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We study first-order logic over unordered structures whose elements carry two data values from an infinite domain. Data values can be compared wrt. equality so that the formalism is suitable to specify the input-output behavior of various distributed algorithms. As the logic is undecidable in general, we introduce a family of local fragments that restrict quantification to neighborhoods of a given reference point. Our main result establishes decidability of the satisfiability problem for one of these non-trivial local fragments. On the other hand, already slightly more general local logics turn out to be undecidable. Altogether, we draw a landscape of formalisms that are suitable for the specification of systems with data and open up new avenues for future research.

Introduction

Data logics have been introduced to reason about structures whose elements are labeled with a value from an infinite alphabet (e.g., XML documents) [START_REF] Segoufin | Automata and logics for words and trees over an infinite alphabet[END_REF]. Expressive decidable fragments include notably two-variable logics over data words and data trees [START_REF] Bojanczyk | Two-variable logic on data words[END_REF][START_REF] Bojanczyk | Two-variable logic on data trees and XML reasoning[END_REF]. The decidability frontier is fragile, though. Extensions to two data values, for example, quickly lead to an undecidable satisfiability problem. From a modeling point of view, those extensions still play an important role. When specifying the input-output behavior of distributed algorithms [START_REF] Fokkink | Distributed Algorithms: An Intuitive Approach[END_REF][START_REF] Lynch | Distributed Algorithms[END_REF], processes get an input value and produce an output value, which requires two data values per process. In leader election or renaming algorithms, for instance, a process gets its unique identifier as input, and it should eventually output the identifier of a common leader (leader election) or a unique identifier from a restricted name space (renaming).

In this paper, we consider a natural extension of first-order logic over unordered structures whose elements carry two data values from an infinite domain. There are two major differences between most existing formalisms and our language. While previous data logics are usually interpreted over words or trees, we consider unordered structures (or multisets). When each element of such a structure represents a process, we therefore do not assume a particular processes architecture, but rather consider clouds of computing units. Moreover, decidable data logics are usually limited to one value per element, which would not be sufficient to model an input-output relation. Hence, our models are algebraic structures consisting of a universe and functions assigning to each element two integers. We remark that, for many are mappings A → N assigning a data value to each element. We let Val A = {f 1 (a) | a ∈ A} ∪ {f 2 (a) | a ∈ A}. The set of all data structures over Σ is denoted by Data [Σ].

While this representation of data structures is often very convenient to refer to the first or second data value of an element, a more standard way of representing mathematical structures is in terms of binary relations. For every (i, j) ∈ {1, 2} × {1, 2}, the mappings f 1 and f 2 determine a binary relation i ∼ A j ⊆ A × A as follows: a i ∼ A j b if f i (a) = f j (b). We may omit the superscript A if it is clear from the context. This representation is particularly useful when we consider logics as specification languages.

Let Γ ⊆ {1, 2} × {1, 2} be a set of binary relation symbols, which determines the binary relation symbols i ∼ j at our disposal, and let V = {x, y, . . .} be a countably infinite set of variables. The set FO[Σ; Γ] of first-order formulas interpreted over data structures over Σ is inductively given by the grammar φ ::= σ(x) | x i ∼ j y | x = y | φ ∨ φ | ¬φ | ∃x.φ, where x and y range over V, σ ranges over Σ, and (i, j) ∈ Γ. We use standard abbreviations such as ∧ for conjunction and → for implication. We write φ(x 1 , . . . , x n ) to indicate that the free variables of φ are among x 1 , . . . , x n . A formula without free variables is called a sentence.

For A = (A, f 1 , f 2 , (P σ )) ∈ Data[Σ] and a formula φ ∈ FO[Σ; Γ], the satisfaction relation A |= I φ is defined wrt. an interpretation function I : V → A. The purpose of I is to assign an interpretation to every (free) variable of φ so that φ can be given a truth value. For x ∈ V and a ∈ A, the interpretation function I[x/a] maps x to a and coincides with I on all other variables. We then define:

A |=I σ(x) if I(x) ∈ Pσ A |=I φ1 ∨ φ2 if A |=I φ1 or A |=I φ2 A |=I x i∼j y if I(x) i∼ A j I(y) A |=I ¬φ if A ̸ |=I φ A |=I x = y if I(x) = I(y) A |=I ∃x.φ if there is a ∈ A with A |= I[x/a] φ
Finally, for a sentence φ (without free variables), we write A |= φ if there exists an interpretation function I such that A |= I φ.

▶ Example 1. Assume a unary predicate leader ∈ Σ and (1, 2) ∈ Γ. We use the first data value to denote the input of a distributed algorithm and the second data value to denote the output. The following formula from FO[Σ; Γ] expresses correctness of a leaderelection algorithm: (i) there is a unique process that has been elected leader, and (ii) all processes agree, in terms of their output values, on the identity (the input value) of the leader: ∃ =1 x.leader(x) ∧ ∀y.∃x.(leader(x) ∧ x 1 ∼ 2 y). Here ∃ =1 x is a shortcut for "there exists exactly one x". Its definition is provided later on. ⋄

Note that every choice of Γ gives rise to a particular logic, whose formulas are interpreted over data structures over Σ. Instead of FO[Σ; {(1, 1), (2, 2)}], we may also simply write FO[Σ; [START_REF] Aiswarya | An automata-theoretic approach to the verification of distributed algorithms[END_REF][START_REF] Aiswarya | An automata-theoretic approach to the verification of distributed algorithms[END_REF], [START_REF] Bednarczyk | A Note on C 2 Interpreted over Finite Data-Words[END_REF][START_REF] Bednarczyk | A Note on C 2 Interpreted over Finite Data-Words[END_REF]] and so on. We will focus on the satisfiability problem for these logics. Let F denote a generic class of first-order formulas, parameterized by Σ and Γ. In particular, for F = FO, we have that F[Σ; Γ] is the class FO[Σ; Γ]. ▶ Definition 2. The problem DataSat(F, Γ) for F and Γ is defined as follows: Given a finite set Σ and a sentence φ ∈ F[Σ; Γ], is there A ∈ Data[Σ] such that A |= φ ?

The following negative result, which was shown in [START_REF] Janiczak | Undecidability of some simple formalized theories[END_REF]Theorem 1], calls for restrictions of the general logic:

▶ Theorem 3 ([16]). DataSat(FO, {(1, 1), (2, 2)}) is undecidable, even when requiring that Σ = ∅.

A Normal Form. When Γ = ∅, satisfiability of monadic first-order logic is decidable [9, Corollary 6.2.2] and the logic actually has a useful normal form. Let φ(x 1 , . . . , x n , y) ∈ FO[Σ; ∅] and k ≥ 1 be a natural number. We use ∃ ≥k y.φ(x 1 , . . . , x n , y) as an abbreviation for ∃y 1 . . . ∃y k . 1≤i<j≤k ¬(y i = y j ) ∧ 1≤i≤k φ(x 1 , . . . , x n , y i ). Thus, ∃ ≥k y.φ says that there are at least k distinct elements y that verify φ. We call a formula of the form ∃ ≥k y.φ a threshold formula. We also use ∃ =k y.φ as an abbreviation for ∃ ≥k y.φ ∧ ¬∃ ≥k+1 y.φ.

When Γ = ∅, the out-degree of every element is 0 so that, over this particular signature, we deal with structures of bounded degree. The following lemma will turn out to be useful. It is due to Hanf's locality theorem [START_REF] Hanf | Model-theoretic methods in the study of elementary logic[END_REF][START_REF] Libkin | Elements of Finite Model Theory[END_REF] for structures of bounded degree (cf. [START_REF] Bollig | An optimal construction of Hanf sentences[END_REF]Theorem 2.4]).

▶ Lemma 4. Every formula from FO[Σ; ∅] with one free variable x is effectively equivalent to a Boolean combination of formulas of the form σ(x) with σ ∈ Σ and threshold formulas of the form ∃ ≥k y.φ U (y) where U ⊆ Σ and φ U (y) = σ∈U σ(y) ∧ σ∈Σ\U ¬σ(y).

Extended Two-Variable First-Order Logic. An orthogonal way to obtain decidability is to restrict to two variables and Γ = {(1, 1), (2, 2)}. The two-variable fragment FO 2 [Σ; Γ] contains all FO[Σ; Γ] formulas that use only two variables (usually x and y). In a two-variable formula, however, each of the two variables can be used arbitrarily often. The satisfiability problem of two-variable logic over arbitrary finite structures with two equivalence relations is decidable [START_REF] Kieronski | On finite satisfiability of two-variable first-order logic with equivalence relations[END_REF]Theorem 15]. By a straightforward reduction to this problem, we obtain:

▶ Theorem 5 ([20]). The problem DataSat(FO 2 , {(1, 1), (2, 2)}) is decidable.
Actually, this result can be generalized to extended two-variable first-order logic. A formula belongs to ext-FO 2 

[Σ, Γ] if it is of the form φ ∧ ψ where φ ∈ FO[Σ; ∅] and ψ ∈ FO 2 [Σ, Γ].
To obtain the next result, the idea consists in first translating the formula φ ∈ FO[Σ; ∅] to a two-variable formula thanks to new unary predicates.

▶ Proposition 6. The problem DataSat(ext-FO 2 , {(1, 1), (2, 2)}) is decidable.

Local First-Order Logic

We are interested in logics that combine the advantages of the logics considered so far, while preserving decidability. With this in mind, we will study local logics, where the scope of quantification is restricted to the neighborhood of a given element.

The neighborhood of an element a includes all elements whose distance to a is bounded by a given radius. It is formalized using the notion of a Gaifman graph (for an introduction, see [START_REF] Libkin | Elements of Finite Model Theory[END_REF]). In fact, we use a variant that is suitable for our setting and that we call data graph. Fix sets Σ and Γ. Given a data structure

A = (A, f 1 , f 2 , (P σ )) ∈ Data[Σ], we define its data graph G(A) = (V G(A) , E G(A) ) with set of vertices V G(A) = A × {1, 2} and set of edges E G(A) = {((a, i), (b, j)) ∈ V G(A) × V G(A) | a = b and i ̸ = j, or (i, j) ∈ Γ and a i ∼ j b}. The graph G(A) is illustrated in Figure 1.
We define the distance d A ((a, i), (b, j)) ∈ N ∪{∞} between two elements (a, i) and (b, j) from A × {1, 2} as the length of the shortest directed path from (a, i) to (b, j) in G(A). In fact, as the graph is directed, the distance function might not be symmetric. For a ∈ A and r ∈ N, the radius-r-ball around a is the set

B A r (a) = {(b, j) ∈ V G(A) | d A ((a, i), (b, j)) ≤ r for some i ∈ {1, 2}}.
That is, it contains the elements of V G(A) that can be reached from (a, 1) or (a, 2) through a directed path of length at most r. In the left-hand side of Figure 1,B A 1 (a) is given by the blue nodes.

Consider an injective mapping π : A × {1, 2} → N \Val A . We define the r-neighborhood of a in A as the structure 

A| r a = (A ′ , f ′ 1 , f ′ 2 , (P ′ σ )) ∈ Data[Σ]. Its universe is A ′ = {b ∈
. A | (b, i) ∈ B A r (a) for some i ∈ {1, 2}}. Moreover, f ′ i (b) = f i (b) if (b, i) ∈ B A r (a)
, and

f ′ i (b) = π((b, i)) otherwise.
Finally, P ′ σ is the restriction of P σ to A ′ . To illustrate this definition, we use again Figure 1. The structure A| 1 a is given by the four elements that contain at least one blue node. However, the values of the red nodes have to be replaced by pairwise distinct fresh values not contained in {1, . . . , 5}. Note that the precise values do not matter.

We are now ready to present the logic r-Loc-FO[Σ; Γ], where r ∈ N, interpreted over structures from Data[Σ]. It is given by the grammar

φ ::= ⟨⟨ψ⟩⟩ r x | x = y | ∃x.φ | φ ∨ φ | ¬φ
where ψ is a formula from FO[Σ; Γ] with (at most) one free variable x. Henceforth, we fix a finite set Σ as well as Γ = {(1, 1), (2, 2), (1, 2)} and the diagonal-free set Γ df = {(1, 1), (2, 2)}. Moreover, we let Θ range over arbitrary finite sets such that Σ ⊆ Θ and Θ ∩ {eq, ed} = ∅, where eq and ed are special unary symbols that are introduced below.

We start with some crucial notion. Suppose Γ ′ ⊆ Γ (which will later be instantiated by either Γ df or Γ). Consider a data structure A = (A, f 1 , f 2 , (P σ )) ∈ Data[Θ] with Σ ⊆ Θ. Given U ⊆ Σ and a nonempty set R ⊆ Γ ′ , the environment of a ∈ A is defined as

Env A,Σ,Γ ′ (a, U, R) = b ∈ A | U = {σ ∈ Σ | b ∈ P σ } and R = {(i, j) ∈ Γ ′ | a i ∼ A j b} .
Thus, it contains the elements that carry exactly the labels from U (relative to Σ) and to which a is related precisely in terms of the relations in R (relative to Γ ′ ).

▶ Example 8. Consider A ∈ Data[Σ] from Figure 2(a) where Σ = ∅. Then, the set Env A,Σ,Γ (a, ∅, {(1, 1), (1, 2)}) = Env A,Σ,Γ df (a, ∅, {(1, 1)}) contains exactly the yellow elements

(a) 1 2 a 1 1 1 1 1 1 2 2 3 4 2 1 3 1 (b) 1 2 a 1 2 (1,1) (2,2) 1 1 
(1,1) (

(1,1) (1,2)

1 1 (1,1) (1,2) 2 2 
(2,2) (with data-value pairs (1, 1)), and Env A,Σ,Γ (a, ∅, {(1, 2)}) contains the two blue elements (with data-value pairs (2, 1) and (3, 1)). ⋄

3 4 2 1 (1,2) 3 1 (1,2) (c) 1 2 a ≥ 1 ≥ 1 ≥ 2 ≥ 3 1 1 1 1 1 1 2 2 3 4 2 1 3 1 (d) 1 1 ≥ 1 ≥ 2 ≥ 3 eq 1 1 ≥ 1 ≥ 2 ≥ 3 eq 1 1 ≥ 1 ≥ 2 ≥ 3 eq 2 2 ≥ 1 ≥ 1 ≥ 1 eq 1 2 ≥ 1 ≥ 1 ≥ 2 ≥ 3 2 1 ≥ 3 ≥ 1 ≥ 1 ≥ 1 3 1 ≥ 1 ≥ 3 ≥ 1 3 4 ≥ 1 ≥ 1 : {(1, 1)} : {(2, 2)} : {(1, 2)} : {(1, 1), (2, 2)} : {(1, 1), (1, 2)} : {(2, 2), (1, 2)} : {(1, 1), (2, 2), (1, 2)}
Let us now go through the reduction step by step.

Step 1: Transform Binary into Unary Relations

In the first step, we get rid of the binary relations by representing them as unary ones. In fact, in a formula ⟨⟨ψ⟩⟩ 1

x from 1-Loc-FO[Σ; Γ], ψ only talks about elements that are directly related to a = I(x) in terms of pairs from Γ. In fact, we can rewrite ψ into ψ ′ so that all comparisons are wrt. x, i.e., they are of the form x i ∼ j y. Then, a pair (i, j) ∈ Γ can be seen as a unary predicate that holds at b iff a i ∼ j b. In this way, we eliminate the binary relations and replace ψ ′ with a first-order formula ψ ′′ over unary predicates.

▶ Example 9. Adding unary relations to a data structure for a given element a is illustrated in Figure 2(b) (recall that Σ = ∅). ⋄

Thanks to the unary predicates, we can now apply Lemma 4 (which was a consequence of locality of first-order logic over unary symbols only). That is, to know whether ψ ′′ holds when x is interpreted as a, it is enough to know how often every unary predicate is present in the environment of a, counted only up to some M ≥ 1. However, we will then give up the information of whether the two data values at a coincide or not. Therefore, we introduce a unary predicate eq, which shall label those events whose two data values coincide. Accordingly, we say that

A = (A, f 1 , f 2 , (P σ )) ∈ Data[Θ ∪ {eq}] is eq-respecting if, for all a ∈ A, we have a ∈ P eq iff f 1 (a) = f 2 (a).
Once we add this information to a, it is enough to know the size of Env A,Σ,Γ (a, U, R) for every U ⊆ Σ and nonempty R ⊆ Γ, measured up to M . To reason about these sizes, we introduce a unary predicate U, R, m for all U ⊆ Σ, nonempty sets R ⊆ Γ, and m ∈ {1, . . . , M } (which is interpreted as "≥ m"). We also call such a predicate a counting constraint and denote the set of all counting constraints by C M (recall that we fixed Σ and Γ). For a finite set Θ with Σ ⊆ Θ, we call

A = (A, f 1 , f 2 , (P σ )) ∈ Data[Θ ∪ C M ] cc-respecting if, for all a ∈ A, we have a ∈ P U,R,m iff |Env A,Σ,Γ (a, U, R)| ≥ m. Finally, we call A ∈ Data[Θ ∪ {eq} ∪ C M ]
well-typed if it is eq-respecting and cc-respecting.

(a) ▶ Example 10. In Figure 2(c), where we suppose M = 3 and Σ = ∅, the element a satisfies the counting constraints

A + ed A 1 1 b1 1 1 ed eq 2 2 b2 2 2 ed eq 3 3 b3 3 3 ed eq 4 4 b4 4 4 ed eq 1 2 a7 1 1 a1 1 1 eq 1 1 a2 1 1 eq 1 1 a3 1 1 eq 2 2 a6 2 2 eq 3 4 a8 2 1 a5 3 1 a4 (b) 3 1 b1 3 1 ed eq 1 2 b2 1 2 ed eq
∅, {(2, 2)}, 1 , ∅, {(1, 1), (2, 2)}, 1 , ∅, {(1, 2)}, 2 ,

and

∅, {(1, 1), (1, 2)}, 3 , as well as all inherited constraints for smaller constants (which we omitted). We write ∅, R, m as R ≥ m. In fact, pairs from R are represented as black bars in the obvious way (cf. Figure 2(d)); moreover, for each constraint, the corresponding elements have the same color. Finally, the data structure from Figure 2(d) is well-typed, i.e., eq-and cc-respecting. Again, we omit inherited constraints. ⋄

To summarize, we have the following reduction:

▶ Lemma 11. For each formula φ ∈ 1-Loc-FO[Σ; Γ], we can effectively compute M ∈ N and χ ∈ FO[Σ ∪ {eq} ∪ C M ; ∅] such that φ is satisfiable iff χ has a well-typed model.
Step 2: Well-Diagonalized Structures

In C M , we still have the diagonal relation (1, 2) ∈ Γ. Our goal is to get rid of it so that we only deal with the diagonal-free set Γ df = {(1, 1), (2, 2)}. The idea is again to extend a given structure A, but now we add new elements, one for each value n ∈ Val A , which we tag with a unary symbol ed and whose two data values are n. Diagonal equality will be ensured through making a detour via these 'diagonal' elements (hence the name ed).

Formally, when we start from some

A = (A, f 1 , f 2 , (P σ )) ∈ Data[Θ ∪ {eq}], the data structure A + ed ∈ Data[Θ ∪ {eq, ed}] is defined as (A ′ , f ′ 1 , f ′ 2 , (P ′ σ )) where A ′ = A ⊎ Val A , f ′ i (a) = f i (a) for all a ∈ A and i ∈ {1, 2}, f ′ 1 (a) = f ′ 2 (a) = a for all a ∈ Val A , P ′ σ = P σ for all σ ∈ Θ \ {eq}, P ′ ed = Val A , and P ′ eq = P eq ∪ Val A .
▶ Example 12. The structure A + ed is illustrated in Figure 3(a), with Θ = ∅. ⋄

With this, we say that

B ∈ Data[Θ ∪ {eq, ed}] is well-diagonalized if it is of the form A + ed for some eq-respecting A ∈ Data[Θ ∪ {eq}]. Note that then B is eq-respecting, too.
▶ Example 13. The data structure A + ed from Figure 3(a) is well-diagonalized. The one from Figure 3(b) is not well-diagonalized (in particular, it is not eq-respecting). ⋄

We will need a way to ensure that the considered data structures are well-diagonalized. To this end, we introduce the following sentence from FO 2 [Θ ∪ {eq, ed}; Γ df ]:

ξ Θ ed := i∈{1,2} ∀x.∃y.(ed(y) ∧ x i ∼ i y) ∧ ∀x.∀y.(ed(x) ∧ ed(y) ∧ x i ∼ i y) → x = y ∧ ∀x.eq(x) ↔ ∃y.(ed(y) ∧ x 1 ∼ 1 y ∧ x 2 ∼ 2 y) ∧ ∀x.ed(x) → σ∈Θ ¬σ(x)
Every structure that is well-diagonalized satisfies ξ Θ ed . The converse is not true in general. In particular, a model of ξ Θ ed is not necessarily eq-respecting. However, if a structure satisfies a formula φ ∈ FO[Θ ∪ {eq, ed}; Γ df ], then it is possible to perform a permutation on the first (or the second) values of its elements while preserving φ. This allows us to get: 

▶ Lemma 14. Let B ∈ Data[Θ ∪ {eq, ed}] and φ ∈ FO[Θ ∪ {eq, ed}; Γ df ]. If B |= φ ∧ ξ Θ ed ,
∈ FO[Θ ∪ {eq}; ∅] into a formula [[φ]] +ed ∈ FO[Θ ∪ {eq, ed}; ∅] that avoids the extra 'diagonal' elements: [[σ(x)]] +ed = σ(x), [[x = y]] +ed = (x = y), [[∃x.φ]] +ed = ∃x.(¬ed(x) ∧ [[φ]] +ed ), [[φ ∨ φ ′ ]] +ed = [[φ]] +ed ∨ [[φ ′ ]] +ed , and [[¬φ]] +ed = ¬[[φ]] +ed .
We immediately obtain:

▶ Lemma 16. Let A ∈ Data[Θ ∪ {eq}] and φ ∈ FO[Θ ∪ {eq}; ∅] be a sentence. We have A |= φ iff A + ed |= [[φ]] +ed .
Step 3: Getting Rid Of the Diagonal Relation

We will now exploit well-diagonalized data structures to reason about environments relative to Γ in terms of environments relative to Γ df . Recall that Θ ranges over finite sets such that Σ ⊆ Θ.

▶ Lemma 17. Let A = (A, f 1 , f 2 , (P σ )) ∈ Data[Θ ∪ {eq}] be eq-respecting and B = A + ed. Moreover, let a ∈ A, U ⊆ Σ, and R ⊆ Γ be a nonempty set. We have Env A,Σ,Γ (a, U, R) =                                      Env B,Σ,Γ df (a, U, Γ df ) \ P ed if a ∈ P eq and R = Γ (1)
Env B,Σ,Γ df (a, U, Γ df ) if a / ∈ P eq and R = Γ df (2)
Env B,Σ,Γ df (a, U, {(1, 1)}) ∩ (P eq \ P ed ) if a / ∈ P eq and R = {(1, 1), (1, 2)} (3)

Env B,Σ,Γ df (a, U, {(2, 2)}) if a ∈ P eq and R = {(2, 2), (1, 2)} (4) Env B,Σ,Γ df (a, U, {(2, 2)}) \ P ed if a / ∈ P eq and R = {(2, 2)} (5) Env B,Σ,Γ df (a, U, {(1, 1)}) \ P eq if R = {(1, 1)} (6) Env B,Σ,Γ df (d, U, {(2, 2)}) if a / ∈ P eq and R = {(1, 2)} (7) for the unique d ∈ P ed such that d 1 ∼ B 1 a ∅ otherwise (8) 
▶ Example 18. Let us go through some cases of Lemma 17 using Figure 3(a), and letting

Σ = Θ = ∅. (1) Let a = a 1 and R = Γ. Then, Env A,Σ,Γ (a, ∅, R) = {a 1 , a 2 , a 3 }. We also have that Env B,Σ,Γ df (a, ∅, Γ df ) = {a 1 , a 2 , a 3 , b 1 }:
These are the elements that coincide with a exactly on the first and the on the second data value when we dismiss the diagonal relation. Of course, as we consider B, this includes b 1 , which we have to exclude. Thus, Let us wrap up: By Lemmas 11 and 17, we end up with checking counting constraints in an extended data structure without using the diagonal relation.

Env A,Σ,Γ (a, ∅, R) = Env B,Σ,Γ df (a, ∅, Γ df ) \ P ed . ( 6 

Step 4: Counting in Two-Variable Logic

The next step is to express these constraints using two-variable formulas. Counting in two-variable logic is established using further unary predicates. These additional predicates allow us to define a partitioning of the universe of a structure into so-called intersections.

Suppose A = (A, f 1 , f 2 , (P σ )) ∈ Data[Θ ∪ {eq, ed}], where Σ ⊆ Θ. Let a ∈ A \ P ed and define ℓ Σ (a) = {σ ∈ Σ | a ∈ P σ }. The intersection of a in A is the set {b ∈ A \ P ed | a 1 ∼ 1 b ∧ a 2 ∼ 2 b ∧ ℓ Σ (a) = ℓ Σ (b)}. A set is called an intersection in A if it is the intersection of some a ∈ A \ P ed .
▶ Example 19. Consider Figure 4 and suppose Σ = {p}. The intersections of the given data structure are gray-shaded. ⋄

Let us introduce the various unary predicates, which will be assigned to non-diagonal elements. There are three types of them (for the first two types, also see Figure 4):

1. The unary predicates Λ γ M = {γ 1 , . . . , γ M } have the following intended meaning: For all intersections I and i ∈ {1, . . . , M }, we have |I| ≥ i iff there is a ∈ I such that a ∈ P γi . In other words, the presence (or absence) of γ i in an intersection I tells us whether |I| ≥ i.

The predicates Λ

α M = {α j i | i ∈ {1, .
. . , M } and j ∈ {1, . . . , M + 2}} have the following meaning: If a is labeled with α j i , then (i) there are at least j intersections sharing the same first value and the same label set ℓ Σ (a), and (ii) the intersection of a has i elements if i ≤ M -1 and at least M elements if i = M . Hence, in α j i , index i counts the elements inside an intersection, and j labels up to M + 2 different intersections. We need to go beyond M due to Lemma 17: When we remove certain elements (e.g., P eq ) from an environment, we must be sure to still have sufficiently many to be able to count until M .

Labels from Λ

β M = {β j i | i ∈ {1, .
. . , M } and j ∈ {1, . . . , M + 1}} will play a similar role as those in Λ α M but consider the second values of the elements instead of the first ones.

▶ Example 20.

A suitable labeling for types γ and α is illustrated in Figure 4 for

M = 3. ⋄ Let Λ M = Λ α M ∪ Λ β M ∪ Λ γ
M denote the set of all these unary predicates. It is relatively standard to come up with sentences φ α , φ β , φ γ ∈ FO 2 [Θ ∪ {eq, ed} ∪ Λ M ; Γ df ] that guarantee the respective properties. In particular, they make use of the formula x 1 ∼ 1 y ∧ x 2 ∼ 2 y ∧ σ∈Σ σ(x) ↔ σ(y) saying that two (non-diagonal) elements x and y are in the same intersection. Now that we can count on a consistent labeling with predicates from Λ M , let us see how we can exploit it to express U, R, m ∈ C M , with additional help from Lemma 17, as a formula φ U,R,m (x) ∈ FO 2 [Θ ∪ {eq, ed} ∪ Λ M ; Γ df ] applied to non-diagonal elements (outside P ed ). Let us look at two sample cases according to the case distinction done in Lemma 17. Hereby, we will use, for U ⊆ Σ, the formula φ U (y) = σ∈U σ(y) ∧ σ∈Σ\U ¬σ(y).

(1) In this simple case with R = {(1, 1), (2, 2), (1, 2)}, we need to say that (i) the element a under consideration is in P eq , and (ii) there is an intersection of size at least m (i..e., it contains a γ m -labeled element) whose elements b satisfy a 1 ∼ 1 b, a 2 ∼ 2 b, and ℓ Σ (b) = U : 

φ U,R,m (x) := eq(x) ∧ ∃y. φ U (y) ∧ x 1 ∼ 1 y ∧ x 2 ∼ 2 y ∧ γ m (y) (6 
S α,m = {{α j1 i1 , . . . , α j k i k } | i 1 + . . . + i k ≥ m and j 1 < j 2 < . . . < j k }.
It corresponds to the sets of elements α j i whose sum of i is greater than or equal to m. We can then translate the constraint according to Lemma 17 as follows:

φ U,R,m (x) := S∈Sα,m α∈S ∃y. φ U (y) ∧ α(y) ∧ ¬eq(y) ∧ x 1 ∼ 1 y ∧ ¬(x 2 ∼ 2 y)
Finally, it remains to say that all elements are labeled with the suitable counting constraints. So we let

φ cc = ∀x.¬ed(x) → U,R,m ∈ C M U, R, m (x) ↔ φ U,R,m (x). ▶ Lemma 21. Let A = (A, f 1 , f 2 , (P σ )) ∈ Data[Σ ∪ {eq} ∪ C M ∪ Λ M ] be eq-respecting. If A + ed |= φ α ∧ φ β ∧ φ γ ∧ φ cc , then A is cc-respecting.
Step 5: Putting it All Together Let All = Σ ∪ {eq, ed} ∪ C M ∪ Λ M denote the set of all the unary predicates that we have introduced so far. Recall that, after Step 1, we were left with M ≥ 1 and a formula φ ∈ FO[Σ ∪ {eq} ∪ C M ; ∅]. The question is now whether φ has a well-typed model (i.e., a model that is eq-respecting and cc-respecting). Altogether, we get the following reduction:

▶ Proposition 22. Let φ ∈ FO[Σ ∪ {eq} ∪ C M ; ∅]. Then, φ has a well-typed model iff φ := [[φ]] +ed ∧ ξ All\{eq,ed} ed ∧ φ α ∧ φ β ∧ φ γ ∧ φ cc ∈ ext-FO 2 [All; Γ df ] is satisfiable.
Proof. Suppose φ is satisfiable. Then, there is B ∈ Data[All] such that B |= φ. By Lemma 14, there exists an eq-respecting data structure ] +ed . Furthermore, using the fact that A is well-typed, we can add the unary predicates from Λ M to A + ed to obtain a data structure 

A ∈ Data[Σ ∪ {eq} ∪ C M ∪ Λ M ] such that A + ed |= [[φ]] +ed ∧ φ α ∧ φ β ∧ φ γ ∧ φ cc . Using
A ′ in Data[All] such that A ′ |= φ α ∧ φ β ∧ φ γ ∧ φ cc . Note that A ′ is well-diagonalized. We deduce that A ′ |= φ. ◀ ▶ Theorem 23. DataSat(1-Loc-FO, {(1, 1), (2, 2), (1, 2)}) is decidable. Proof. Let ψ ∈ 1-Loc-FO[Σ; (1,

Undecidability Results

Let us show that extending the neighborhood radius yields undecidability. We rely on a reduction from the domino problem [START_REF] Börger | The Classical Decision Problem[END_REF] and use a specific technique presented in [START_REF] Otto | Two-variable first-order logic over ordered domains[END_REF].

The Tiling Problem. 

G m = Z mod m × Z mod m, H m = {((i, j), (i ′ , j)) | i ′ -i ≡ 1 mod m}, and V m = {((i, j), (i, j ′ )) | i ′ -i ≡ 1 mod m}.
In the sequel, we will suppose Z mod m = {0, . . . , m -1} using the least positive member to represent residue classes.

A bi-binary structure is a triple (A, R 1 , R 2 ) where A is a finite set and R 1 , R 2 are subsets of A × A. Domino systems and G m for any m are examples of bi-binary structures. For two bi-binary structures G = (G, H, V ) and

G ′ = (G ′ , H ′ , V ′ ), we say that G is homomorphically embeddable into G ′ if there is a morphism π : G → G ′ , i.e., a mapping π such that, for all a, a ′ ∈ G, (a, a ′ ) ∈ H ⇒ (π(a), π(a ′ )) ∈ H ′ and (a, a ′ ) ∈ V ⇒ (π(a), π(a ′ )) ∈ V ′ . For instance, G k•m is homomorphically embeddable into G m through
reduction mod m. For a domino system D, a periodic tiling is a morphism τ : G m → D for some m and we say that D admits a periodic tiling if there exists a periodic tiling of D.

The problem Tiles (or periodic tiling problem), which is well known to be undecidable [START_REF] Börger | The Classical Decision Problem[END_REF], is defined as follows: Given a domino system D, does D admit a periodic tiling?

To use Tiles in our reductions, we first use some specific bi-binary structures, which we call grid-like and which are easier to manipulate in our context to encode domino systems. A bi-binary structure G = (A, H, V ) is said to be grid-like if some G m is homomorphically embeddable into G. The logic FO over bi-binary structures refers to the first-order logic on two binary relations H, V, and we write Hxy to say that x and y are in relation for H. Consider the two following FO formulas over bi-binary structures: φ complete = ∀x.∀y.∀x ′ .∀y ′ .((Hxy ∧ Vxx ′ ∧ Vyy ′ ) → Hx ′ y ′ ) and φ progress = ∀x.(∃y.Hxy ∧ ∃y. Vxy). The following lemma, first stated and proved in [START_REF] Otto | Two-variable first-order logic over ordered domains[END_REF], shows that these formulas suffice to characterize grid-like structures:

▶ Lemma 24 ([25]). Let G = (A, H, V ) be a bi-binary structure. If G satisfies φ complete and φ progress , then G is grid-like.

Given A = (A, f 1 , f 2 , (P σ )) ∈ Data[Σ]

and φ(x, y) ∈ FO[Σ; Γ], we define the binary relation [[φ]]

A = {(a, b) ∈ A × A | A |= I[x/a][y/b] φ(x,
y) for some interpretation function I}. Thus, given two FO[Σ; Γ] formulas φ 1 (x, y), φ 2 (x, y) with two free variables, (A,

[[φ 1 ]] A , [[φ 2 ]] A ) is a bi-binary structure.
As we want to reason on data structures, we build a data structure A 2m that corresponds to the grid G 2m = (G 2m , H 2m , V 2m ). This structure is depicted locally in Figure 5. To define A 2m , we use four unary predicates given by Σ grid = {X 0 , X 1 , Y 0 , Y 1 }. They give us access to the coordinate modulo 2. We then define

A 2m = (G 2m , f 1 , f 2 , (P σ )) ∈ Data[Σ grid ] as follows: For k ∈ {0, 1}, we have P X k = {(i, j) ∈ G 2m | i ≡ k mod 2} and P Y k = {(i, j) ∈ G 2m | j ≡ k mod 2}
. For all i, j ∈ {0, . . . , 2m -1}, we set f 1 (i, j) = ((i/2) mod m) + m * ((j/2) mod m) (where / stands for the Euclidian division). Finally, for all i, j ∈ {1, . . . , 2m}, set f 2 (i mod (2m), j mod (2m)) = f 1 (i -1, j -1).

In Figure 6, we define quantifier free formulas φ H (x, y) and φ V (x, y) from the logic FO[Σ grid ; (1, 1), (2, 2)] with two free variable. These formulas allow us to make the link between the data structure A 2m and the grid G 2m , and we will use them later on to ensure that a data structure has a shape 'similar' to A 2m . 

φ 00 H = X 0 (x) ∧ X 1 (y) ∧ Y 0 (x) ∧ Y 0 (y) ∧ x 1 ∼ 1 y φ 10 H = X 1 (x) ∧ X 0 (y) ∧ Y 0 (x) ∧ Y 0 (y) ∧ x 2 ∼ 2 y φ 01 H = X 0 (x) ∧ X 1 (y) ∧ Y 1 (x) ∧ Y 1 (y) ∧ x 1 ∼ 1 y φ 11 H = X 1 (x) ∧ X 0 (y) ∧ Y 1 (x) ∧ Y 1 (y) ∧ x 2 ∼ 2 y φ H = φ 00 H ∨ φ 10 H ∨ φ 01 H ∨ φ 11 H φ 00 V = X 0 (x) ∧ X 0 (y) ∧ Y 0 (x) ∧ Y 1 (y) ∧ x 1 ∼ 1 y φ 10 V = X 1 (x) ∧ X 1 (y) ∧ Y 0 (x) ∧ Y 1 (y) ∧ x 1 ∼ 1 y φ 01 V = X 0 (x) ∧ X 0 (y) ∧ Y 1 (x) ∧ Y 0 (y) ∧ x 2 ∼ 2 y φ 11 V = X 1 (x) ∧ X 1 (y) ∧ Y 1 (x) ∧ Y 0 (y) ∧ x 2 ∼ 2 y φ V = φ 00 V ∨ φ 10 V ∨ φ 01 V ∨ φ 11 V Figure 6
Link between A2m and G2m ▶ Remark 25. Note that, using the definitions of G 2m and of

A 2m we can show that, if G is the bi-binary structure (G 2m , [[φ H ]] A2m , [[φ V ]] A2m ), then G 2m = G.
The Reduction from Radius 3. We first use the previously introduced notions to show that DataSat(3-Loc-FO, {(1, 1), (2, 2)}) is undecidable, hence we assume now that Γ = {(1, 1), (2, 2)}. The first step in our reduction from Tiles consists in defining φ 3 -loc grid ∈ 3-Loc-FO[Σ grid ; (1, 1), [START_REF] Bednarczyk | A Note on C 2 Interpreted over Finite Data-Words[END_REF][START_REF] Bednarczyk | A Note on C 2 Interpreted over Finite Data-Words[END_REF]] to check that a data structure corresponds to a grid (⊕ stands for exclusive or):

φ 3 -loc complete = ∀x.⟨⟨∀y.∀x ′ .∀y ′ .φ H (x, y) ∧ φ V (x, x ′ ) ∧ φ V (y, y ′ ) → φ H (x ′ , y ′ )⟩⟩ 3 x φ 3 -loc progress = ∀x.⟨⟨∃y.φ H (x, y) ∧ ∃y.φ V (x, y)⟩⟩ 3 x φ 3 -loc grid = φ 3 -loc complete ∧ φ 3 -loc progress ∧ ∀x.⟨⟨(X 0 (x) ⊕ X 1 (x)) ∧(Y 0 (x) ⊕ Y 1 (x))⟩⟩ 3 x ▶ Lemma 26. We have A 2m |= φ 3 -loc grid . Moreover, for all A = (A, f 1 , f 2 , (P σ )) in Data[Σ grid ], if A |= φ 3 -loc grid , then (A, [[φ H ]] A , [[φ V ]] A ) is grid-like.
Given a domino system D = (D, H D , V D ), we now provide a formula φ D from the logic 3-Loc-FO[D; (1, 1), (2, 2)] that guarantees that, if a data structure corresponding to a grid satisfies φ D , then it can be embedded into D: As a corollary of the proposition, we obtain the main result of this section.

φ D := ∀x.⟨⟨ d∈D d(x) ∧ d̸ =d ′ ∈D ¬(d(x) ∧ d ′ (x)) ⟩⟩ 3 x ∧ ∀x.⟨⟨∀y.φ H (x, y) → (d,d ′ )∈H D d(x) ∧ d ′ (y)⟩⟩ 3 x ∧ ∀x.⟨⟨∀y.φ V (x, y) → (d,d ′ )∈V D d(x) ∧ d ′ (y)⟩⟩
▶ Theorem 28. DataSat(3-Loc-FO, {(1, 1), (2, 2)}) is undecidable.

We can also reduce Tiles to DataSat(2-Loc-FO, {(1, 1), (2, 2), (1, 2)}). In that case, it is a bit more subtle to build a formula similar to the formula φ complete as we have only neighborhood of radius 2, but we use the diagonal binary relation [START_REF] Aiswarya | An automata-theoretic approach to the verification of distributed algorithms[END_REF][START_REF] Bednarczyk | A Note on C 2 Interpreted over Finite Data-Words[END_REF] to overcome this. ▶ Theorem 29. DataSat(2-Loc-FO, {(1, 1), (2, 2), (1, 2)}) is undecidable.

Future Work

There are some interesting open questions. For example, we leave open whether our main decidability result holds for two diagonal relations. Recall that, when comparing the expressiveness, two-variable first-order logic can be embedded in our logic. We do not know yet whether the converse holds. Until now our work has focused on the satisfiability problem. Another next step would be to see how our logic can be used to verify practical distributed algorithms.

A Missing Proof for Section 2

A.1 Proof of Theorem 5

▶ Theorem 5 ([20]). The problem DataSat(FO 2 , {(1, 1), (2, 2)}) is decidable.

Proof. When Γ = {(1, 1), (2, 2)}, we actually deal with arbitrary finite structures A with a number of unary predicates and two equivalence relations, namely 1 ∼ A 1 and 2 ∼ A 2 . According to [START_REF] Kieronski | On finite satisfiability of two-variable first-order logic with equivalence relations[END_REF], two-variable first-order logic over those structures is decidable. ◀

A. Proof. We apply Lemma 4 to φ and then obtain φ ′′ . As there is no free variable in φ, the formula φ ′′ is a boolean combination of formulas of the form ∃ ≥k y.φ U (y) where U ⊆ Σ. Let M be the maximal such k (if there is no threshold formula, φ ′′ is either true or false). We define a set of unary predicates

Λ M = {η i | 1 ≤ i ≤ M } and let Σ ′ = Σ ∪ Λ M .
The following formulas will specify the meaning of the elements of Λ M . First, let φ same (x, y) = σ∈Σ∪{ed} σ(x) ↔ σ(y). With this, we define:

φ 1 η := ∀x. i∈[1,M ] η i (x) ∧ j∈[1,M ]\{i} ¬η j (x) φ 2 η := ∀x. i∈[1,M -1] η i (x) → ¬∃y.(x ̸ = y ∧ φ same (x, y) ∧ η i (y)) φ 3 η := ∀x. i∈[2,M ] η i (x) → (∃y.φ same (x, y) ∧ η i-1 (y))
We then denote

φ η := φ 1 η ∧ φ 2 η ∧ φ 3 η ∈ FO 2 [Σ ′ ].
Then, for a model A ∈ Data[Σ ′ ] of φ η with carrier set A, an element a ∈ A, and an integer 1

≤ i ≤ M , we have that a ∈ P ηi iff |{b ∈ A | for all σ ∈ Σ, a ∈ P σ iff b ∈ P σ }| ≥ i. Then in φ ′′ , we replace all threshold formulas ∃ ≥k y.φ U (y) with ∃y.φ U (y) ∧ η k (y) in order to obtain φ ′′′ ∈ FO 2 [Σ ∪ Λ M ]. Finally we take φ ′ as φ ′′′ ∧ φ η .
◀

We are now ready to prove Proposition 6:

Proof of Proposition 6. Let φ ∧ ψ be a sentence such that φ ∈ FO[Σ; ∅] and ψ ∈ FO 2 [Σ; Γ]. We determine Σ ′ ⊇ Σ and φ ′ in FO 2 [Σ ′ ; ∅] according to Proposition 30. Then, by Theorem 5, it only remains to show that φ ∧ ψ is satisfiable iff φ ′ ∧ ψ is satisfiable. Suppose there is A ∈ Data[Σ] such that A |= φ ∧ ψ. By Proposition 30, we can add propositions from Σ ′ \ Σ to A to get a data structure A ′ such that A ′ |= φ ′ . As ψ does not speak about propositions in Σ ′ \ Σ, we have A ′ |= ψ and, therefore, where ψ is a formula from FO[Σ; Γ] with one free variable x. Wlog., we assume that x is not quantified in ψ. We replace, in ψ, every occurence of a formula

A ′ |= φ ′ ∧ ψ. Conversely, let A ′ ∈ Data[Σ ′ ] such that A ′ |= φ ′ ∧ ψ.
y i ∼ j z with y ̸ = x by k∈{1,2} | (k,i),(k,j)∈Γ x k ∼ i y ∧ x k ∼ j z .
Call the resulting formula ψ ′ . Replace, in ψ ′ , every formula x i ∼ j y by (i, j)(y) to obtain an FO[Σ∪Γ; ∅] formula ψ ′′ . Suppose A = (A, f 1 , f 2 , (P σ ) σ∈Σ∪Γ ) ∈ Data[Σ∪Γ] and interpretation function I such that, for all b ∈ A and (i, j) ∈ Γ, we have b ∈ P (i,j) iff I(x) i ∼ j b. Then,

A| 1 I(x) |= I ψ(x) ⇐⇒ A| 1 I(x) |= I ψ ′ (x) ⇐⇒ A| 1 I(x) |= I ψ ′′ (x) .
According to Lemma 4, we can effectively transform ψ ′′ into an equivalent FO[Σ ∪ Γ; ∅] formula ψ′′ that is a Boolean combination of formulas of the form σ(x) with σ ∈ Σ ∪ Γ and threshold formulas of the form ∃ ≥k y.φ U (y) where U ⊆ Σ ∪ Γ and φ U (y) = σ∈U σ(y) ∧ σ∈(Σ∪Γ)\U ¬σ(y). Let M be the maximal such k (or M = 0 if there is no threshold formula). Again, we assume that x is not quantified in ψ′′ .

We obtain the FO[Σ ∪ {eq} ∪ C M ; ∅] formula χ from ψ′′ by replacing (1, 2)(x) by eq(x), and (1, 1)(x) and (2, 2)(x) by true,

∃ ≥k y.φ U (y) by false if U ∩ Γ = ∅ U ∩ Σ, U ∩ Γ, k (x) if U ∩ Γ ̸ = ∅
We can then eliminate redundant true and false. Suppose a well-typed data structure

A = (A, f 1 , f 2 , (P σ )) ∈ Data[Σ ∪ Γ ∪ {eq} ∪ C M ] and interpretation function I such that, for all b ∈ A and (i, j) ∈ Γ, we have b ∈ P (i,j) iff I(x) i ∼ j b. Then, A| 1 I(x) |= I ψ′′ (x) ⇐⇒ A| 1 I(x) |= I χ(x) .
Moreover, for U ⊆ Σ, a nonempty set R ⊆ Γ, and k ∈ N, we have

A| 1 I(x) |= I U, R, k (x) ⇐⇒ A |= I U, R, k (x) .
We deduce that, for all A ∈ Data[Σ] and interpretation functions I,

A |= I ⟨⟨ψ⟩⟩ 1 x ⇐⇒ A |= I χ(x) .
This concludes the proof. ◀ B.2 Proof of Lemma 14

▶ Lemma 14. Let B ∈ Data[Θ ∪ {eq, ed}] and φ ∈ FO[Θ ∪ {eq, ed}; Γ df ]. If B |= φ ∧ ξ Θ ed , then there exists an eq-respecting A ∈ Data[Θ ∪ {eq}] such that A + ed |= φ. Proof. Let B = (A, f 1 , f 2 , (P σ )) in Data[Θ ∪ {eq, ed}] such that B |= φ ∧ ξ ed . We define the sets I = {n ∈ N | ∃b ∈ P ed .f 1 (b) = n} and O = {n ∈ N | ∃b ∈ P ed .f 2 (b) = n}. Since B |= i∈{1,2} ∀x.∃y.ed(y) ∧ x i ∼ i y ∧ ∀x.∀y.(ed(x) ∧ ed(y) ∧ x i ∼ i y) → x = y ,
we deduce that |I| = |O| and furthermore the mapping π : I → O defined by π(n) = m iff there exists b ∈ P ed such that f 1 (b) = n and f 2 (b) = m is a well-defined bijection. It is well defined because there is a single element b in P ed such that f 1 (b) = n and it is a bijection because for all m ∈ O, there is a single b ∈ P ed such that f 2 (b) = m. We can consequently extend π to be a permutation from N to N. We then take the model 2, 2)} and since B |= φ ∧ ξ ed , we deduce that A ′ |= φ ∧ ξ ed because performing a permutation on the first data values of the elements of B does not affect the satisfaction of φ ∧ ξ ed (this is a consequence of the fact that there is no comparison between the first values and the second values of the elements). The satisfaction of ξ ed by A ′ allows us to deduce that A ′ is well-diagonalized. We can in fact safely remove from A ′ the elements of P ed to obtain a structure A ∈ Data[Θ ∪ {eq}] which is eq-respecting ( this is due to the fact that

A ′ = (A, π • f 1 , f 2 , (P σ )). Since φ ∧ ξ ed ∈ FO[Θ ∪ {eq, ed}; Γ df ] with Γ df = {(1, 1), (
A ′ |= ∀x.eq(x) ↔ ∃y.(ed(y) ∧ x 1 ∼ 1 y ∧ x 2 ∼ 2 y) ∧ ∀x.ed(x) → σ∈Θ\{eq} ¬σ(x)) and such that A ′ = A + ed . ◀ B.

Proof of Lemma 17

We first provide illustrations for the remaining cases of Example 18:

(2) Let a = a 7 and R = Γ df . Then, Env A,Σ,Γ (a, ∅, R) = Env B,Σ,Γ df (a, ∅, Γ df ) = {a 7 }. Since a ̸ ∈ P eq , it actually does not matter whether we include the diagonal relation or not.

(3) Let a = a 7 and R = {(1, 1), (1, 2)}. Then, Env A,Σ,Γ (a, ∅, R) = {a 1 , a 2 , a 3 }. So how do we get this set in B without referring to the diagonal relation? The idea is to use only (1, 1) ∈ Γ df and to ensure data equality by restricting to elements in P eq (again excluding P ed ). Indeed, we have

Env B,Σ,Γ df (a, ∅, {(1, 1)}) ∩ (P eq \ P ed ) = {a 1 , a 2 , a 3 , b 1 } ∩ ({a 1 , a 2 , a 3 , b 1 } \ {b 1 }) = {a 1 , a 2 , a 3 }. ( 4 
) Let a = a 1 and R = {(2, 2), (1, 2)}. Then, Env A,Σ,Γ (a, ∅, R) = {a 4 , a 5 }.
So we are looking for elements that have 1 as the second data value and a first data value different from 1, and this set is exactly Env B,Σ,Γ df (a, ∅, {(2, 2)}).

(5) Let a = a 5 and R = {(2, 2)}. Then, Env A,Σ,Γ (a, ∅, R) = {a 1 , a 2 , a 3 , a 4 }, which is the set of elements that have 1 as the second data value and a first data value different from 2. Thus, this is exactly Env B,Σ,Γ df (a, ∅, {(2, 2)}) \ P ed (i.e., after discarding b 1 ∈ P ed ).

▶ Lemma 17. Let A = (A, f 1 , f 2 , (P σ )) ∈ Data[Θ ∪ {eq}]
be eq-respecting and B = A + ed.

7.

Assume R = {(1, 2)}. Again it is obvious that if a ∈ P eq , we have Env A,Σ,Γ (a, U, R) = ∅.

We now suppose that a / ∈ P eq . By definition, since B = A + ed, in B there is a unique d ∈ P ed such that d 1 ∼ B 1 a. We have then Env B,Σ,Γ (a, U, R) = Env B,Σ,Γ (d, U, {(1, 2), (2, 2)}). As for the case 4., we deduce that

Env B,Σ,Γ (d, U, {(1, 2), (2, 2)}) = Env B,Σ,Γ df (d, U, {(2, 2)}). Hence Env B,Σ,Γ (a, U, R) = Env B,Σ,Γ df (d, U, {(2, 2)}). ◀ B.

Proofs for Step 4: Counting in Two-Variable Logic

To deal with the predicates in Λ γ M , we first define the formula φ int same = x 1 ∼ 1 y ∧ x 2 ∼ 2 y ∧ σ∈Σ σ(x) ↔ σ(y) and introduce the following formulas:

φ 1 γ (x) := i∈[1,M ] γ i (x) ∧ j∈[1,M ]\{i} ¬γ j (x) φ 2 γ (x) := i∈[1,M -1] γ i (x) → ¬∃y.(x ̸ = y ∧ φ int same (x, y) ∧ γ i (y)) φ 3 γ (x) := i∈[2,M ] γ i (x) → (∃y.φ int same (x, y) ∧ γ i-1 (y))
We then let

φ γ := ∀x. ¬ed(x) → (φ 1 γ (x) ∧ φ 2 γ (x) ∧ φ 3 γ (x)) ∧ (ed(x) → γ∈Λ γ M ¬γ(x)
). Thus, a data structure satisfies φ γ if no diagonal element is labelled with predicates in Λ γ M and (s1) all its non-diagonal elements are labelled with exactly one predicate in Λ γ M (see

φ 1 γ ), (2) 
if i ≤ M -1, then there are no two γ i -labelled elements with the same labels of Σ and in the same intersection (see φ 2 γ ), and (3) if i ≥ 2, then for all γ i -labelled elements, there exists an γ i-1 -labelled element with the same labels of Σ and in the same intersection (see φ 3 γ ).

▶ Lemma 31. Let A = (A, f 1 , f 2 , (P σ )) ∈ Data[Σ ∪ {eq} ∪ C M ∪ Λ M ] be eq-respecting and such that A + ed |= φ γ . We consider a ∈ A and

γ i ∈ Λ M and E a = {b ∈ A | a 1 ∼ 1 b ∧ a 2 ∼ 2 b ∧ ℓ Σ (a) = ℓ Σ (b)}. Then, |E a | ≥ i iff there exists b ∈ E a such that b ∈ P γ[i] .
Proof. For any b ∈ E a , as A + ed |= φ 1 γ there is exactly one j ∈ [1, M ] such that b ∈ P γj . This allow us to build the function f : E a → [1, M ] which associates to any b ∈ E a such a j.

Let J = {f (b)|b ∈ E a } denotes the image of E a under f . As A + ed |= φ 3 γ , for any j ∈ [2, M ] if j ∈ J then j -1 ∈ J. And as E a ̸ = ∅, there is j max ∈ [1, M ] such that J = [1, j max ].
We can now rephrase our goal as |E a | ≥ i iff i ∈ J. Assuming that i ∈ J, we have i ≤ j max . As f is a function, we have |E a | ≥ |J|. As |J| = j max , we have that |E a | ≥ i. Conversely, assuming that |E a | ≥ i. Assume by contradiction that i / ∈ J, then j max < i ≤ M . That is, for all j ∈ J, we have j < M . Since A + ed |= φ 2 γ , all elements of J have exactly one preimage. So |E a | = |J| = j max < i, which contradicts the assumption. ◀

It is then easy to see that, in an intersection, if there is an element a labelled by γ i and no element labelled by γ i+1 for i < M , then the intersection has exactly i elements; moreover, if there is a node a labelled by γ M then the intersection has at least M elements.

We now show how we use the predicates in Λ α M and introduce the following formulas (where φ int same = x 1 ∼ 1 y ∧ x 2 ∼ 2 y ∧ σ∈Σ σ(x) ↔ σ(y) and φ same = σ∈Σ σ(x) ↔ σ(y)):

φ 1 α (x) := i∈[1,M ] j∈[1,M +2] α j i (x) ∧ k∈[1,M ] ℓ∈[1,M +2] (k,ℓ)̸ =(i,j) ¬α ℓ k (x) φ 2 α (x) := i∈[1,M ] j∈[1,M +2] α j i (x) → ∀y. (¬ed(y) ∧ φ int same (x, y)) → α j i (y) φ 3 α (x) := i∈[1,M -1] j∈[1,M +2] α j i (x) → ∃y. φ int same (x, y) ∧ γ i (y) ∧ ¬∃y. φ int same (x, y) ∧ γ i+1 (y) ∧ j∈[1,M +2] α j M (x) → ∃y. φ int same (x, y) ∧ γ M (y) φ 4 α (x) := i∈[1,M ] j∈[1,M +1] α j i (x) → ∀y. ¬ed(y) ∧ φ same (x, y) ∧ x 1 ∼ 1 y ∧ ¬(x 2 ∼ 2 y) → k∈[1,M ] ¬α j k (y) φ 5 α (x) := i∈[1,M ] j∈[2,M +2] α j i (x) → ∃y. φ same (x, y) ∧ x 1 ∼ 1 y ∧ k∈[1,M ] α j-1 k (y)
We then define φ α := ∀x. (¬ed(x)) → (φ M and all its non-diagonal elements are labelled with exactly one predicate in Λ α M (see φ 1 α ). Furthermore, all non-diagonal elements in a same intersection are labelled with the same α j i (see φ 2 α ), and there are exactly i such elements in the intersection if i ≤ M -1 and at least M otherwise (see φ 3 α ). Finally, we want to identify up to M + 2 different intersections sharing the same first value and we use the j in α j i for this matter. Formula φ 4 α tells us that no two non-diagonal elements with the same labels of Σ share the same index j (for j ≤ M + 1) if they do not belong to the same intersection and have the same first value. The formula φ 5 α specifies that, if an element a is labelled with α j i , then there are at least j different nonempty intersections with the same labels of Σ as a sharing the same first values. The next lemma formalizes the property of this labelling.

▶ Lemma 32. We consider

A = (A, f 1 , f 2 , (P σ )) ∈ Data[Σ ∪ {eq} ∪ C M ∪ Λ M ] eq-respecting and such that A + ed |= φ γ ∧ φ α and a ∈ A. Let S a,1∼1 = {b ∈ A | a 1 ∼ A 1 b ∧ ℓ Σ (a) = ℓ Σ (b)} and S j a,1∼1,i = S a,1∼1 ∩ P α j i for all i ∈ [1, M ] and j ∈ [1, M + 2].
The following properties hold:

1. We have S a,1∼1 = i∈[1,M ],j∈[1,M +2] S j a,1∼1,i . 2. For all j, ℓ ∈ [1, M + 2] and i, k ∈ [1, M ] such that i ̸ = k or j ̸ = l, we have S j a,1∼1,i ∩ S ℓ a,1∼1,k = ∅. 3. For all j ∈ [1, M + 1] and i ∈ [1, M ] such that b, c ∈ S j a,1∼1,i , we have b 2 ∼ 2 c. 4. For all b, c ∈ S a,1∼1 such that b 2 ∼ 2 c, there exist j ∈ [1, M + 2] and i ∈ [1, M ] such that b, c ∈ S j a,1∼1,i .
5. For all j ∈ [1, M + 2] and i ∈ [1, M ] such that b ∈ S j a,1∼1,i , we have

|{c ∈ A | b 1 ∼ A 1 c ∧ b 2 ∼ A 2 c ∧ ℓ Σ (b) = ℓ Σ (c)}| = i if i ≤ M -1 |{c ∈ A | b 1 ∼ A 1 c ∧ b 2 ∼ A 2 c ∧ ℓ Σ (b) = ℓ Σ (c)}| ≥ M otherwise.
6. For all j ∈ [1, M + 1], there exists at most one i such that S j, [i] a,1∼1 ̸ = ∅.

For all

j ∈ [2, M + 2] and i ∈ [1, M ] such that S j a,1∼1,i ̸ = ∅, there exists k ∈ [1, M ] such S j-1 a,1∼1,k ̸ = ∅.
Proof. We prove the different statements:

1. Thanks to the formula φ 1 α (x) we have that

A = i∈[1,M ],j∈[1,M +2] P α j i . Since S a,1∼1 = A ∩ S a,1∼1 , we deduce that S a,1∼1 = i∈[1,M ],j∈[1,M +2] P α j i ∩ S a,1∼1 = i∈[1,M ],j∈[1,M +2] S j a,1∼1,i .
2. This point can be directly deduced thanks to φ 1 α (x).

3. This point can be directly deduced thanks to φ 4 α (x).

4.

Since b ∈ S a,1∼1 , by 1. there exist j ∈ [1, M + 2] and i ∈ [1, M ] such that b ∈ S j a,1∼1,i . Furthermore, since c ∈ S a,1∼1 , using formula φ 2 α (x), we deduce that c ∈ S j a,1∼1,i .

5.

This point can be directly deduced thanks to formula φ 3 α (x) and to Lemma 31.

Assume there exist

i, i ′ ∈ [1, M ] such that i ̸ = i ′ and S j a,1∼1,i ̸ = ∅ and S j a,1∼1,i ′ ̸ = ∅. Let b ∈ S j a,1∼1,i and c ∈ S j a,1∼1,i ′ ̸ = ∅. If b 2 ∼ A 2 c
, then, by 5., we necessarily have i = i ′ . Hence we deduce that b 2 ∼ A 2 c does not hold, and we can conclude thanks to formula φ 4 α (x).

7. This point can be directly deduced thanks to formula φ 5 α (x). ◀ While the predicates α j i deal with the relation 1 ∼ 1 , we now define a similar formula

φ β ∈ FO 2 [Θ ∪ {ed} ∪ Λ M ; Γ df ] for the predicates in Λ β
M to count intersections connected by the binary relation 2 ∼ 2 . We introduce hence the following formulas (where

φ int same = x 1 ∼ 1 y ∧ x 2 ∼ 2 y ∧ σ∈Σ σ(x) ↔ σ(y) and φ same = σ∈Σ σ(x) ↔ σ(y)): φ 1 β (x) := i∈[1,M ] j∈[1,M +1] β j i (x) ∧ k∈[1,M ] ℓ∈[1,M +1] (k,ℓ)̸ =(i,j) ¬β ℓ k (x) φ 2 β (x) := i∈[1,M ] j∈[1,M +1] β j i (x) → ∀y. (¬ed(y) ∧ φ int same (x, y)) → β j i (y) φ 3 β (x) := i∈[1,M -1] j∈[1,M +1] β j i (x) → ∃y. φ int same (x, y) ∧ γ i (y) ∧ ¬∃y. φ int same (x, y) ∧ γ i+1 (y) ∧ j∈[1,M +1] β j M (x) → ∃y. φ int same (x, y) ∧ γ M (y) φ 4 β (x) := i∈[1,M ] j∈[1,M ] β j i (x) → ∀y. ¬ed(y) ∧ φ same (x, y) ∧ ¬(x 1 ∼ 1 y) ∧ x 2 ∼ 2 y → k∈[1,M ] ¬β j k (y) φ 5 β (x) := i∈[1,M ] j∈[2,M +1] β j i (x) → ∃y. φ same (x, y) ∧ x 2 ∼ 2 y ∧ k∈[1,M +1] β j-1 k (y)
We then define

φ β := ∀x. (¬ed(x)) → (φ 1 β (x) ∧ φ 2 β (x) ∧ φ 3 β (x) ∧ φ 4 β (x)) ∧ (ed(x) → β∈Λ α M ¬β(x)).
The following Lemma is the equivalent of the Lemma 32 for the relation 2 ∼ 2 . Its proof is similar to the one of the Lemma 32.

▶ Lemma 33. We consider

A = (A, f 1 , f 2 , (P σ )) ∈ Data[Σ ∪ {eq} ∪ C M ∪ Λ M ] eq-respecting and such that A + ed |= φ γ ∧ φ β and a ∈ A. Let S a,2∼2 = {b ∈ A | a 2 ∼ A 2 b ∧ ℓ Σ (a) = ℓ Σ (b)} and S j a,2∼2,i = S a,2∼2 ∩ P β j i for all i ∈ [1, M ] and j ∈ [1, M + 1].
The following statements hold:

1. We have S a,2∼2 = i∈[1,M ],j∈[1,M +1] S j a,2∼2,i . 2. For all j, ℓ ∈ [1, M + 1] and i, k ∈ [1, M ] such that i ̸ = k or j ̸ = l, we have S j a,2∼2,i ∩ S ℓ a,2∼2,k = ∅. 3. For all j ∈ [1, M + 1] and i ∈ [1, M ] such that b, c ∈ S j a,2∼2,i , we have b 1 ∼ 1 c. 4. For all b, c ∈ S a,2∼2 such that b 1 ∼ 1 c, there exists j ∈ [1, M + 1] and i ∈ [1, M ] such that b, c ∈ S j a,2∼2,i . 5. For all j ∈ [1, M + 1] and i ∈ [1, M ] such that b ∈ S j a,2∼2,i , we have |{c ∈ A | b 1 ∼ A 1 c ∧ b 2 ∼ A 2 c ∧ ℓ Σ (b) = ℓ Σ (c)}| = i if i ≤ M -1 |{c ∈ A | b 1 ∼ A 1 c ∧ b 2 ∼ A 2 c ∧ ℓ Σ (b) = ℓ Σ (c)}| ≥ M otherwise.
6. For all j ∈ [1, M ], there exists at most one i such that S j a,2∼2,i ̸ = ∅.

For all

j ∈ [2, M + 1] and i ∈ [1, M ] such that S j a,2∼2,i ̸ = ∅, there exists k ∈ [1, M ] such S j-1 a,2∼2,k ̸ = ∅.
We are now ready to define the formulas φ U,R,m using a case analysis on the shape of R and the result of Lemma 17:

1. Case R = {(1, 1), (2, 2), (1, 2)}: φ U,R,m (x) := eq(x) ∧ ∃y.(φ U (y) ∧ x 1 ∼ 1 y ∧ x 2 ∼ 2 y ∧ γ m (y)) 2. Case R = {(1, 1), (2, 2)}: φ U,R,m (x) := ¬eq(x) ∧ ∃y.(φ U (y) ∧ x 1 ∼ 1 y ∧ x 2 ∼ 2 y ∧ γ m (y)) 3. Case R = {(1, 1), (1, 2)}: φ U,R,m (x) := ¬eq(x) ∧ ∃y.(φ U (y) ∧ eq(y) ∧ x 1 ∼ 1 y ∧ γ m (y)) 4. Case R = {(2, 2), (1, 2)}: For this case, we first need an extra definition. For m ∈ [1, M ],
we define S β,m the set of subsets of Λ α M as follows:

S β,m = {{β j1 i1 , . . . , β j k i k } | i 1 +. . .+i k ≥ m and j 1 < j 2 < . . . < j k }.
It corresponds to the sets of element β j i whose sum of i is greater than or equal to m. We then have: 

φ U,R,m (x) := eq(x) ∧ S∈S β,m β∈S ∃y. φ U (y) ∧ ¬eq(y) ∧ β(y) ∧ x 2 ∼ 2 y 5. Case R = {(2, 2)}: we use again the set S β,m introduced previously. φ U,R,m (x) := ¬eq(x) ∧ S∈S β,m β∈S ∃y. φ U (y) ∧ β(y) ∧ ¬(x 1 ∼ 1 y) ∧ x 2 ∼ 2 y 6. Case R = {(1,
U,R,m (x) := ¬eq(x) ∧ ∃y. ed(y) ∧ x 1 ∼ 1 y ∧ S∈S β,m σ∈S ∃x. φ U (x) ∧ σ(x) ∧ ¬(y 1 ∼ 1 x) ∧ y 2 ∼ 2 x Finally we have φ cc = ∀x.¬ed(x) → U,R,m ∈ C M U, R, m (x) ↔ φ U,R,m (x) ▶ Lemma 21. Let A = (A, f 1 , f 2 , (P σ )) ∈ Data[Σ ∪ {eq} ∪ C M ∪ Λ M ] be eq-respecting. If A + ed |= φ α ∧ φ β ∧ φ γ ∧ φ cc , then A is cc-respecting.

Sketch of proof. Let

A = (A, f 1 , f 2 , (P σ )) ∈ Data[Σ ∪ {eq} ∪ C M ∪ Λ M ]
be eq-respecting and such that A + ed |= φ α ∧ φ β ∧ φ γ ∧ φ cc . We need to show that for all a ∈ A and all U, R, m ∈ C M , we have a ∈ P U,R,m iff |Env A,Σ,Γ (a, U, R)| ≥ m. We consider a ∈ A. Since A + ed |= φ cc , we deduce that a ∈ P U,R,m iff A + ed |= I[x/a] φ U,R,m (x). We need hence to show that A + ed |= I[x/a] φ U,R,m (x) iff |Env A,Σ,Γ (a, U, R)| ≥ m. To prove this , we first use Lemma 17 to get a characterization of Env A,Σ,Γ (a, U, R). This characterization is then directly translated into the formula φ U,R,m (x) which makes use of the label in Λ M to count in the environment of a. The fact that this counting is performed correctly is guaranteed by Lemmas 31,32 and 33. Putting these arguments together, we can conclude that the lemma holds.

◀ Showing that A 2m |= φ 3 -loc progress is done in the same way as showing that A 2m |= φ 3 -loc complete . Finally, it is obvious that A 2m satisfies the last conjunct of φ 3 -loc grid . We now show that for all A = (A, f 1 , f 2 , (P σ )) in Data ] φ H (x ′ , y ′ ). We do a case analysis on i, j ∈ {0, 1} such that a ∈ P Xi ∩ P Yj . We only perform the proof for the case (i, j) = (1, 0), the other three case can be treated similarly. By looking at φ H and φ V , we have a new quantifier free formula φ W (x, y) in FO[Σ grid ; (1, 2)]:

a b a ′ b ′ X 0 Y 0 X 0 Y 0 X 0 Y 0 X 1 Y 1 X 1 Y 1 (a) a ∈ P X0 ∩ P Y0 a b a ′ b ′ X 1 Y 0 X 1 Y 0 X 1 Y 0 X 0 Y 1 X 0 Y 1 ( 
A |= I[x/a][y/b][x ′ /a ′ ][y ′ /b ′ ] X 0 (y) ∧ Y 0 (y) ∧ x 2 ∼ 2 y A |= I[x/a][y/b][x ′ /a ′ ][y ′ /b ′ ] X 0 (y ′ ) ∧ Y 1 (y ′ ) ∧ y 1 ∼ 1 y ′ A |= I[x/a][y/b][x ′ /a ′ ][y ′ /b ′ ] X 1 (x ′ ) ∧ Y 1 (x ′ ) ∧ x 1 ∼ 1 x ′ .
φ 00 W = X 0 (x) ∧ X 1 (y) ∧ Y 0 (x) ∧ Y 1 (y) ∧ x 1 ∼ 2 y φ 10 W = X 1 (x) ∧ X 0 (y) ∧ Y 0 (x) ∧ Y 1 (y) ∧ x 1 ∼ 2 y φ 01 W = X 0 (x) ∧ X 1 (y) ∧ Y 1 (x) ∧ Y 0 (y) ∧ x 1 ∼ 2 y φ 11 W = X 1 (x) ∧ X 0 (y) ∧ Y 1 (x) ∧ Y 0 (y) ∧ x 1 ∼ 2 y φ W = φ 00 W ∨ φ 10 W ∨ φ 01 W ∨ φ 11

W

We will now define a formula φ 2 -loc grid in 2-Loc-FO[Σ grid ; (1, 1), (2, 2), (1, 2)] which ensures that a data structure corresponds to a grid. This formula is given by (⊕ stands for exclusive or): 

Figure 1

 1 Figure 1 On the left: A data structure A and its data graph G(A) when Γ = {(1, 1), (2, 2), (1, 2)}. Unidirectional edges are dashed. The blue nodes represent B A 1 (a). On the right is A| 1 a .

Figure 2

 2 Figure 2 (a) A data structure over Σ = ∅. (b) Adding unary predicates for a given element a. (c) Adding counting constraints to a. (d) A well-typed data structure from Data[{eq} ∪ C3].

Figure 3

 3 Figure 3 (a) Adding diagonal elements. (a)←(b) Making a data structure eq-respecting.

  then there exists an eq-respecting A ∈ Data[Θ ∪ {eq}] such that A + ed |= φ. ▶ Example 15. Consider Figure 3 and let Θ = ∅. The data structure from Figure 3(b) satisfies ξ Θ ed , though it is not well-diagonalized. Suppose it also satisfies φ ∈ FO[{eq, ed}; Γ df ]. By permutation of the first data values, we obtain the well-diagonalized data structure in Figure 3(a). As φ does not talk about the diagonal relation, satisfaction of φ is preserved. ⋄ Finally, we can inductively translate φ

)

  Let a = a 4 and R = {(1, 1)}. We have Env A,Σ,Γ (a, ∅, R) = {a 8 }. Looking at B and discarding the diagonal relation would also include b 3 and any element with data-value pair[START_REF] Björklund | Shuffle expressions and words with nested data[END_REF][START_REF] Björklund | Shuffle expressions and words with nested data[END_REF]. Discarding P eq , we obtain Env B,Σ,Γ df (a, ∅, {(1, 1)}) \ P eq = {a 8 , b 3 } \ {b 3 } = {a 8 }. (7) Let a = a 7 and R = {(1, 2)}. Then, Env A,Σ,Γ (a, ∅, R) = {a 4 , a 5 }, which is the set of elements whose second data value is 1 and whose first data value is different from 1. The

Figure 4

 4 Figure 4 Counting intersections for M = 3 and elements with label p

)

  For R = {(1, 1)}, we first need an extra definition. Given m ∈ {1, . . . , M }, we define the set S α,m of subsets of Λ α M as follows:

  Lemma 21, we deduce that A is cc-respecting and, thus, well-typed. Furthermore, byLemma 16, we have A |= φ. Note that A belongs to Data[Σ ∪ {eq} ∪ C M ∪ Λ M ]. However, by removing the unary predicates in Λ M , we still have a model of φ from Data[Σ ∪ {eq} ∪ C M ] as required. Hence, φ has a well-typed model. Assume now that there exists a well-typed data structure A ∈ Data[Σ ∪ {eq} ∪ C M ] such that A |= φ. Using Lemma 16, we have that A + ed |= [[φ]

  A domino system D is a triple (D, H, V ) where D is a finite set of dominoes and H, V ⊆ D × D are two binary relations. Let G m denote the standard grid on an m × m torus, i.e., G m = (G m , H m , V m ) where H m and V m are two binary relations defined as follows:

Figure 5

 5 Figure 5 The local pattern of A2m. Dots denote elements. Two dots are in the same 1∼1-equivalence class (resp. 2∼2) iff they are in the same green (resp. purple) area. The thick black lines represent the relation 1∼2 in the following way: if a 1∼1-equivalence class C1 and a 2∼2-equivalence class C2 are connected with a thick black line, then for any a ∈ C1 and b ∈ C2, we have a 1∼2 b.

3 x▶

 3 Proposition 27. Given D = (D, H D , V D ) a domino system, D admits a periodic tiling iff the 3-Loc-FO[Σ grid ⊎ D; (1, 1), (2, 2)] formula φ 3 -loc grid ∧ φ D is satisfiable.

7 .

 7 1)}: Similar to Case 4., we first need an extra definition. For m ∈ {1, . . . , M }, we define the set S α,m of subsets of Λ α M as follows:S α,m = {{α j1 i1 , . . . , α j k i k } | i 1 + . . . + i k ≥ m and j 1 < j 2 < . . . < j k }.It corresponds to the sets of elements α j i whose sum of i is greater than or equal to m. We then have: φ U,R,m (x) := S∈Sα,m α∈S ∃y. φ U (y) ∧ α(y) ∧ ¬eq(y) ∧ x 1 ∼ 1 y ∧ ¬(x 2 ∼ 2 y) Case R = {(1, 2)}: We use here again the set S β,m introduced in Case 4.

  φ

Figure 7

 7 Figure 7 Some 3-local views of A2m for Γ = {(1, 1), (2, 2)}.

  [Σ grid ], if A |= φ 3 -loc grid then (A, [[φ H ]] A , [[φ V ]] A ) is grid-like. By Lemma 24, we just have to prove that (A, [[φ H ]] A , [[φ V ]] A ) satisfies φ complete and φ progress . Let us prove that (A, [[φ H ]] A , [[φ V ]] A ) |= ∀x.∀y.∀x ′ .∀y ′ .((Hxy ∧ Vxx ′ ∧ Vyy ′ ) ⇒ Hx ′ y ′ ) .By definition of (A, [[φ H ]] A , [[φ V ]] A ), this amounts to verifying thatA |= ∀x.∀y.∀x ′ .∀y ′ .φ H (x, y) ∧ φ V (x, x ′ ) ∧ φ V (y, y ′ ) ⇒ φ H (x ′ , y ′ ) .Let a, b, a ′ , b ′ ∈ A and let I be an interpretation function such thatA |= I[x/a][y/b][x ′ /a ′ ][y ′ /b ′ ] φ H (x, y) ∧ φ V (x, x ′ ) ∧ φ V (y, y ′ ). Let us show A |= I[x/a][y/b][x ′ /a ′ ][y ′ /b ′

1 ( b )

 1b So b, a, b ′ are elements of A|3 a andA| 3 a |= I[x/a][y/b][x ′ /a ′ ][y ′ /b ′ ] φ H (x, y) ∧ φ V (x, x ′ ) ∧ φ V (y, y ′ ) .Since by assumptionA |= φ 3 -loc complete , we deduce that A| 3 a |= I[x/a][y/b][x ′ /a ′ ][y ′ /b ′ ] φ H (x ′ , y ′ ).This allows us to conclude thatA |= I[x/a][y/b][x ′ /a ′ ][y ′ /b ′ ] φ H (x ′ , y ′ ).We can prove in a similar way that (A,[[φ H ]] A , [[φ V ]] A ) |= φ progress canbe proved in a similar way. If X0(a) and Y0(a) hold. If X1(a) and Y0(a) hold.

Figure 8

 8 Figure 8 Some 2-local views of A2m for Γ = {(1, 1), (2, 2), (1, 2)}.

φ 2 ▶

 2 -loc complete = ∀x.⟨⟨∀yy ′ .φ H (x, y) ∧ φ V (y, y ′ ) ⇒ φ W (x, y ′ )⟩⟩2 x ∧ ∀x.⟨⟨∀yx ′ y ′ .φ V (x, x ′ ) ∧ φ W (x, y ′ ) ⇒ φ H (x ′ , y ′ )⟩⟩ 2 x φ 2 -loc progress = ∀x.⟨⟨∃y.φ H (x, y) ∧ ∃y.φ V (x, y)⟩⟩ 2 x φ 2 -loc grid = φ 2 -loc complete ∧ φ 2 -loc progress ∧ ∀x.⟨⟨(X 0 (x) ⊕ X 1 (x)) ∧(Y 0 (x) ⊕ Y 1 (x))⟩⟩2x Lemma 35. The following statements hold:1. A 2m |= φ 2 -loc grid ,and 2. for allA = (A, f 1 , f 2 , (P σ )) ∈ Data[Σ grid ], if A |= φ 2 -loc grid , then (A, [[φ H ]] A , [[φ V ]] A ) is grid-like.Sketch of the proof. The proof is similar to the of Lemma 26. For the first point, Figure8provides some representation of A 2m | 2 a for some elements a ∈ G 2m . For the second point, following the same reasonning as in Lemma 26.2, we first show that the tri-binary structure(A, [[φ H ]] A , [[φ V ]] A , [[φ W ]] A ) satisfies φ ′complete and φ progress and we use Lemma 34 to conclude. ◀As previously, we provide a formula φ ′ D of 3-Loc-FO[D; (1, 1), (2, 2), (1, 2)] for any domino system D = (D, H D , V D ). This formalism is morally the same as the formula φ D , we only restrict the neighborhood, but in the fact this does not change anything:d∈D d(x) ∧ d̸ =d ′ ∈D ¬(d(x) ∧ d ′ (x))⟩⟩2 x ∧ ∀x.⟨⟨∀y.φ H (x, y) ⇒ (d,d ′ )∈H D d(x) ∧ d ′ (y)⟩⟩ 2 x ∧ ∀x.⟨⟨∀y.φ V (x, y) ⇒ (d,d ′ )∈V D d(x) ∧ d ′ (y)⟩⟩ 2 x

  For A ∈ Data[Σ] and interpretation function I, we define A |= I ⟨⟨ψ⟩⟩

	r x if A| r I(x) |= I ψ.
	▶ Example 7. We can rewrite the formula from Example 1 so that it falls into the fragment
	1-Loc-FO[Σ; (1, 1), (2, 2), (2, 1)]: ∃ =1 x.⟨⟨leader(x)⟩⟩	1 x ∧ ∀y.⟨⟨∃x.leader(x) ∧ y 2 ∼ 1 x⟩⟩ 1 y . The next
	formula specifies an algorithm in which all processes suggest a value and then choose a new
	value among those that have been suggested at least three times: ∀x.⟨⟨∃ ≥3 y.x 2 ∼ 1 y⟩⟩ 1 x . We
	can also specify partial renaming, i.e., two output values agree only if their input values
	are the same: ∀x.⟨⟨∀y.(x 2 ∼ 2 y → x 1 ∼ 1 y)⟩⟩ 1 x . Conversely, ∀x.⟨⟨∀y.(x 1 ∼ 1 y → x 2 ∼ 2 y)⟩⟩ 1 x
	specifies partial fusion of equivalences classes.	⋄
	3 Decidability With One Diagonal Relation
	We will show in this section that DataSat(1-Loc-FO, {(1, 1), (2, 2), (1, 2)}) (or, symmetrically,
	DataSat(1-Loc-FO, {(1, 1), (2, 2), (2, 1)})) is decidable. To this end, we will give a reduction
	to DataSat(ext-FO 2 , {(1, 1), (2, 2)}). The rest of this section is devoted to this reduction.

  1), (2, 2), (1, 2)]. Using Lemma 11, we can effectively compute M ∈ N and φ ∈ FO[Σ ∪ {eq} ∪ C

M ; ∅] such that ψ is satisfiable iff φ has a well-typed model. By Proposition 22, φ has a well-typed model iff φ is satisfiable. Since φ belongs to ext-FO 2 [All; Γ df ], we conclude using Proposition 6. ◀

  2 Proof of Proposition 6 The problem DataSat(ext-FO 2 , {(1, 1), (2, 2)}) is decidable.We show that one can reduce the first-order part with Γ = ∅ to a two-variable formula:

▶ Proposition 6.

▶ Proposition 30. Let φ be an FO[Σ; ∅] sentence. Then, we can effectively construct

φ ′ ∈ FO 2 [Σ ′ ; ∅] with Σ ⊆ Σ ′ such that φ is satisfiable iff φ ′ is satisfiable.

Furthermore, if a structure A satisfies φ, then we can add an interpretation of the predicates in Σ ′ \ Σ to A to get a model for φ ′ . Conversely, if a structure A ′ satisfies φ ′ , then forgetting the interpretation of the predicates in Σ ′ \ Σ in A ′ give us a model for φ.

  Then, again by Proposition 30, "forgetting" in A ′ all labels in Σ ′ \ Σ yields a structure A such that A |= φ. As we still have A |= ψ, we conclude A |= φ ∧ ψ.◀ For each formula φ ∈ 1-Loc-FO[Σ; Γ], we can effectively compute M ∈ N and χ ∈ FO[Σ ∪ {eq} ∪ C M ; ∅] such that φ is satisfiable iff χ has a well-typed model.

	B Missing Proofs for Section 3
	B.1 Proof of Lemma 11
	r Proof. Consider ⟨⟨ψ⟩⟩ x

▶ Lemma 11.

  Note that φ α is a two-variable formula in FO 2 [Θ ∪ {ed} ∪ Λ M ; Γ df ]. If a data structure satisfies φ α , then no diagonal element is labelled with predicates in Λ α

		1 α (x)∧φ 2 α (x)∧φ 3 α (x)∧φ 4 α (x)∧φ 5 α (x)) ∧(ed(x) →
	M α∈Λ α	¬α(x)).
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Local First-Order Logic with Two Data Values

Moreover, let a ∈ A, U ⊆ Σ, and R ⊆ Γ be a nonempty set. We have Env A,Σ,Γ (a, U, R) =

Env B,Σ,Γ df (a, U, Γ df ) \ P ed if a ∈ P eq and R = Γ (1)

Env B,Σ,Γ df (a, U, Γ df ) if a / ∈ P eq and R = Γ df [START_REF] Bednarczyk | A Note on C 2 Interpreted over Finite Data-Words[END_REF] Env B,Σ,Γ df (a, U, {(1, 1)}) ∩ (P eq \ P ed ) if a / ∈ P eq and R = {(1, 1), ( Proof. Let A = (A, f 1 , f 2 , (P σ )) ∈ Data[Θ ∪ {eq}] be eq-respecting and B = A + ed. We consider a ∈ A, U ⊆ Σ, and R ⊆ Γ be a nonempty set. Note that by definition of Env, we have

). We will use these two equalities in the rest of the proof. We now perform a case analysis on R.

We now suppose that a ∈ P eq . In that case, since A is eq-respecting, we have

), (2, 2)}. By a similar reasoning as the previous case, if a ∈ P eq , we have necessarily Env A,Σ,Γ (a, U, R) = ∅. Now suppose a / ∈ P eq . Thanks to this hypothesis, we know that P ed ∩ Env B,Σ,Γ df (a, U, Γ df ) = ∅ and that Env B,Σ,Γ (a, U, {(1, 1), (2, 2), (1, 2)}) = ∅. Hence we obtain directly Env A,Σ,Γ (a, U, Γ df ) = Env B,Σ,Γ df (a, U, Γ df ). 3. Assume R = {(1, 1), (1, 2)}. Again it is obvious that if a ∈ P eq , we have Env A,Σ,Γ (a, U, R) = ∅. We suppose that a / ∈ P eq . Note that we have that Env B,Σ,Γ (a, U, R) ⊆ P eq and Env B,Σ,Γ (a, U, {1, 1})

∈ P eq , we have Env A,Σ,Γ (a, U, R) = ∅. We now suppose that a ∈ P eq . In that case, we have that Env

As before if a ∈ P eq , we have Env A,Σ,Γ (a, U, R) = ∅. We now suppose that a / ∈ P eq . In that case, we have immediately

C Proofs for Section 4

C.1 Proof of Remark 25 ▶ Remark 25. Note that, using the definitions of G 2m and of

Proof. We have hence to prove that

Hence we have j = j ′ and i ′ -i ≡ 1 mod 2m. We have then different cases according to the parity of j, i and i ′ . Assume i, j are even. Then(i, j), (i ′ , j ′ ) ∈ P Y0 and (i, j) ∈ P X0 and (i ′ , j) ∈ P X1 and by definition of f 1 , we have

The other cases can be treated similarly.

We now prove that 

Proof. We first show that A 2m |= φ 3 -loc grid . In the proof, we assume that m ≥ 3. The cases m = 1 or 2 are treated in the same way. Let us prove the first conjunct, that is A 2m |= φ 3 -loc complete . Let a ∈ G 2m . We want to prove that

for some interpretation function I. We fix an interpretation function I. We proceed by a case analysis on the values of i, j ∈ {0, 1} such that a ∈ P Xi ∩ P Yj . Assume that (i, j) = (0, 0).

We want to show

By assumption on a and by looking at the definition of φ H ,

So by elimination we have that b is the element pointed by Figure 7a. In a similar way, a ′ and b ′ are indeed the elements pointed by Figure 7a. Hence, we deduce

The case (i, j) = (1, 0) is depicted in Figure 7b and is proven in the same way just as the cases when (i, j) = (1, 0) or (i, j) = (1, 1).

C.3 Proof of Proposition 27

▶ Proposition 27. Given D = (D, H D , V D ) a domino system, D admits a periodic tiling iff the 3-Loc-FO[Σ grid ⊎ D; (1, 1), (2, 2)] formula φ 3 -loc grid ∧ φ D is satisfiable.

Proof. First assume that D admits a periodic tiling and let τ : G m → D be one. As with Lemma 26 we already have that A 2m |= φ 3 -loc grid . From A 2m we build another data structure A ′ 2m ∈ Data[Σ grid ⊎ D] by adding the predicates (P d ) d∈D as follow: for any i, j ∈ {0, 2m -1} and d ∈ D we set P d ((i, j)) to hold iff τ ((i mod m, j mod m)) = d. We can then show that

Assume now that there exists

By Lemma 26, there exists m > 0 and a morphism π : The rest of this subsection is devoted to the the proof of the theorem.

A tri-binary structure is a triple (A, H, V, W ) where A is a set and H, V, W are three subsets of A × A. Intuitively H, V will capture the horizontal and vertical adjacency relation whereas W will capture the diagonal adjacency. By an abuse of notation, G m will also refer to the tri-binary structure (G m , H m , V m , W m ), were G m , H m and V m are the same as before and:

The logic FO over tri-binary structure is the same as FO over bi-binary structure with the addition of the binary symbol W. Let φ ′ complete be the following FO formula over tri-binary structure:

Proof. We simply remark that φ ′ complete implies φ complete and then we apply Lemma 24. ◀ As in the previous subsection, we will consider data structures in Data[Σ grid ] to encode domino systems and we will use 2-Loc-FO[Σ grid ; Γ] formulae in order to ensure that the data structures are grid-like and that an embedding of a domino system in it is feasible. In the previous section, to ensure that a data structure is a grid, we used completely the fact that we could look in our logical formulae to neighborhood of radius 3 (cf formula φ 3 -loc grid ), but since here we want to look at neighborhoods of radius 2, we use the diagonal relation and rely on the result of the previous lemma. Consequently, we will need again the two quantifier free formulae φ H (x, y) and φ V (x, y) of FO[Σ grid ; (1, 1), (2, 2)] introduced in 4 and we define

We have the following proposition whose proof follows the same line as Proposition 27.

▶ Proposition 36. Given D = (D, H D , V D ) a domino system, we have that D admits a periodic tiling iff the 2-Loc-FO[Σ grid ⊎ D; (0, 0), [START_REF] Aiswarya | An automata-theoretic approach to the verification of distributed algorithms[END_REF][START_REF] Aiswarya | An automata-theoretic approach to the verification of distributed algorithms[END_REF], [START_REF] Aiswarya | An automata-theoretic approach to the verification of distributed algorithms[END_REF][START_REF] Bednarczyk | A Note on C 2 Interpreted over Finite Data-Words[END_REF]] formula φ 2 -loc grid ∧ φ ′ D is satisfiable.

Finally, we obtain the desired undecidability result.

▶ Theorem 37. DataSat(2-Loc-FO, {(1, 1), (2, 2), (1, 2)}) is undecidable.