα

M but consider the second values of the elements instead of the first ones.

▶ Example 20. A suitable labeling for types γ and α is illustrated in Figure 4 for M = 3. ⋄

Let ΛM = Λα
M ∪ Λβ

M ∪ Λγ
M denote the set of all these unary predicates. It is relatively

standard to come up with sentences φα, φβ, φγ ∈ FO2[Θ ∪ {eq, ed} ∪ ΛM ; Γdf ] that guarantee
the respective properties. In particular, they make use of the formula x 1∼1 y ∧ x 2∼2
y ∧

∧
σ∈Σ σ(x) ↔ σ(y) saying that two (non-diagonal) elements x and y are in the same

intersection.
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Now that we can count on a consistent labeling with predicates from ΛM , let us see
how we can exploit it to express HU,R,mI ∈ CM , with additional help from Lemma 17, as a
formula φU,R,m(x) ∈ FO2[Θ ∪ {eq, ed} ∪ ΛM ; Γdf ] applied to non-diagonal elements (outside
Ped). Let us look at two sample cases according to the case distinction done in Lemma 17.
Hereby, we will use, for U ⊆ Σ, the formula φU (y) =

∧
σ∈U σ(y) ∧

∧
σ∈Σ\U ¬σ(y).

(1) In this simple case with R = {(1, 1), (2, 2), (1, 2)}, we need to say that (i) the element a
under consideration is in Peq, and (ii) there is an intersection of size at least m (i..e., it
contains a γm-labeled element) whose elements b satisfy a 1∼1 b, a 2∼2 b, and ℓΣ(b) = U :

φU,R,m(x) := eq(x) ∧ ∃y.
(
φU (y) ∧ x 1∼1 y ∧ x 2∼2 y ∧ γm(y)

)
(6) For R = {(1, 1)}, we first need an extra definition. Given m ∈ {1, . . . ,M}, we define the

set Sα,m of subsets of Λα
M as follows: Sα,m = {{αj1

i1
, . . . ,αjk

ik
} | i1 + . . .+ ik ≥ m and j1 <

j2 < . . . < jk}. It corresponds to the sets of elements αj
i whose sum of i is greater than

or equal to m. We can then translate the constraint according to Lemma 17 as follows:

φU,R,m(x) :=
∨

S∈Sα,m

∧
α∈S

∃y.
(
φU (y) ∧ α(y) ∧ ¬eq(y) ∧ x 1∼1 y ∧ ¬(x 2∼2 y)

)
Finally, it remains to say that all elements are labeled with the suitable counting con-

straints. So we let φcc = ∀x.¬ed(x) →
∧

HU,R,mI ∈ CM
HU,R,mI(x) ↔ φU,R,m(x).

▶ Lemma 21. Let A = (A, f1, f2, (Pσ)) ∈ Data[Σ ∪ {eq} ∪ CM ∪ ΛM ] be eq-respecting. If
A + ed |= φα ∧ φβ ∧ φγ ∧ φcc, then A is cc-respecting.

Step 5: Putting it All Together

Let All = Σ ∪ {eq, ed} ∪ CM ∪ ΛM denote the set of all the unary predicates that we have
introduced so far. Recall that, after Step 1, we were left with M ≥ 1 and a formula
φ ∈ FO[Σ ∪ {eq} ∪ CM ; ∅]. The question is now whether φ has a well-typed model (i.e., a
model that is eq-respecting and cc-respecting). Altogether, we get the following reduction:

▶ Proposition 22. Let φ ∈ FO[Σ ∪ {eq} ∪ CM ; ∅]. Then, φ has a well-typed model iff
φ̂ := [[φ]]+ed ∧ ξ

All\{eq,ed}
ed ∧ φα ∧ φβ ∧ φγ ∧ φcc ∈ ext-FO2[All; Γdf ] is satisfiable.

Proof. Suppose φ̂ is satisfiable. Then, there is B ∈ Data[All] such that B |= φ̂. By Lemma
14, there exists an eq-respecting data structure A ∈ Data[Σ ∪ {eq} ∪ CM ∪ ΛM ] such that
A + ed |= [[φ]]+ed ∧ φα ∧ φβ ∧ φγ ∧ φcc. Using Lemma 21, we deduce that A is cc-respecting
and, thus, well-typed. Furthermore, by Lemma 16, we have A |= φ. Note that A belongs to
Data[Σ ∪ {eq} ∪ CM ∪ ΛM ]. However, by removing the unary predicates in ΛM , we still have
a model of φ from Data[Σ ∪ {eq} ∪ CM ] as required. Hence, φ has a well-typed model.

Assume now that there exists a well-typed data structure A ∈ Data[Σ ∪ {eq} ∪ CM ] such
that A |= φ. Using Lemma 16, we have that A + ed |= [[φ]]+ed. Furthermore, using the fact
that A is well-typed, we can add the unary predicates from ΛM to A + ed to obtain a data
structure A′ in Data[All] such that A′ |= φα ∧φβ ∧φγ ∧φcc. Note that A′ is well-diagonalized.
We deduce that A′ |= φ̂. ◀

▶ Theorem 23. DataSat(1-Loc-FO, {(1, 1), (2, 2), (1, 2)}) is decidable.

Proof. Let ψ ∈ 1-Loc-FO[Σ; (1, 1), (2, 2), (1, 2)]. Using Lemma 11, we can effectively compute
M ∈ N and φ ∈ FO[Σ ∪ {eq} ∪ CM ; ∅] such that ψ is satisfiable iff φ has a well-typed
model. By Proposition 22, φ has a well-typed model iff φ̂ is satisfiable. Since φ̂ belongs to
ext-FO2[All; Γdf ], we conclude using Proposition 6. ◀
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4 Undecidability Results

Let us show that extending the neighborhood radius yields undecidability. We rely on a
reduction from the domino problem [9] and use a specific technique presented in [25].

The Tiling Problem. A domino system D is a triple (D,H, V ) where D is a finite set
of dominoes and H,V ⊆ D × D are two binary relations. Let Gm denote the standard
grid on an m × m torus, i.e., Gm = (Gm, Hm, Vm) where Hm and Vm are two binary
relations defined as follows: Gm = Zmodm × Zmodm, Hm = {((i, j), (i′, j)) | i′ − i ≡ 1
mod m}, and Vm = {((i, j), (i, j′)) | i′ − i ≡ 1 mod m}. In the sequel, we will suppose
Zmodm = {0, . . . ,m− 1} using the least positive member to represent residue classes.

A bi-binary structure is a triple (A,R1, R2) where A is a finite set and R1, R2 are subsets
of A×A. Domino systems and Gm for any m are examples of bi-binary structures. For two
bi-binary structures G = (G,H, V ) and G′ = (G′, H ′, V ′), we say that G is homomorphically
embeddable into G′ if there is a morphism π : G → G′, i.e., a mapping π such that, for
all a, a′ ∈ G, (a, a′) ∈ H ⇒ (π(a), π(a′)) ∈ H ′ and (a, a′) ∈ V ⇒ (π(a), π(a′)) ∈ V ′. For
instance, Gk·m is homomorphically embeddable into Gm through reduction mod m. For a
domino system D, a periodic tiling is a morphism τ : Gm → D for some m and we say that
D admits a periodic tiling if there exists a periodic tiling of D.

The problem Tiles (or periodic tiling problem), which is well known to be undecidable [9],
is defined as follows: Given a domino system D, does D admit a periodic tiling?

To use Tiles in our reductions, we first use some specific bi-binary structures, which
we call grid-like and which are easier to manipulate in our context to encode domino
systems. A bi-binary structure G = (A,H, V ) is said to be grid-like if some Gm is
homomorphically embeddable into G. The logic FO over bi-binary structures refers to
the first-order logic on two binary relations H,V, and we write Hxy to say that x and y

are in relation for H. Consider the two following FO formulas over bi-binary structures:
φcomplete = ∀x.∀y.∀x′.∀y′.((Hxy ∧ Vxx′ ∧ Vyy′) → Hx′y′) and φprogress = ∀x.(∃y.Hxy ∧ ∃y.
Vxy). The following lemma, first stated and proved in [25], shows that these formulas suffice
to characterize grid-like structures:

▶ Lemma 24 ([25]). Let G = (A,H, V ) be a bi-binary structure. If G satisfies φcomplete and
φprogress, then G is grid-like.

Given A = (A, f1, f2, (Pσ)) ∈ Data[Σ] and φ(x, y) ∈ FO[Σ; Γ], we define the binary
relation [[φ]]A = {(a, b) ∈ A× A | A |=I[x/a][y/b] φ(x, y) for some interpretation function I}.
Thus, given two FO[Σ; Γ] formulas φ1(x, y), φ2(x, y) with two free variables, (A, [[φ1]]A, [[φ2]]A)
is a bi-binary structure.

As we want to reason on data structures, we build a data structure A2m that corresponds
to the grid G2m = (G2m, H2m, V2m). This structure is depicted locally in Figure 5. To define
A2m, we use four unary predicates given by Σgrid = {X0, X1, Y0, Y1}. They give us access to
the coordinate modulo 2. We then define A2m = (G2m, f1, f2, (Pσ)) ∈ Data[Σgrid ] as follows:
For k ∈ {0, 1}, we have PXk

= {(i, j) ∈ G2m | i ≡ k mod 2} and PYk
= {(i, j) ∈ G2m | j ≡ k

mod 2}. For all i, j ∈ {0, . . . , 2m−1}, we set f1(i, j) = ((i/2) mod m)+m∗ ((j/2) mod m)
(where / stands for the Euclidian division). Finally, for all i, j ∈ {1, . . . , 2m}, set f2(i
mod (2m), j mod (2m)) = f1(i− 1, j − 1).

In Figure 6, we define quantifier free formulas φH(x, y) and φV (x, y) from the logic
FO[Σgrid; (1, 1), (2, 2)] with two free variable. These formulas allow us to make the link
between the data structure A2m and the grid G2m, and we will use them later on to ensure
that a data structure has a shape ’similar’ to A2m.
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φ00
H = X0(x) ∧X1(y) ∧Y0(x) ∧Y0(y) ∧x 1∼1 y

φ10
H = X1(x) ∧X0(y) ∧Y0(x) ∧Y0(y) ∧x 2∼2 y

φ01
H = X0(x) ∧X1(y) ∧Y1(x) ∧Y1(y) ∧x 1∼1 y

φ11
H = X1(x) ∧X0(y) ∧Y1(x) ∧Y1(y) ∧x 2∼2 y

φH = φ00
H ∨φ10

H ∨φ01
H ∨φ11

H

φ00
V = X0(x) ∧X0(y) ∧Y0(x) ∧Y1(y) ∧x 1∼1 y

φ10
V = X1(x) ∧X1(y) ∧Y0(x) ∧Y1(y) ∧x 1∼1 y

φ01
V = X0(x) ∧X0(y) ∧Y1(x) ∧Y0(y) ∧x 2∼2 y

φ11
V = X1(x) ∧X1(y) ∧Y1(x) ∧Y0(y) ∧x 2∼2 y

φV = φ00
V ∨φ10

V ∨φ01
V ∨φ11

V

Figure 6 Link between A2m and G2m

▶ Remark 25. Note that, using the definitions of G2m and of A2m we can show that, if G is
the bi-binary structure (G2m, [[φH ]]A2m

, [[φV ]]A2m
), then G2m = G.

The Reduction from Radius 3. We first use the previously introduced notions to show
that DataSat(3-Loc-FO, {(1, 1), (2, 2)}) is undecidable, hence we assume now that Γ =
{(1, 1), (2, 2)}. The first step in our reduction from Tiles consists in defining φ3 -loc

grid ∈
3-Loc-FO[Σgrid ; (1, 1), (2, 2)] to check that a data structure corresponds to a grid (⊕ stands
for exclusive or):

φ3 -loc
complete = ∀x.⟨⟨∀y.∀x′.∀y′.φH(x, y) ∧φV (x, x′) ∧φV (y, y′) → φH(x′, y′)⟩⟩3

x

φ3 -loc
progress = ∀x.⟨⟨∃y.φH(x, y) ∧ ∃y.φV (x, y)⟩⟩3

x

φ3 -loc
grid = φ3 -loc

complete ∧φ3 -loc
progress ∧ ∀x.⟨⟨(X0(x) ⊕X1(x)) ∧(Y0(x) ⊕ Y1(x))⟩⟩3

x

▶ Lemma 26. We have A2m |= φ3 -loc
grid . Moreover, for all A = (A, f1, f2, (Pσ)) in Data[Σgrid ],

if A |= φ3 -loc
grid , then (A, [[φH ]]A, [[φV ]]A) is grid-like.

Given a domino system D = (D,HD, VD), we now provide a formula φD from the logic
3-Loc-FO[D; (1, 1), (2, 2)] that guarantees that, if a data structure corresponding to a grid
satisfies φD, then it can be embedded into D:

φD := ∀x.⟨⟨
∨

d∈D

(
d(x) ∧

∧
d̸=d′∈D ¬(d(x) ∧ d′(x))

)
⟩⟩3

x

∧ ∀x.⟨⟨∀y.φH(x, y) →
∨

(d,d′)∈HD
d(x) ∧ d′(y)⟩⟩3

x

∧ ∀x.⟨⟨∀y.φV (x, y) →
∨

(d,d′)∈VD
d(x) ∧ d′(y)⟩⟩3

x

▶ Proposition 27. Given D = (D,HD, VD) a domino system, D admits a periodic tiling iff
the 3-Loc-FO[Σgrid ⊎D; (1, 1), (2, 2)] formula φ3 -loc

grid ∧φD is satisfiable.
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As a corollary of the proposition, we obtain the main result of this section.

▶ Theorem 28. DataSat(3-Loc-FO, {(1, 1), (2, 2)}) is undecidable.

We can also reduce Tiles to DataSat(2-Loc-FO, {(1, 1), (2, 2), (1, 2)}). In that case, it
is a bit more subtle to build a formula similar to the formula φcomplete as we have only
neighborhood of radius 2, but we use the diagonal binary relation (1, 2) to overcome this.

▶ Theorem 29. DataSat(2-Loc-FO, {(1, 1), (2, 2), (1, 2)}) is undecidable.

5 Future Work

There are some interesting open questions. For example, we leave open whether our main
decidability result holds for two diagonal relations. Recall that, when comparing the
expressiveness, two-variable first-order logic can be embedded in our logic. We do not know
yet whether the converse holds. Until now our work has focused on the satisfiability problem.
Another next step would be to see how our logic can be used to verify practical distributed
algorithms.
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A Missing Proof for Section 2

A.1 Proof of Theorem 5

▶ Theorem 5 ([20]). The problem DataSat(FO2, {(1, 1), (2, 2)}) is decidable.

Proof. When Γ = {(1, 1), (2, 2)}, we actually deal with arbitrary finite structures A with a
number of unary predicates and two equivalence relations, namely 1∼A

1 and 2∼A
2 . According

to [20], two-variable first-order logic over those structures is decidable. ◀

A.2 Proof of Proposition 6

▶ Proposition 6. The problem DataSat(ext-FO2, {(1, 1), (2, 2)}) is decidable.

We show that one can reduce the first-order part with Γ = ∅ to a two-variable formula:

▶ Proposition 30. Let φ be an FO[Σ; ∅] sentence. Then, we can effectively construct
φ′ ∈ FO2[Σ′; ∅] with Σ ⊆ Σ′ such that φ is satisfiable iff φ′ is satisfiable. Furthermore, if a
structure A satisfies φ, then we can add an interpretation of the predicates in Σ′ \ Σ to A to
get a model for φ′. Conversely, if a structure A′ satisfies φ′, then forgetting the interpretation
of the predicates in Σ′ \ Σ in A′ give us a model for φ.

Proof. We apply Lemma 4 to φ and then obtain φ′′. As there is no free variable in
φ, the formula φ′′ is a boolean combination of formulas of the form ∃≥ky.φU (y) where
U ⊆ Σ. Let M be the maximal such k (if there is no threshold formula, φ′′ is either
true or false). We define a set of unary predicates ΛM = {ηi | 1 ≤ i ≤ M} and let
Σ′ = Σ ∪ ΛM . The following formulas will specify the meaning of the elements of ΛM . First,
let φsame(x, y) =

∧
σ∈Σ∪{ed} σ(x) ↔ σ(y). With this, we define:

φ1
η := ∀x.

∨
i∈[1,M ]

(
ηi(x) ∧

∧
j∈[1,M ]\{i}

¬ηj(x)
)

φ2
η := ∀x.

∧
i∈[1,M−1]

(
ηi(x) → ¬∃y.(x ̸= y ∧ φsame(x, y) ∧ ηi(y))

)

φ3
η := ∀x.

∧
i∈[2,M ]

(
ηi(x) → (∃y.φsame(x, y) ∧ ηi−1(y))

)
We then denote φη := φ1

η ∧φ2
η ∧φ3

η ∈ FO2[Σ′]. Then, for a model A ∈ Data[Σ′] of φη with
carrier set A, an element a ∈ A, and an integer 1 ≤ i ≤ M , we have that a ∈ Pηi iff |{b ∈ A |
for all σ ∈ Σ, a ∈ Pσ iff b ∈ Pσ}| ≥ i. Then in φ′′, we replace all threshold formulas
∃≥ky.φU (y) with ∃y.φU (y) ∧ ηk(y) in order to obtain φ′′′ ∈ FO2[Σ ∪ ΛM ]. Finally we take
φ′ as φ′′′ ∧φη. ◀

We are now ready to prove Proposition 6:

Proof of Proposition 6. Let φ∧ψ be a sentence such that φ ∈ FO[Σ; ∅] and ψ ∈ FO2[Σ; Γ].
We determine Σ′ ⊇ Σ and φ′ in FO2[Σ′; ∅] according to Proposition 30. Then, by Theorem 5,
it only remains to show that φ∧ψ is satisfiable iff φ′ ∧ψ is satisfiable.

Suppose there is A ∈ Data[Σ] such that A |= φ∧ψ. By Proposition 30, we can add
propositions from Σ′ \ Σ to A to get a data structure A′ such that A′ |= φ′. As ψ does not
speak about propositions in Σ′ \ Σ, we have A′ |= ψ and, therefore, A′ |= φ′ ∧ψ.
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Conversely, let A′ ∈ Data[Σ′] such that A′ |= φ′ ∧ψ. Then, again by Proposition 30,
“forgetting” in A′ all labels in Σ′ \ Σ yields a structure A such that A |= φ. As we still have
A |= ψ, we conclude A |= φ∧ψ. ◀

B Missing Proofs for Section 3

B.1 Proof of Lemma 11

▶ Lemma 11. For each formula φ ∈ 1-Loc-FO[Σ; Γ], we can effectively compute M ∈ N and
χ ∈ FO[Σ ∪ {eq} ∪ CM ; ∅] such that φ is satisfiable iff χ has a well-typed model.

Proof. Consider ⟨⟨ψ⟩⟩r
x where ψ is a formula from FO[Σ; Γ] with one free variable x. Wlog.,

we assume that x is not quantified in ψ. We replace, in ψ, every occurence of a formula
y i∼j z with y ̸= x by ∨

k∈{1,2} |
(k,i),(k,j)∈Γ

x k∼i y ∧ x k∼j z .

Call the resulting formula ψ′. Replace, in ψ′, every formula x i∼j y by (i, j)(y) to obtain an
FO[Σ∪Γ; ∅] formula ψ′′. Suppose A = (A, f1, f2, (Pσ)σ∈Σ∪Γ) ∈ Data[Σ∪Γ] and interpretation
function I such that, for all b ∈ A and (i, j) ∈ Γ, we have b ∈ P(i,j) iff I(x) i∼j b. Then,

A|1I(x) |=I ψ(x) ⇐⇒ A|1I(x) |=I ψ
′(x) ⇐⇒ A|1I(x) |=I ψ

′′(x) .

According to Lemma 4, we can effectively transform ψ′′ into an equivalent FO[Σ ∪ Γ; ∅]
formula ψ̂′′ that is a Boolean combination of formulas of the form σ(x) with σ ∈ Σ ∪ Γ and
threshold formulas of the form ∃≥ky.φU (y) where U ⊆ Σ ∪ Γ and φU (y) =

∧
σ∈U σ(y) ∧∧

σ∈(Σ∪Γ)\U ¬σ(y). Let M be the maximal such k (or M = 0 if there is no threshold formula).
Again, we assume that x is not quantified in ψ̂′′.

We obtain the FO[Σ ∪ {eq} ∪ CM ; ∅] formula χ from ψ̂′′ by replacing
(1, 2)(x) by eq(x), and (1, 1)(x) and (2, 2)(x) by true,

∃≥ky.φU (y) by
{

false if U ∩ Γ = ∅
HU ∩ Σ, U ∩ Γ, kI(x) if U ∩ Γ ̸= ∅

We can then eliminate redundant true and false. Suppose a well-typed data structure
A = (A, f1, f2, (Pσ)) ∈ Data[Σ ∪ Γ ∪ {eq} ∪ CM ] and interpretation function I such that, for
all b ∈ A and (i, j) ∈ Γ, we have b ∈ P(i,j) iff I(x) i∼j b. Then,

A|1I(x) |=I ψ̂
′′(x) ⇐⇒ A|1I(x) |=I χ(x) .

Moreover, for U ⊆ Σ, a nonempty set R ⊆ Γ, and k ∈ N, we have

A|1I(x) |=I HU,R, kI(x) ⇐⇒ A |=I HU,R, kI(x) .

We deduce that, for all A ∈ Data[Σ] and interpretation functions I,

A |=I ⟨⟨ψ⟩⟩1
x ⇐⇒ A |=I χ(x) .

This concludes the proof. ◀



B. Bollig, A. Sangnier, and O. Stietel 17

B.2 Proof of Lemma 14

▶ Lemma 14. Let B ∈ Data[Θ ∪ {eq, ed}] and φ ∈ FO[Θ ∪ {eq, ed}; Γdf ]. If B |= φ ∧ ξΘ
ed,

then there exists an eq-respecting A ∈ Data[Θ ∪ {eq}] such that A + ed |= φ.

Proof. Let B = (A, f1, f2, (Pσ)) in Data[Θ ∪ {eq, ed}] such that B |= φ ∧ ξed. We define the
sets I = {n ∈ N | ∃b ∈ Ped.f1(b) = n} and O = {n ∈ N | ∃b ∈ Ped.f2(b) = n}. Since

B |=
∧

i∈{1,2}

[(
∀x.∃y.ed(y) ∧ x i∼i y

)
∧
(
∀x.∀y.(ed(x) ∧ ed(y) ∧ x i∼i y) → x = y

)]
,

we deduce that |I| = |O| and furthermore the mapping π : I 7→ O defined by π(n) = m

iff there exists b ∈ Ped such that f1(b) = n and f2(b) = m is a well-defined bijection. It
is well defined because there is a single element b in Ped such that f1(b) = n and it is
a bijection because for all m ∈ O, there is a single b ∈ Ped such that f2(b) = m. We
can consequently extend π to be a permutation from N to N. We then take the model
A′ = (A, π ◦ f1, f2, (Pσ)). Since φ ∧ ξed ∈ FO[Θ ∪ {eq, ed}; Γdf ] with Γdf = {(1, 1), (2, 2)}
and since B |= φ ∧ ξed, we deduce that A′ |= φ ∧ ξed because performing a permutation
on the first data values of the elements of B does not affect the satisfaction of φ ∧ ξed
(this is a consequence of the fact that there is no comparison between the first values
and the second values of the elements). The satisfaction of ξed by A′ allows us to deduce
that A′ is well-diagonalized. We can in fact safely remove from A′ the elements of Ped to
obtain a structure A ∈ Data[Θ ∪ {eq}] which is eq-respecting ( this is due to the fact that
A′ |= ∀x.eq(x) ↔ ∃y.(ed(y) ∧ x 1∼1 y ∧ x 2∼2 y) ∧ ∀x.ed(x) →

∧
σ∈Θ\{eq} ¬σ(x)) and such

that A′ = A + ed . ◀

B.3 Proof of Lemma 17

We first provide illustrations for the remaining cases of Example 18:

(2) Let a = a7 and R = Γdf . Then, EnvA,Σ,Γ(a, ∅, R) = EnvB,Σ,Γdf
(a, ∅,Γdf ) = {a7}. Since

a ̸∈ Peq, it actually does not matter whether we include the diagonal relation or not.

(3) Let a = a7 and R = {(1, 1), (1, 2)}. Then, EnvA,Σ,Γ(a, ∅, R) = {a1, a2, a3}. So how
do we get this set in B without referring to the diagonal relation? The idea is to use
only (1, 1) ∈ Γdf and to ensure data equality by restricting to elements in Peq (again
excluding Ped). Indeed, we have EnvB,Σ,Γdf

(a, ∅, {(1, 1)}) ∩ (Peq \Ped) = {a1, a2, a3, b1} ∩
({a1, a2, a3, b1} \ {b1}) = {a1, a2, a3}.

(4) Let a = a1 and R = {(2, 2), (1, 2)}. Then, EnvA,Σ,Γ(a, ∅, R) = {a4, a5}. So we are looking
for elements that have 1 as the second data value and a first data value different from 1,
and this set is exactly EnvB,Σ,Γdf

(a, ∅, {(2, 2)}).

(5) Let a = a5 and R = {(2, 2)}. Then, EnvA,Σ,Γ(a, ∅, R) = {a1, a2, a3, a4}, which is the set
of elements that have 1 as the second data value and a first data value different from 2.
Thus, this is exactly EnvB,Σ,Γdf

(a, ∅, {(2, 2)}) \ Ped (i.e., after discarding b1 ∈ Ped).

▶ Lemma 17. Let A = (A, f1, f2, (Pσ)) ∈ Data[Θ ∪ {eq}] be eq-respecting and B = A + ed.
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Moreover, let a ∈ A, U ⊆ Σ, and R ⊆ Γ be a nonempty set. We have EnvA,Σ,Γ(a, U,R) =

EnvB,Σ,Γdf
(a, U,Γdf ) \ Ped if a ∈ Peq and R = Γ (1)

EnvB,Σ,Γdf
(a, U,Γdf ) if a /∈ Peq and R = Γdf (2)

EnvB,Σ,Γdf
(a, U, {(1, 1)}) ∩ (Peq \ Ped) if a /∈ Peq and R = {(1, 1), (1, 2)} (3)

EnvB,Σ,Γdf
(a, U, {(2, 2)}) if a ∈ Peq and R = {(2, 2), (1, 2)} (4)

EnvB,Σ,Γdf
(a, U, {(2, 2)}) \ Ped if a /∈ Peq and R = {(2, 2)} (5)

EnvB,Σ,Γdf
(a, U, {(1, 1)}) \ Peq if R = {(1, 1)} (6)

EnvB,Σ,Γdf
(d, U, {(2, 2)}) if a /∈ Peq and R = {(1, 2)} (7)

for the unique d ∈ Ped such that d 1∼B
1 a

∅ otherwise (8)

Proof. Let A = (A, f1, f2, (Pσ)) ∈ Data[Θ ∪ {eq}] be eq-respecting and B = A + ed. We
consider a ∈ A, U ⊆ Σ, and R ⊆ Γ be a nonempty set. Note that by definition of
Env, we have EnvA,Σ,Γ(a, U,R) = EnvB,Σ,Γ(a, U,R) \ Ped and when R ̸= {(1, 2)}, we have
EnvB,Σ,Γdf

(a, U,R \ {(1, 2)}) = EnvB,Σ,Γ(a, U,R∪ {(1, 2)}) ∪ EnvB,Σ,Γ(a, U,R \ {(1, 2)}). We
will use these two equalities in the rest of the proof. We now perform a case analysis on R.
1. Assume R = Γ = {(1, 1), (2, 2), (1, 2)}. First we suppose that a /∈ Peq. Since A is eq-

respecting it implies that f1(a) ̸= f2(a). Now assume there exists b ∈ EnvA,Σ,Γ(a, U,R),
this means that a 1∼A

1 b and a 2∼A
2 b and a 1∼A

2 b. Hence we have f2(a) = f2(b) and
f1(a) = f2(b), which is a contradiction. Consequently EnvA,Σ,Γ(a, U,R) = ∅. We now
suppose that a ∈ Peq. In that case, since A is eq-respecting, we have EnvB,Σ,Γ(a, U,R \
{(1, 2)}) = ∅. In fact if a 2∼A

2 b for some b then a 1∼A
2 b as a ∈ Peq. Hence we have

EnvA,Σ,Γ(a, U,R) = EnvB,Σ,Γ(a, U,R) \ Ped = EnvB,Σ,Γdf
(a, U,Γdf ) \ Ped.

2. Assume R = Γdf = {(1, 1), (2, 2)}. By a similar reasoning as the previous case, if a ∈ Peq,
we have necessarily EnvA,Σ,Γ(a, U,R) = ∅. Now suppose a /∈ Peq. Thanks to this hypo-
thesis, we know that Ped ∩ EnvB,Σ,Γdf

(a, U,Γdf ) = ∅ and that EnvB,Σ,Γ(a, U, {(1, 1), (2, 2),
(1, 2)}) = ∅. Hence we obtain directly EnvA,Σ,Γ(a, U,Γdf ) = EnvB,Σ,Γdf

(a, U,Γdf ).
3. AssumeR = {(1, 1), (1, 2)}. Again it is obvious that if a ∈ Peq, we have EnvA,Σ,Γ(a, U,R) =

∅. We suppose that a /∈ Peq. Note that we have that EnvB,Σ,Γ(a, U,R) ⊆ Peq and
EnvB,Σ,Γ(a, U, {1, 1}) ∩ Peq = ∅ . Since EnvB,Σ,Γdf

(a, U, {(1, 1)}) = EnvB,Σ,Γ(a, U,R) ∪
EnvB,Σ,Γ(a, U, {(1, 1)}), we deduce that EnvB,Σ,Γdf

(a, U, {(1, 1)})∩Peq = EnvB,Σ,Γ(a, U,R).
From which we can conclude EnvA,Σ,Γ(a, U,R) = EnvB,Σ,Γdf

(a, U, {(1, 1)}) ∩ Peq \ Ped.
4. AssumeR = {(2, 2), (1, 2)}. Again, it is obvious that if a /∈ Peq, we have EnvA,Σ,Γ(a, U,R) =

∅. We now suppose that a ∈ Peq. In that case, we have that EnvB,Σ,Γ(a, U,R \
{(1, 2)}) = ∅ and furthermore EnvB,Σ,Γ(a, U,R) ∩ Ped = ∅. We can hence conclude
that EnvA,Σ,Γ(a, U,R) = EnvB,Σ,Γdf

(a, U, {(2, 2)}).
5. Assume R = {(2, 2)}. As before if a ∈ Peq, we have EnvA,Σ,Γ(a, U,R) = ∅. We now

suppose that a /∈ Peq. In that case, we have immediately EnvB,Σ,Γ(a, U, {(2, 2), (1, 2)}) = ∅
and consequently

EnvA,Σ,Γ(a, U,R) = EnvB,Σ,Γ(a, U, {(2, 2)}) \ Ped = EnvB,Σ,Γdf
(a, U, {(2, 2)}) \ Ped .

6. Assume R = {(1, 1)}. Remember that we have EnvB,Σ,Γdf
(a, U, {(1, 1)}) = EnvB,Σ,Γ(a, U,

{(1, 1), (1, 2)}) ∪ EnvB,Σ,Γ(a, U, {(1, 1)}). But EnvB,Σ,Γ(a, U, {(1, 1), (1, 2)}) ⊆ Peq and
EnvB,Σ,Γ(a, U, {(1, 1)}) ∩Peq = ∅. We hence deduce that EnvB,Σ,Γdf

(a, U, {(1, 1)}) \Peq =
EnvB,Σ,Γ(a, U, {(1, 1)}) and since (EnvB,Σ,Γdf

(a, U, {(1, 1)}) \ Peq) ∩ Ped = ∅, we obtain
EnvA,Σ,Γ(a, U,R) = EnvB,Σ,Γdf

(a, U, {(1, 1)}) \ Peq.
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7. Assume R = {(1, 2)}. Again it is obvious that if a ∈ Peq, we have EnvA,Σ,Γ(a, U,R) = ∅.
We now suppose that a /∈ Peq. By definition, since B = A+ ed, in B there is a unique d ∈
Ped such that d 1∼B

1 a. We have then EnvB,Σ,Γ(a, U,R) = EnvB,Σ,Γ(d, U, {(1, 2), (2, 2)}).
As for the case 4., we deduce that EnvB,Σ,Γ(d, U, {(1, 2), (2, 2)}) = EnvB,Σ,Γdf

(d, U, {(2, 2)}).
Hence EnvB,Σ,Γ(a, U,R) = EnvB,Σ,Γdf

(d, U, {(2, 2)}). ◀

B.4 Proofs for Step 4: Counting in Two-Variable Logic

To deal with the predicates in Λγ
M , we first define the formula φint

same = x 1∼1 y ∧ x 2∼2 y ∧∧
σ∈Σ σ(x) ↔ σ(y) and introduce the following formulas:

φ1
γ(x) :=

∨
i∈[1,M ]

(
γi(x) ∧

∧
j∈[1,M ]\{i}

¬γj(x)
)

φ2
γ(x) :=

∧
i∈[1,M−1]

(
γi(x) → ¬∃y.(x ̸= y ∧ φint

same(x, y) ∧ γi(y))
)

φ3
γ(x) :=

∧
i∈[2,M ]

(
γi(x) → (∃y.φint

same(x, y) ∧ γi−1(y))
)

We then let φγ := ∀x.
(
¬ed(x) → (φ1

γ(x) ∧φ2
γ(x) ∧φ3

γ(x))
)

∧ (ed(x) →
∧

γ∈Λγ
M

¬γ(x)). Thus,
a data structure satisfies φγ if no diagonal element is labelled with predicates in Λγ

M and
(s1) all its non-diagonal elements are labelled with exactly one predicate in Λγ

M (see φ1
γ), (2)

if i ≤ M − 1, then there are no two γi-labelled elements with the same labels of Σ and in
the same intersection (see φ2

γ), and (3) if i ≥ 2, then for all γi-labelled elements, there exists
an γi−1-labelled element with the same labels of Σ and in the same intersection (see φ3

γ).

▶ Lemma 31. Let A = (A, f1, f2, (Pσ)) ∈ Data[Σ ∪ {eq} ∪ CM ∪ ΛM ] be eq-respecting and
such that A + ed |= φγ. We consider a ∈ A and γi ∈ ΛM and Ea = {b ∈ A | a 1∼1 b ∧ a 2∼2
b ∧ ℓΣ(a) = ℓΣ(b)}. Then, |Ea| ≥ i iff there exists b ∈ Ea such that b ∈ Pγ[i].

Proof. For any b ∈ Ea, as A + ed |= φ1
γ there is exactly one j ∈ [1,M ] such that b ∈ Pγj .

This allow us to build the function f : Ea → [1,M ] which associates to any b ∈ Ea such a j.
Let J = {f(b)|b ∈ Ea} denotes the image of Ea under f . As A+ ed |= φ3

γ, for any j ∈ [2,M ]
if j ∈ J then j − 1 ∈ J . And as Ea ̸= ∅, there is jmax ∈ [1,M ] such that J = [1, jmax]. We
can now rephrase our goal as |Ea| ≥ i iff i ∈ J . Assuming that i ∈ J , we have i ≤ jmax.
As f is a function, we have |Ea| ≥ |J |. As |J | = jmax, we have that |Ea| ≥ i. Conversely,
assuming that |Ea| ≥ i. Assume by contradiction that i /∈ J , then jmax < i ≤ M . That
is, for all j ∈ J , we have j < M . Since A + ed |= φ2

γ, all elements of J have exactly one
preimage. So |Ea| = |J | = jmax < i, which contradicts the assumption. ◀

It is then easy to see that, in an intersection, if there is an element a labelled by γi and no
element labelled by γi+1 for i < M , then the intersection has exactly i elements; moreover,
if there is a node a labelled by γM then the intersection has at least M elements.
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We now show how we use the predicates in Λα
M and introduce the following formulas

(where φint
same = x 1∼1 y ∧ x 2∼2 y ∧

∧
σ∈Σ σ(x) ↔ σ(y) and φsame =

∧
σ∈Σ σ(x) ↔ σ(y)):

φ1
α(x) :=

∨
i∈[1,M ]

j∈[1,M+2]

(
αj

i (x) ∧
∧

k∈[1,M ]
ℓ∈[1,M+2]
(k,ℓ)̸=(i,j)

¬αℓ
k(x)

)

φ2
α(x) :=

∧
i∈[1,M ]

j∈[1,M+2]

(
αj

i (x) → ∀y.
(
(¬ed(y) ∧ φint

same(x, y)) → αj
i (y)

))

φ3
α(x) :=

∧
i∈[1,M−1]
j∈[1,M+2]

(
αj

i (x) →

(
∃y.
(
φint

same(x, y) ∧ γi(y)
)

∧ ¬∃y.
(
φint

same(x, y) ∧ γi+1(y)
) )) ∧

∧
j∈[1,M+2]

(
αj

M (x) → ∃y.
(
φint

same(x, y) ∧ γM (y)
))

φ4
α(x) :=

∧
i∈[1,M ]

j∈[1,M+1]

(
αj

i (x) → ∀y.
((

¬ed(y) ∧ φsame(x, y)
∧ x 1∼1 y ∧ ¬(x 2∼2 y)

)
→

∧
k∈[1,M ]

¬αj
k(y)

))

φ5
α(x) :=

∧
i∈[1,M ]

j∈[2,M+2]

(
αj

i (x) → ∃y.
(
φsame(x, y) ∧ x 1∼1 y ∧

∨
k∈[1,M ]

αj−1
k (y)

))

We then define φα := ∀x.
(
(¬ed(x)) → (φ1

α(x)∧φ2
α(x)∧φ3

α(x)∧φ4
α(x)∧φ5

α(x))
)
∧(ed(x) →∧

α∈Λα
M

¬α(x)). Note that φα is a two-variable formula in FO2[Θ ∪{ed}∪ΛM ; Γdf ]. If a data
structure satisfies φα, then no diagonal element is labelled with predicates in Λα

M and all its
non-diagonal elements are labelled with exactly one predicate in Λα

M (see φ1
α). Furthermore,

all non-diagonal elements in a same intersection are labelled with the same αj
i (see φ2

α), and
there are exactly i such elements in the intersection if i ≤ M − 1 and at least M otherwise
(see φ3

α). Finally, we want to identify up to M+2 different intersections sharing the same first
value and we use the j in αj

i for this matter. Formula φ4
α tells us that no two non-diagonal

elements with the same labels of Σ share the same index j (for j ≤ M + 1) if they do not
belong to the same intersection and have the same first value. The formula φ5

α specifies that,
if an element a is labelled with αj

i , then there are at least j different nonempty intersections
with the same labels of Σ as a sharing the same first values. The next lemma formalizes the
property of this labelling.

▶ Lemma 32. We consider A = (A, f1, f2, (Pσ)) ∈ Data[Σ ∪ {eq} ∪ CM ∪ ΛM ] eq-respecting
and such that A + ed |= φγ ∧ φα and a ∈ A. Let Sa,1∼1 = {b ∈ A | a 1∼A

1 b ∧ ℓΣ(a) = ℓΣ(b)}
and Sj

a,1∼1,i = Sa,1∼1 ∩ Pα
j
i

for all i ∈ [1,M ] and j ∈ [1,M + 2]. The following properties
hold:
1. We have Sa,1∼1 =

⋃
i∈[1,M ],j∈[1,M+2] S

j
a,1∼1,i.

2. For all j, ℓ ∈ [1,M + 2] and i, k ∈ [1,M ] such that i ̸= k or j ≠ l, we have Sj
a,1∼1,i ∩

Sℓ
a,1∼1,k = ∅.

3. For all j ∈ [1,M + 1] and i ∈ [1,M ] such that b, c ∈ Sj
a,1∼1,i, we have b 2∼2 c.

4. For all b, c ∈ Sa,1∼1 such that b 2∼2 c, there exist j ∈ [1,M + 2] and i ∈ [1,M ] such that
b, c ∈ Sj

a,1∼1,i.
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5. For all j ∈ [1,M + 2] and i ∈ [1,M ] such that b ∈ Sj
a,1∼1,i, we have

{
|{c ∈ A | b 1∼A

1 c ∧ b 2∼A
2 c ∧ ℓΣ(b) = ℓΣ(c)}| = i if i ≤ M − 1

|{c ∈ A | b 1∼A
1 c ∧ b 2∼A

2 c ∧ ℓΣ(b) = ℓΣ(c)}| ≥ M otherwise.

6. For all j ∈ [1,M + 1], there exists at most one i such that Sj,[i]
a,1∼1 ̸= ∅.

7. For all j ∈ [2,M + 2] and i ∈ [1,M ] such that Sj
a,1∼1,i ≠ ∅, there exists k ∈ [1,M ] such

Sj−1
a,1∼1,k ̸= ∅.

Proof. We prove the different statements:

1. Thanks to the formula φ1
α(x) we have that A =

⋃
i∈[1,M ],j∈[1,M+2] Pα

j
i
. Since Sa,1∼1 =

A ∩ Sa,1∼1 , we deduce that

Sa,1∼1 =
( ⋃

i∈[1,M ],j∈[1,M+2]

Pα
j
i

)
∩ Sa,1∼1 =

⋃
i∈[1,M ],j∈[1,M+2]

Sj
a,1∼1,i .

2. This point can be directly deduced thanks to φ1
α(x).

3. This point can be directly deduced thanks to φ4
α(x).

4. Since b ∈ Sa,1∼1 , by 1. there exist j ∈ [1,M + 2] and i ∈ [1,M ] such that b ∈ Sj
a,1∼1,i.

Furthermore, since c ∈ Sa,1∼1 , using formula φ2
α(x), we deduce that c ∈ Sj

a,1∼1,i.

5. This point can be directly deduced thanks to formula φ3
α(x) and to Lemma 31.

6. Assume there exist i, i′ ∈ [1,M ] such that i ≠ i′ and Sj
a,1∼1,i ̸= ∅ and Sj

a,1∼1,i′ ̸= ∅. Let
b ∈ Sj

a,1∼1,i and c ∈ Sj
a,1∼1,i′ ̸= ∅. If b 2∼A

2 c, then, by 5., we necessarily have i = i′.
Hence we deduce that b 2∼A

2 c does not hold, and we can conclude thanks to formula
φ4
α(x).

7. This point can be directly deduced thanks to formula φ5
α(x). ◀

While the predicates αj
i deal with the relation 1∼1, we now define a similar formula

φβ ∈ FO2[Θ ∪ {ed} ∪ ΛM ; Γdf ] for the predicates in Λβ
M to count intersections connected by

the binary relation 2∼2. We introduce hence the following formulas (where φint
same = x 1∼1
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y ∧ x 2∼2 y ∧
∧

σ∈Σ σ(x) ↔ σ(y) and φsame =
∧

σ∈Σ σ(x) ↔ σ(y)):

φ1
β(x) :=

∨
i∈[1,M ]

j∈[1,M+1]

(
βj

i (x) ∧
∧

k∈[1,M ]
ℓ∈[1,M+1]
(k,ℓ) ̸=(i,j)

¬βℓ
k(x)

)

φ2
β(x) :=

∧
i∈[1,M ]

j∈[1,M+1]

(
βj

i (x) → ∀y.
(
(¬ed(y) ∧ φint

same(x, y)) → βj
i (y)

))

φ3
β(x) :=

∧
i∈[1,M−1]
j∈[1,M+1]

(
βj

i (x) →
(

∃y.
(
φint

same(x, y) ∧ γi(y)
)

∧ ¬∃y.
(
φint

same(x, y) ∧ γi+1(y)
) )) ∧

∧
j∈[1,M+1]

(
βj

M (x) → ∃y.
(
φint

same(x, y) ∧ γM (y)
))

φ4
β(x) :=

∧
i∈[1,M ]
j∈[1,M ]

(
βj

i (x) → ∀y.
((

¬ed(y) ∧ φsame(x, y)
∧ ¬(x 1∼1 y) ∧ x 2∼2 y

)
→

∧
k∈[1,M ]

¬βj
k(y)

))

φ5
β(x) :=

∧
i∈[1,M ]

j∈[2,M+1]

(
βj

i (x) → ∃y.
(
φsame(x, y) ∧ x 2∼2 y ∧

∨
k∈[1,M+1]

βj−1
k (y)

))

We then define φβ := ∀x.
(
(¬ed(x)) → (φ1

β(x) ∧ φ2
β(x) ∧ φ3

β(x) ∧ φ4
β(x))

)
∧ (ed(x) →∧

β∈Λα
M

¬β(x)).

The following Lemma is the equivalent of the Lemma 32 for the relation 2∼2. Its proof is
similar to the one of the Lemma 32.

▶ Lemma 33. We consider A = (A, f1, f2, (Pσ)) ∈ Data[Σ ∪ {eq} ∪ CM ∪ ΛM ] eq-respecting
and such that A + ed |= φγ ∧ φβ and a ∈ A. Let Sa,2∼2 = {b ∈ A | a 2∼A

2 b ∧ ℓΣ(a) = ℓΣ(b)}
and Sj

a,2∼2,i = Sa,2∼2 ∩ Pβ
j
i

for all i ∈ [1,M ] and j ∈ [1,M + 1]. The following statements
hold:
1. We have Sa,2∼2 =

⋃
i∈[1,M ],j∈[1,M+1] S

j
a,2∼2,i.

2. For all j, ℓ ∈ [1,M + 1] and i, k ∈ [1,M ] such that i ̸= k or j ≠ l, we have Sj
a,2∼2,i ∩

Sℓ
a,2∼2,k = ∅.

3. For all j ∈ [1,M + 1] and i ∈ [1,M ] such that b, c ∈ Sj
a,2∼2,i, we have b 1∼1 c.

4. For all b, c ∈ Sa,2∼2 such that b 1∼1 c, there exists j ∈ [1,M + 1] and i ∈ [1,M ] such that
b, c ∈ Sj

a,2∼2,i.
5. For all j ∈ [1,M + 1] and i ∈ [1,M ] such that b ∈ Sj

a,2∼2,i, we have{
|{c ∈ A | b 1∼A

1 c ∧ b 2∼A
2 c ∧ ℓΣ(b) = ℓΣ(c)}| = i if i ≤ M − 1

|{c ∈ A | b 1∼A
1 c ∧ b 2∼A

2 c ∧ ℓΣ(b) = ℓΣ(c)}| ≥ M otherwise.

6. For all j ∈ [1,M ], there exists at most one i such that Sj
a,2∼2,i ̸= ∅.

7. For all j ∈ [2,M + 1] and i ∈ [1,M ] such that Sj
a,2∼2,i ̸= ∅, there exists k ∈ [1,M ] such

Sj−1
a,2∼2,k ̸= ∅.
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We are now ready to define the formulas φU,R,m using a case analysis on the shape of R
and the result of Lemma 17:

1. Case R = {(1, 1), (2, 2), (1, 2)}:

φU,R,m(x) := eq(x) ∧ ∃y.(φU (y) ∧ x 1∼1 y ∧ x 2∼2 y ∧ γm(y))

2. Case R = {(1, 1), (2, 2)}:

φU,R,m(x) := ¬eq(x) ∧ ∃y.(φU (y) ∧ x 1∼1 y ∧ x 2∼2 y ∧ γm(y))

3. Case R = {(1, 1), (1, 2)}:

φU,R,m(x) := ¬eq(x) ∧ ∃y.(φU (y) ∧ eq(y) ∧ x 1∼1 y ∧ γm(y))

4. Case R = {(2, 2), (1, 2)}: For this case, we first need an extra definition. For m ∈ [1,M ],
we define Sβ,m the set of subsets of Λα

M as follows: Sβ,m = {{βj1
i1
, . . . ,βjk

ik
} | i1 + . . .+ik ≥

m and j1 < j2 < . . . < jk}. It corresponds to the sets of element βj
i whose sum of i is

greater than or equal to m. We then have:

φU,R,m(x) := eq(x) ∧
∨

S∈Sβ,m

∧
β∈S

∃y.
(
φU (y) ∧ ¬eq(y) ∧ β(y) ∧ x 2∼2 y

)
5. Case R = {(2, 2)}: we use again the set Sβ,m introduced previously.

φU,R,m(x) := ¬eq(x) ∧
∨

S∈Sβ,m

∧
β∈S

∃y.
(
φU (y) ∧ β(y) ∧ ¬(x 1∼1 y) ∧ x 2∼2 y

)
6. Case R = {(1, 1)}: Similar to Case 4., we first need an extra definition. For m ∈

{1, . . . ,M}, we define the set Sα,m of subsets of Λα
M as follows: Sα,m = {{αj1

i1
, . . . ,αjk

ik
} |

i1 + . . . + ik ≥ m and j1 < j2 < . . . < jk}. It corresponds to the sets of elements αj
i

whose sum of i is greater than or equal to m. We then have:

φU,R,m(x) :=
∨

S∈Sα,m

∧
α∈S

∃y.
(
φU (y) ∧ α(y) ∧ ¬eq(y) ∧ x 1∼1 y ∧ ¬(x 2∼2 y)

)
7. Case R = {(1, 2)}: We use here again the set Sβ,m introduced in Case 4.

φU,R,m(x) := ¬eq(x) ∧ ∃y.
(

ed(y) ∧ x 1∼1 y ∧∨
S∈Sβ,m

∧
σ∈S

∃x.
(
φU (x) ∧ σ(x) ∧ ¬(y 1∼1 x) ∧ y 2∼2 x

))
Finally we have φcc = ∀x.¬ed(x) →

∧
HU,R,mI ∈ CM

HU,R,mI(x) ↔ φU,R,m(x)

▶ Lemma 21. Let A = (A, f1, f2, (Pσ)) ∈ Data[Σ ∪ {eq} ∪ CM ∪ ΛM ] be eq-respecting. If
A + ed |= φα ∧ φβ ∧ φγ ∧ φcc, then A is cc-respecting.

Sketch of proof. Let A = (A, f1, f2, (Pσ)) ∈ Data[Σ ∪ {eq} ∪ CM ∪ ΛM ] be eq-respecting
and such that A + ed |= φα ∧ φβ ∧ φγ ∧ φcc. We need to show that for all a ∈ A and all
HU,R,mI ∈ CM , we have a ∈ PHU,R,mI iff |EnvA,Σ,Γ(a, U,R)| ≥ m. We consider a ∈ A. Since
A + ed |= φcc, we deduce that a ∈ PHU,R,mI iff A + ed |=I[x/a] φU,R,m(x). We need hence
to show that A + ed |=I[x/a] φU,R,m(x) iff |EnvA,Σ,Γ(a, U,R)| ≥ m. To prove this , we first
use Lemma 17 to get a characterization of EnvA,Σ,Γ(a, U,R). This characterization is then
directly translated into the formula φU,R,m(x) which makes use of the label in ΛM to count
in the environment of a. The fact that this counting is performed correctly is guaranteed by
Lemmas 31,32 and 33. Putting these arguments together, we can conclude that the lemma
holds. ◀
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C Proofs for Section 4

C.1 Proof of Remark 25

▶ Remark 25. Note that, using the definitions of G2m and of A2m we can show that, if G is
the bi-binary structure (G2m, [[φH ]]A2m , [[φV ]]A2m), then G2m = G.

Proof. We have hence to prove that H2m = {(a, b) | A2m |=I[x/a][y/b] φH(x, y) for some
intepretation function I} and V2m = {(a, b) | A2m |=I[x/a][y/b] φH(x, y) for some intepretation
function I}. We first show that H2m ⊆ [[φH ]]A2m

. Let ((i, j), (i′, j′)) ∈ H2m. Hence we have
j = j′ and i′ − i ≡ 1 mod 2m. We have then different cases according to the parity of j, i
and i′. Assume i, j are even. Then(i, j), (i′, j′) ∈ PY0 and (i, j) ∈ PX0 and (i′, j) ∈ PX1

and by definition of f1, we have f1(i, j) = f1(i′, j), hence ((i, j), (i′, j)) ∈ [[φ00
H ]]A2m and

((i, j), (i′, j)) ∈ [[φH ]]A2m
. The other cases can be treated similarly.

We now prove that H2m ⊇ [[φH ]]A2m
. Let (a, b) be such that A2m |=I[x/a][y/b] φH(x, y)

for some intepretation function I. For φH to hold on (a, b), one of the φij
H must hold. We

treat the case A2m |=I[x/a][y/b] φ
11
H (a, b). Write (a1, a2) and (b1, b2) the coordinates of a

and b respectively. As a ∈ PX0 ∩ PY0 and b ∈ PX1 ∩ PY0), we have that a1, a2, b2 are even
and b1 is odd. As a 1∼1 b, we have ((a1/2) mod m) + m ∗ ((a2/2) mod m) = ((b1/2)
mod m) +m ∗ ((b2/2) mod m). This allows us to conclude that a2 = b2 and that a1 − b2 ≡ 1
mod m. So we have (a, b) ∈ H2m. The other cases can be treated in a similar way.

The proof that V2m = [[φV ]]A2m
follows the exact same lines. ◀

C.2 Proof of Lemma 26

▶ Lemma 26. We have A2m |= φ3 -loc
grid . Moreover, for all A = (A, f1, f2, (Pσ)) in Data[Σgrid ],

if A |= φ3 -loc
grid , then (A, [[φH ]]A, [[φV ]]A) is grid-like.

Proof. We first show that A2m |= φ3 -loc
grid . In the proof, we assume that m ≥ 3. The

cases m = 1 or 2 are treated in the same way. Let us prove the first conjunct, that is
A2m |= φ3 -loc

complete. Let a ∈ G2m. We want to prove that

A2m|3a |=I[x/a] ∀y.∀x′.∀y′.φH(x, y) ∧φV (x, x′) ∧φV (y, y′) ⇒ φH(x′, y′)

for some interpretation function I. We fix an interpretation function I. We proceed by a case
analysis on the values of i, j ∈ {0, 1} such that a ∈ PXi ∩ PYj . Assume that (i, j) = (0, 0).
Then A2m|3a is depicted in Figure 7a. Let b, a′, b′ such that

A2m|3a |=I[x/a][y/b][x′/a′][y′/b′] φH(x, y) ∧φV (x, x′) ∧φV (y, y′) .

We want to show
A2m|3a |=I[x/a][y/b][x′/a′][y′/b′] φH(x′, y′) .

By assumption on a and by looking at the definition of φH ,

A2m|3a |=I[x/a][y/b][x′/a′][y′/b′] X1(y) ∧Y0(y) ∧x 1∼1 y .

So by elimination we have that b is the element pointed by Figure 7a. In a similar way, a′

and b′ are indeed the elements pointed by Figure 7a. Hence, we deduce

A2m|3a |=I[x/a][y/b][x′/a′][y′/b′] φH(x′, y′) .

The case (i, j) = (1, 0) is depicted in Figure 7b and is proven in the same way just as the
cases when (i, j) = (1, 0) or (i, j) = (1, 1).
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a b

a′ b′

X0

Y0

X0

Y0

X0

Y0

X1

Y1

X1

Y1

(a) a ∈ PX0 ∩ PY0

a b

a′ b′

X1

Y0

X1

Y0

X1

Y0

X0

Y1

X0

Y1

(b) a ∈ PX1 ∩ PY0

Figure 7 Some 3-local views of A2m for Γ = {(1, 1), (2, 2)}.

Showing that A2m |= φ3 -loc
progress is done in the same way as showing that A2m |= φ3 -loc

complete.
Finally, it is obvious that A2m satisfies the last conjunct of φ3 -loc

grid .
We now show that for all A = (A, f1, f2, (Pσ)) in Data[Σgrid], if A |= φ3 -loc

grid then
(A, [[φH ]]A, [[φV ]]A) is grid-like. By Lemma 24, we just have to prove that (A, [[φH ]]A, [[φV ]]A)
satisfies φcomplete and φprogress. Let us prove that

(A, [[φH ]]A, [[φV ]]A) |= ∀x.∀y.∀x′.∀y′.((Hxy ∧ Vxx′ ∧ Vyy′) ⇒ Hx′y′) .

By definition of (A, [[φH ]]A, [[φV ]]A), this amounts to verifying that

A |= ∀x.∀y.∀x′.∀y′.φH(x, y) ∧φV (x, x′) ∧φV (y, y′) ⇒ φH(x′, y′) .

Let a, b, a′, b′ ∈ A and let I be an interpretation function such that A |=I[x/a][y/b][x′/a′][y′/b′]
φH(x, y) ∧φV (x, x′) ∧φV (y, y′). Let us show A |=I[x/a][y/b][x′/a′][y′/b′] φH(x′, y′). We do a
case analysis on i, j ∈ {0, 1} such that a ∈ PXi ∩PYj . We only perform the proof for the case
(i, j) = (1, 0), the other three case can be treated similarly. By looking at φH and φV , we
have

A |=I[x/a][y/b][x′/a′][y′/b′]X0(y) ∧Y0(y) ∧x 2∼2 y

A |=I[x/a][y/b][x′/a′][y′/b′]X0(y′) ∧Y1(y′) ∧ y 1∼1 y
′

A |=I[x/a][y/b][x′/a′][y′/b′]X1(x′) ∧Y1(x′) ∧x 1∼1 x
′.

So b, a, b′ are elements of A|3a and

A|3a |=I[x/a][y/b][x′/a′][y′/b′] φH(x, y) ∧φV (x, x′) ∧φV (y, y′) .

Since by assumption A |= φ3 -loc
complete, we deduce that A|3a |=I[x/a][y/b][x′/a′][y′/b′] φH(x′, y′).

This allows us to conclude that A |=I[x/a][y/b][x′/a′][y′/b′] φH(x′, y′).
We can prove in a similar way that (A, [[φH ]]A, [[φV ]]A) |= φprogress can be proved in a

similar way. ◀
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C.3 Proof of Proposition 27

▶ Proposition 27. Given D = (D,HD, VD) a domino system, D admits a periodic tiling iff
the 3-Loc-FO[Σgrid ⊎D; (1, 1), (2, 2)] formula φ3 -loc

grid ∧φD is satisfiable.

Proof. First assume that D admits a periodic tiling and let τ : Gm → D be one. As with
Lemma 26 we already have that A2m |= φ3 -loc

grid . From A2m we build another data structure
A′

2m ∈ Data[Σgrid ⊎D] by adding the predicates (Pd)d∈D as follow: for any i, j ∈ {0, 2m− 1}
and d ∈ D we set Pd((i, j)) to hold iff τ((i mod m, j mod m)) = d. We can then show that
A2m |= φD.

Assume now that there exists A = (A, f1, f2, (Pσ)) in Data[Σgrid ⊎ D] such that A |=
φ3 -loc

grid ∧φD. By Lemma 26, there exists m > 0 and a morphism π : Gm → (A, [[φH ]]A, [[φV ]]A).
It remains hence to show that there is a morphism τ : (A, [[φH ]]A, [[φV ]]A) → D. For any
a ∈ A, we set τ(a) to be a domino such that Pτ(a)(a) holds. Thanks to the first line of
φD, τ is well defined. Then thanks to the second and third line of φD, we have that τ is a
morphism. We deduce that τ ◦ π is a periodic tiling of D. ◀

C.4 Proof of Theorem 37

▶ Theorem 29. DataSat(2-Loc-FO, {(1, 1), (2, 2), (1, 2)}) is undecidable.

The rest of this subsection is devoted to the the proof of the theorem.

A tri-binary structure is a triple (A,H, V,W ) where A is a set and H,V,W are three
subsets of A×A. Intuitively H,V will capture the horizontal and vertical adjacency relation
whereas W will capture the diagonal adjacency. By an abuse of notation, Gm will also refer
to the tri-binary structure (Gm, Hm, Vm,Wm), were Gm, Hm and Vm are the same as before
and:

Wm = {((i, j), (i+ 1, j + 1)) | i, j ∈ Zmodm}.

The logic FO over tri-binary structure is the same as FO over bi-binary structure with the
addition of the binary symbol W. Let φ′

complete be the following FO formula over tri-binary
structure:

φ′
complete = ∀x.∀y.∀y′.(Hxy ∧ Vyy′ ⇒ Wxy′) ∧ ∀x.∀x.∀′y′.(Wxy′ ∧ Vxx′ ⇒ Hx′y′) .

▶ Lemma 34. Let G = (A,H, V,W ) be a tri-binary structure. If G satisfies φ′
complete and

φprogress, then (A,H, V ) is grid-like.

Proof. We simply remark that φ′
complete implies φcomplete and then we apply Lemma 24. ◀

As in the previous subsection, we will consider data structures in Data[Σgrid ] to encode
domino systems and we will use 2-Loc-FO[Σgrid ; Γ] formulae in order to ensure that the data
structures are grid-like and that an embedding of a domino system in it is feasible. In the
previous section, to ensure that a data structure is a grid, we used completely the fact that
we could look in our logical formulae to neighborhood of radius 3 (cf formula φ3 -loc

grid ), but
since here we want to look at neighborhoods of radius 2, we use the diagonal relation and
rely on the result of the previous lemma. Consequently, we will need again the two quantifier
free formulae φH(x, y) and φV (x, y) of FO[Σgrid ; (1, 1), (2, 2)] introduced in 4 and we define
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(a) If X0(a) and Y0(a) hold.
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Y1

X0

Y1

Y0

Y0

X1

(b) If X1(a) and Y0(a) hold.

Figure 8 Some 2-local views of A2m for Γ = {(1, 1), (2, 2), (1, 2)}.

a new quantifier free formula φW (x, y) in FO[Σgrid ; (1, 2)]:

φ00
W = X0(x) ∧X1(y) ∧Y0(x) ∧Y1(y) ∧x 1∼2 y

φ10
W = X1(x) ∧X0(y) ∧Y0(x) ∧Y1(y) ∧x 1∼2 y

φ01
W = X0(x) ∧X1(y) ∧Y1(x) ∧Y0(y) ∧x 1∼2 y

φ11
W = X1(x) ∧X0(y) ∧Y1(x) ∧Y0(y) ∧x 1∼2 y

φW = φ00
W ∨φ10

W ∨φ01
W ∨φ11

W

We will now define a formula φ2 -loc
grid in 2-Loc-FO[Σgrid ; (1, 1), (2, 2), (1, 2)] which ensures

that a data structure corresponds to a grid. This formula is given by (⊕ stands for exclusive
or):

φ2 -loc
complete = ∀x.⟨⟨∀yy′.φH(x, y) ∧φV (y, y′) ⇒ φW (x, y′)⟩⟩2

x

∧ ∀x.⟨⟨∀yx′y′.φV (x, x′) ∧φW (x, y′) ⇒ φH(x′, y′)⟩⟩2
x

φ2 -loc
progress = ∀x.⟨⟨∃y.φH(x, y) ∧ ∃y.φV (x, y)⟩⟩2

x

φ2 -loc
grid = φ2 -loc

complete ∧φ2 -loc
progress ∧ ∀x.⟨⟨(X0(x) ⊕X1(x)) ∧(Y0(x) ⊕ Y1(x))⟩⟩2

x

▶ Lemma 35. The following statements hold:
1. A2m |= φ2 -loc

grid , and
2. for all A = (A, f1, f2, (Pσ)) ∈ Data[Σgrid], if A |= φ2 -loc

grid , then (A, [[φH ]]A, [[φV ]]A) is
grid-like.

Sketch of the proof. The proof is similar to the of Lemma 26. For the first point, Figure
8 provides some representation of A2m|2a for some elements a ∈ G2m. For the second
point, following the same reasonning as in Lemma 26.2, we first show that the tri-binary
structure (A, [[φH ]]A, [[φV ]]A, [[φW ]]A) satisfies φ′

complete and φprogress and we use Lemma 34
to conclude. ◀

As previously, we provide a formula φ′
D of 3-Loc-FO[D; (1, 1), (2, 2), (1, 2)] for any domino

system D = (D,HD, VD). This formalism is morally the same as the formula φD, we only
restrict the neighborhood, but in the fact this does not change anything:

φ′
D := ∀x.⟨⟨

∨
d∈D d(x) ∧

∧
d̸=d′∈D ¬(d(x) ∧ d′(x))⟩⟩2

x

∧ ∀x.⟨⟨∀y.φH(x, y) ⇒
∨

(d,d′)∈HD
d(x) ∧ d′(y)⟩⟩2

x

∧ ∀x.⟨⟨∀y.φV (x, y) ⇒
∨

(d,d′)∈VD
d(x) ∧ d′(y)⟩⟩2

x



28 Local First-Order Logic with Two Data Values

We have the following proposition whose proof follows the same line as Proposition 27.

▶ Proposition 36. Given D = (D,HD, VD) a domino system, we have that D admits a
periodic tiling iff the 2-Loc-FO[Σgrid ⊎D; (0, 0), (1, 1), (1, 2)] formula φ2 -loc

grid ∧φ′
D is satisfiable.

Finally, we obtain the desired undecidability result.

▶ Theorem 37. DataSat(2-Loc-FO, {(1, 1), (2, 2), (1, 2)}) is undecidable.
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