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Abstract

Despite significant progress in the theory of evolutionary al-
gorithms, the theoretical understanding of evolutionary algorithms
which use non-trivial populations remains challenging and only few
rigorous results exist. Already for the most basic problem, the de-
termination of the asymptotic runtime of the (µ + λ) evolutionary
algorithm on the simple OneMax benchmark function, only the spe-
cial cases µ = 1 and λ = 1 have been solved.

In this work, we analyze this long-standing problem and show the
asymptotically tight result that the runtime T , the number of itera-
tions until the optimum is found, satisfies

E[T ] = Θ

(

n log n

λ
+

n

λ/µ
+

n log+ log+(λ/µ)

log+(λ/µ)

)

,

where log+ x := max{1, log x} for all x > 0.
The same methods allow to improve the previous-best O(n logn

λ +
n log λ) runtime guarantee for the (λ+λ) EA with fair parent selection
to a tight Θ(n logn

λ + n) runtime result.

∗A preliminary version of this work [ADFH18] was presented at the Genetic and Evo-

lutionary Computation Conference (GECCO) 2018. In this version, the presentation was
improved by rewriting almost the entire text, by giving a clearer comparison with the
previous state of the art, by making many proofs more rigorous, by extending the lower
bounds to arbitrary fitness functions (subject to a mild restriction on the number of global
optima), and by extending our results to the so-called (N + N) EA using a fair parent
selection.
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1 Introduction

Evolutionary algorithms are general-purpose optimization heuristics and
have been successfully applied to a broad range of computational problems.
While the majority of the research in evolutionary computation is applied
and experimental, the last decades have seen a growing number of theoret-
ical analyses of evolutionary algorithms. Due to the difficult nature of the
stochastic processes describing the runs of evolutionary algorithms, the vast
majority of these works regards very simple algorithms like the (1 + 1) EA,
which has both a parent population and an offspring population of size one.
Such works, while innocent looking in their problem statement, can be sur-
prisingly challenging from the mathematical point of view, see, e.g., the
long series of works on how the (1 + 1) EA optimizes pseudo-Boolean lin-
ear functions which started with the seminal paper [DJW02]. Also, while
these example problems are far from the real applications, many of the the-
oretical works have contributed to the understanding of the working princi-
ples of evolutionary algorithms (see, e.g, [Dro05, DHK12, DFK+18]), have
given advice on how to set parameters and take other design choices (see,
e.g., [BDN10, Wit13, RS14]), and even have proposed new algorithms (see,
e.g, [DLMN17, DDE15]).

Still, it remains dissatisfying that there are only relatively few works on
true population-based algorithms as this bears the risk that we do not really
understand the role of populations in evolutionary computation. What is
clearly true, and the reason for the lack of such works, is that the stochastic
processes become much more complicated when non-trivial populations come
into play.

To make some progress towards a better understanding of population-
based algorithms, we regard the most simple population-based problem,
namely how the elitist (µ+ λ) EA optimizes the OneMax benchmark prob-
lem (see Section 2.2 for the details of this problem). With the corresponding
problem for the (1 + λ) EA mostly solved in 2005 [JJW05] (see [DK15, Sec-
tion 8] for a more complete picture) and the problem for the (µ+ 1) EA
solved in 2006 [Wit06], it is fair to call this a long-standing open problem.
In the conclusion of his paper [Wit06], Witt writes “the most interesting di-
rection seems to be an extension to (µ+ λ) strategies by a combination with
the existing theory on the (1 + λ) EA.”

1.1 Our Results

We give a complete answer to this question and prove that for arbitrary
values of µ and λ (which can be functions of the problem size n, however,
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for the lower bound we assume that µ is at most polynomial in n), the
expected number of iterations the (µ+ λ) EA takes to find the optimum of
the OneMax function is

E[T ] = Θ

(

n logn

λ
+

n

λ/µ
+

n log+ log+(λ/µ)

log+(λ/µ)

)

,

where log+ x := max{1, log x} for all x > 0. This result subsumes the pre-
vious results for the (1 + λ) EA and (µ+ 1) EA obtained in [JJW05, DK15,
Wit06].

This runtime guarantee shows, e.g., that using a true parent population of
size at most max{logn, λ} does not reduce the asymptotic runtime compared
to µ = 1. Such information can be useful since it is known that larger parent
population sizes can increase the robustness to noise, see, e.g., [GK16].

With our methods, we can also analyze a related algorithm. He and
Yao [HY04] and Chen, He, Sun, Chen, and Yao [CHS+09] analyzed a version
of the (µ+ λ) EA in which µ = λ and each parent produces exactly one

offspring. We shall call this algorithm the (λ
1:1

+ λ) EA for brevity. We prove
a tight runtime bound of Θ(n logn

λ
+ n) iterations, which also shows that the

fairness in the parent selection does not change the asymptotic runtime in
this problem.

To prove our bounds, we in particular build on Witt’s [Wit03, Wit06,
Wit08] family tree argument. The main idea of this argument is to consider
a tree graph the vertices of which are the individuals created during the
evolution process and each path from the root to a vertex corresponds to
the series of mutations which led to the creation of this vertex. Selection
does not play any role in this structure, so when working with family trees
we usually assume that all individuals with a corresponding vertex in the
tree can potentially be present in the current population. Different from
Witt’s approach (and different from all other works using his method that
we are aware of), we work in a complete tree that contains all possible family
trees and in this structure argue about which individuals really exist and
whether they are an optimal solution. It appears to us that this approach is
technically easier than the previous approaches, which first argue that with
high probability the true family tree has a certain structure (e.g., a small
height) and then, conditioning on this, argue that within such a restricted
structure an optimal solution is hard to reach. We also believe that our
approach facilitates the uniform analysis of trees having different structures
(as, e.g., in our work, in which different relative sizes of µ and λ can lead to
very different characteristics of the tree).

Using this argument that does not regard the selection process we have
obtained the lower bound that holds not only for the OneMax function, but
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for any function with a unique optimum in the same way as it was done for
the (µ+ 1) EA in [Wit06]. Our arguments let us extend the lower bounds to
the functions with multiple optima (however, the number of the optima in
these functions must be restricted). In the case of (µ+ 1) EA this extension
holds for a broader class of functions than the similar extension in [Wit06]
which works only for the functions with a unique optimum.

1.2 Previous Works

The field of mathematical runtime analysis of evolutionary algorithms aims
at increasing our understanding via proven results on the performance
of evolutionary algorithms. Due to the difficulty of mathematical un-
derstanding of complicated population dynamics, the large majority of
works in this field considers algorithms with trivial populations. These
algorithms may seem trivial, however already allow deep results like the
proof of the O(n logn) expected runtime of the (1 + 1) EA on all lin-
ear pseudo-Boolean functions [DJW02, DG13]. They give surprising in-
sights like the fact that monotonic functions can be difficult for simple
EAs [DJS+13, CDF14, Len18], and have spurred the development of many
useful analysis methods [HY01, DJW12].

Despite the mathematical challenges, some results exist on algorithms
using non-trivial populations. While such results are quite rare, due the
growth of the field in the last 20 years they are still too numerous to be
described here exhaustively. Therefore, we describe in the following those
results which regard our research problem or special cases of it as well as a
few related results.

The two obvious special cases of our problem are runtime analysis of the
(1 + λ) EA and the (µ+ 1) EA on OneMax. In [DK15], the runtime of
the (1 + λ) EA on the class of linear functions is analyzed, which contains

the OneMax function. A tight bound of Θ(n logn
λ

+ n log+ log+ λ
log+ λ

) is proven for

the expected runtime (number of iterations until the optimum is found) of
the (1 + λ) EA maximizing the OneMax function. This extends the earlier

result [JJW05], which shows this bound for λ = O( log(n) log log(n)
log log log(n)

), note that

in this case the bound simplifies to Θ(n log(n)
λ

), and which shows further that

for asymptotically larger values of λ, the expected runtime is ω(n log(n)
λ

).
Witt [Wit06] studied the (µ + 1) EA on the three pseudo-Boolean func-

tions LeadingOnes, OneMax and SPC. For the OneMax problem, under
the mild assumption that µ is polynomially bounded in n, he proved that
the expected runtime of the (µ+ 1) EA is Θ(µn+ n logn).
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For algorithms with non-trivial parent and offspring population sizes, the
following is known. The only work regarding the classic (µ+ λ) EA for gen-
eral µ and λ is [QYZ16]. Using the recent switch analysis technique [YQZ15]
and assuming that µ and λ are polynomially bounded in n, it was shown
that the (µ+ λ) EA needs an expected number of

Ω

(

n log n

λ
+

µ

λ
+

n log log n

logn

)

iterations to find the optimum of any function f : {0, 1}n → R with unique
optimum. This bound is of smaller asymptotic order (and thus weaker) than
ours when µ = ω(logn) and λ

µ
< ee or when log λ

µ
= ω(logn), see the

discussion at the end of Section 4.
For the (λ

1:1

+ λ) EA the first result [HY04, Theorem 4] considers the
runtime on the OneMax in a special case when λ = n. It shows an upper
bound of O(n) iterations,which is tight as shown by our lower bound.

For the (λ
1:1

+ λ) EA with general λ, Chen et al. [CHS+09, Proposition 4]
show an optimization time of O(n logn

λ
+ n log λ) iterations. They conjecture

a runtime of O(n logn
λ

+ n log logn) [CHS+09, Conjecture 3], which is asymp-
totically at least as good and which is stronger for λ = ω(logn). Our result
improves over this bound and the conjecture for λ = ω( logn

log logn
) as discussed

in Section 6.
We also find notable the result of Dang and Lehre [DL16] (see [ADY19]

for recent small improvements) where they proved the upper bound for the
(µ, λ) EA on the OneMax of O(nλ log λ) fitness evaluations when λ > µe
and λ = Ω(log(n)). This runtime can be seen as the upper bound for the
(µ+ λ) EA, since the population of the (µ+ λ) EA is always better than the
population of (µ, λ) EA after the same number of iterations in the dominat-
ing sense. In Section 3.4 we prove that in the parameters setting regarded
in [DL16] our upper bound is asymptotically smaller.

1.3 Organization of the Work

The remainder of the paper is organized as follows. Section 2 gives a formal
description of the (µ+ λ) EA and introduces the notation that we use in
the paper. In Section 3 we prove an upper bound of O(n logn

λ
+ nµ

λ
+ n) for

the general case and a tighter bound of O(
n log log λ

µ

log λ
µ

+ n logn
λ

) for the case of

λ
µ
> ee, when the algorithm is able to gain more than one fitness level during

the major part of the optimization process. Section 4 introduces the notion
of complete trees and proves a lower bound matching our upper bounds. In
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Section 5 we extend our lower bounds to a much broader class of functions
than just OneMax. In Section 6 we provide an analysis of the (λ

1:1

+ λ) EA,
for which our results cannot be applied directly. The paper ends with a short
conclusion and ideas for future work in Section 7.

2 Preliminaries

2.1 Notation

In this subsection we shortly overview the notation used in this paper in order
to avoid misunderstanding raised by the plenty of other notations used in the
mathematical world nowadays. By N we denote the set of positive integer
numbers and by N0 we denote the set of non-negative integer numbers. By
[a..b] with a, b ∈ N we denote an integer interval which includes its borders.
By [a, b] and (a, b) with a, b ∈ R∪{−∞,+∞} we denote a real-valued interval
including and excluding its borders respectively. We denote the binomial
distribution with parameters n and p by Bin(n, p). If some random variable
X follows some distribution D, we write X ∼ D. We use a multiplicative
notation of the binomial coefficient, that is

(

n

k

)

=
n(n− 1) . . . (n− (k − 1))

k!
.

This implies that the binomial coefficients are also defined for n < k and in
this case

(

n
k

)

= 0.

2.2 Problem Statement

In this section, we provide the definitions necessary to formalize the problem
we analyze in this work. Our study focuses on evolutionary algorithms that
aim at optimizing pseudo-Boolean functions, that is, functions of the form
f : {0, 1}n → R.

The (µ+ λ) EA formulated as Algorithm 1 is a simple mutation-based
elitist evolutionary algorithm. In each iteration of the algorithm, we in-
dependently generate λ offspring each by selecting an individual from the
parent population uniformly at random and mutating it. We use standard-
bit mutation with the standard mutation rate p = 1

n
, that is, we flip each bit

independently with probability 1
n
. We note without proof that our results

hold as well for any other mutation rate p = c/n, where c is a constant.
As objective function f , also called fitness function, we consider the clas-

sic OneMax function, which was the starting point for many theoretical
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Algorithm 1: The (µ+ λ) EA, maximizing a given function f :
{0, 1}n → R, with population size µ, offspring population size λ and
mutation rate p. We shall exclusively regard the mutation rate p = 1

n
.

We did not specify how to break ties in the selection phase since our
results are valid for any tie-breaking rule. Usually, one would prefer
offspring over parents and break the remaining ties randomly.

1 Initialization:

2 Create a population of µ individuals by choosing x(i) ∈ {0, 1}n,
1 ≤ i ≤ µ uniformly at random. Let the multiset
X(0) := {x(1), ..., x(µ)} be the population at time 0. Let t := 0.

3 Optimization:

4 while an optimum has not been reached do

5 X ′ := X(t);
6 Mutation phase:

7 for i = 1, . . . , λ do

8 Choose x ∈ X(t) uniformly at random;
9 Create x′ by flipping each bit of x with probability p;

10 X ′ := X ′ ∪ {x′};
11 Selection phase:

12 Create the multiset X(t+1), the population at time t+ 1, by
deleting the λ individuals with lowest f -value in X ′;

13 t := t+ 1;

investigations in this field. This function OneMax : {0, 1}n → R is defined
by OneMax(x) =

∑n
i=1 xi for all x ∈ {0, 1}n. In other words, OneMax

returns the number of one-bits in its argument. Without proof we note that
due to the unbiasedness of the operators used by all considered algorithms all
our results also hold for the so-called generalized OneMax function, denoted
by OneMaxz. This function has some hidden bit-string z and returns the
number of coinciding bits in its argument and z. In other words,

OneMaxz(x) =

n
∑

i=1

(1− |zi − xi|) = n−H(x, z),

where H(x, z) stands for the Hamming distance.

7



2.3 Useful Tools

A central argument in our analysis is the following Markov chain argument
similar to the classic fitness levels technique of Wegener [Weg01].

Theorem 1. Let the space S of all possible populations of some population-
based algorithm be divided into m disjoint sets A1, . . . , Am that are called
levels. We write A≥i =

⋃m
j=iAj for all i ∈ [1..m].

Let Pt be the population of the algorithm after iteration t. Assume that
for all t ≥ 0 and i ∈ [2..m], we have that Pt ∈ Ai implies Pr[Pt+1 ∈ A≥i] = 1.
Let T be the minimum number t such that Pt ∈ Am.

1. Assume that there are T1, . . . , Tm−1 ≥ 0 such that for all t ≥ 0 and
i ∈ [1..m− 1] we have that if Pt ∈ Ai, then E[min{s | s ∈ N, Pt+s ∈
A≥i+1}] ≤ Ti (for all possible P0, . . . , Pt−1). Then

E[T ] ≤
m−1
∑

i=1

Ti.

2. Assume that there are p1, p2, . . . , pm−1 such that for all t ≥ 0 and
i ∈ [1..m− 1] we have that if Pt ∈ Ai, then Pr[Pt+1 ∈ A≥i+1] ≥ pi
(for all possible P0, . . . , Pt−1). Then

E[T ] ≤
m−1
∑

i=1

1

pi
.

The proof is standard, but for the reason of completeness we quickly state
it.

Proof. We start by proving the first claim. Consider a run of the algorithm.
Let ti = min{t | Pt ∈ A≥i}. Let i ∈ [1..m − 1]. We analyze the random
variable ti+1 − ti. If there is no t with Pt ∈ Ai, then ti = ti+1 simply by the
definition of the ti. Otherwise, by our assumptions, we have E[ti+1− ti] ≤ Ti.
Note that this applies trivially also to the first case where we just saw that
ti+1 − ti = 0. Hence, from T = tm =

∑m−1
i=1 (ti+1 − ti) we conclude

E[T ] =

m−1
∑

i=1

E[ti+1 − ti] ≤
m−1
∑

i=1

Ti.

To prove the second claim, we note that by our assumptions ti+1 − ti is
stochastically dominated by a geometric distribution with success rate pi.
Hence E[ti+1 − ti] ≤ 1

pi
, and the claim follows as above.
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To ease the presentation, we use the following language. We say that the
algorithm is on level i if the current population is in the level Ai. We also
say that the algorithm gains a level or the algorithm leaves the current level
if the new population is at the higher level than the previous one.

In our proofs we shall use the following result for random variables with
binomial distribution from [GM14]. An elementary proof for it was given
in [Doe18].

Lemma 1. Let X ∼ Bin(n, p) such that p > 1/n. Then Pr(X ≥ E[X ]) >
1/4.

We also use frequently the following inequality in our proofs, so we for-
mulate it as a separate lemma.

Lemma 2. For any x ∈ (0, 1] and any n > 0 we have

1− (1− x)n ≥ 1

1 + 1
xn

.

As was pointed out by one of the reviewers, this lemma is a special case
of Lemma 31 in [DL16], which states that for all n ∈ N and x ≥ 0 we have
1− (1− x)n ≥ 1− e−xn ≥ xn

1+xn
, except we do not have the constraint that n

is an integer. Although the proof of [DL16, Lemma 31] is true for the case
x ∈ (0, 1], we find it wrong for, e.g., x = 3 and n = 2, when the leftmost
part of the inequality is negative, and others are positive. For this reason we
show a simple proof here.

Proof. By [RS14, Lemma 8] we have (1 − x)n ≤ 1
1+xn

. Therefore, following
the arguments that were used in [RS14, Theorem 9] we conclude

1− (1− x)n ≥ 1− 1

1 + xn

=
xn

1 + xn
=

1

1 + 1
xn

.

3 Upper Bounds

In this section, we prove separately two upper bounds for the runtime of the
(µ+ λ) EA on the OneMax problem, the first one being valid for all values
of µ and λ and the second one giving an improvement for the case that λ is
large compared to µ, more precisely, that λ/µ ≥ ee.

Where not specified differently, we denote the current best fitness in the
population by i and the number of best individuals in the population by j.

9



3.1 Increase of the Number of the Best Individuals

In this subsection we analyze how the number of individuals on the current-
best fitness level increases over time and derive from this two estimates for
the time taken for a fitness improvement. We note that often it is much easier
to generate an additional individual with current-best fitness by copying an
existing one than to generate an individual having strictly better fitness by
flipping the right bits. Consequently, in a typical run of the (µ+ λ) EA, first
the number of best individuals will increase to a certain number and only
then it becomes likely that a strict improvement happens.

Since the increase of the number of individuals on the current-best fitness
level via producing copies of such best individuals is independent of the
fitness function, we formulate our results for the optimization of an arbitrary
pseudo-Boolean function and hope that they might find applications in other
runtime analyses as well. So let f : {0, 1}n → R be an arbitrary fitness
function which we optimize using the (µ+ λ) EA.

Assume that the (µ+ λ) EA starts in an arbitrary state where the best
individuals have fitness i and there are j1 such individuals in the population.
At this point due to the elitism the algorithm cannot decrease the best fitness
i and it also cannot decrease the number of the best individuals j1 until it
increases the best fitness. Following [Sud09, Lemma 2] we call an individual
fit if it has a fitness i or better. For j2 ∈ N, we define τj1,j2(i) to be the
first time (number of iterations) at which the population of the (µ+ λ) EA
contains at least j2 fit individuals. We note that this random variable τj1,j2(i)
may depend on the particular initial state of the (µ+ λ) EA, but since our
results are independent of this initial state (apart from i and j1) we suppress
in our notation the initial state.

The time τ1,µ(i), that is, the specific case that j1 = 1 and j2 = µ, is also
called the takeover time of a new best individual. For this takeover time,
Sudholt [Sud09, Lemma 2] proved the upper bound

E[τ1,µ(i)] = ⌈log5 µ⌉
(

32

1− 1
e

· µ
λ
+ 1

)

= O

(

µ logµ

λ
+ log µ

)

(1)

for any i ∈ [0..n− 1].
In this section we improve this result by (i) treating the general case of

arbitrary j1, j2 ∈ [1..µ] and (ii) by showing an asymptotically smaller bound
for the case λ = ω(µ). In our main analysis of the (µ+ λ) EA, we need
takeover times for general values of j2 to profit from the event when we get
a fitness gain before the population contains only best individuals, which is
likely to happen on the lower fitness levels as we show further. The extension
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to general values of j1 is not needed, but since it does not take extra effort,
we do it on the way.

We first prove the following result for arbitrary values of µ and λ. We
need this result since it allows arbitrary target numbers j2.

Lemma 3. Let i ∈ [0..n− 1] and j1, j2 ∈ [1..µ] with j1 < j2. Then

E[τj1,j2(i)] ≤
2eµ

λ

(

ln
j2
j1

+ 1

)

+ (j2 − j1).

Proof. To prove this lemma we use Theorem 1. For this purpose we define
levels Aj1, . . . , Aj2. For any j ∈ [j1..j2 − 1] the populations in level Aj have
exactly j fit individuals. The level Aj2 consists of all populations with at
least j2 fit individuals. Note that the (µ+ λ) EA cannot go from level Aj

to any other level with smaller index, since it cannot decrease the number of
the fit individuals due to the elitist selection.

If there are j fit individuals in the population, then the probability p1(j)
to create as one offspring a copy of a fit individual is the probability to select
one of j fit individuals as a parent multiplied by the probability not to flip
any bit of it during the mutation. Hence,

p1(j) ≥
j

µ

(

1− 1

n

)n

≥ j

2eµ
, (2)

where we used the inequality (1− 1
n
)n ≥ 1

2e
that holds for all n ≥ 2.

The probability p2(j) to leave level Aj in one iteration is at least the
probability to create a copy of a fit individual as one of the λ offspring.
Hence, by Lemma 2 we have

p2(j) ≥ 1− (1− p1(j))
λ ≥ 1

1 + 1
p1(j)λ

≥ 1

1 + 2eµ
jλ

. (3)

By Theorem 1 we have

E[τj1,j2(i)] ≤
j2−1
∑

j=j1

1

p2(j)
≤

j2−1
∑

j=j1

(

1 +
2eµ

jλ

)

≤ 2eµ

λ

(

ln
j2
j1

+ 1

)

+ (j2 − j1).

We note that in case when j1 = 1 and j2 = µ our upper bound is O(µ log µ
λ

+
µ). This is weaker than the upper bound (1) given in [Sud09, Lemma 2] if
λ = ω(logµ). Without proof we note that in all other cases the two bounds
are asymptotically equal.

11



The reason that our bound is weaker in some cases is that we do not
consider the event that the algorithm generates more than one fit offspring
in one iteration, while Sudholt in [Sud09, Lemma 2] proved that the number
of the fit offspring is multiplied by some constant factor in every 32µ/λ
iterations. The same idea may be used to prove the bound

E[τj1,j2(i)] ≤
⌈

log5
j2
j1

⌉(

32

1− 1
e

· µ
λ
+ 1

)

= O

(

µ log j2
j1

λ
+ log

j2
j1

)

. (4)

We still prefer to use to Lemma 3 in our proofs, since it gives us a bound
that is easier to operate with due to the simpler leading constants of each
term, while the greater terms do not affect our main results.

We now give a second bound for the case that λ
µ
≥ ee. It is asymptotically

stronger than (1) when λ = ω(µ) and µ = ω(1).

Lemma 4. Let λ
µ
≥ ee. Let i ∈ [1..n − 1] and j1, j2 ∈ [1..µ] with j1 < j2.

Then

E[τj1,j2(i)] ≤ 4
ln j2

j1

ln λ
2eµ

+ 4.

Proof. Let the current population have j fit individuals. Then by (2) the
probability that a fixed offspring is a copy of a fit individual is p1(j) ≥ j

2eµ
.

Therefore, the number N of fit individuals among the λ offspring dominates

stochastically a random variable B with binomial distribution Bin
(

λ, j
2eµ

)

.

We have E[B] = λj
2eµ

. By Lemma 1, Pr[B ≥ E[B]] ≥ 1
4
and thus Pr[N ≥

j
2eµ

] ≥ 1
4
. Consequently, in each iteration with probability at least 1

4
the

number of the fit individuals in the population is multiplied by a factor of at
least (1 + λ

2eµ
) (but obviously it cannot become greater than µ).

For a formal proof we define the levels A1, . . . , Am, where

m :=

⌈

ln j2
j1

ln
(

1 + λ
2eµ

)

⌉

+ 1.

Level Am consists of the populations with at least j2 fit individuals. For
k ∈ [1..m − 1] the populations of level Ak have exactly j fit individuals,
where

j ∈
[

j1

(

1 +
λ

2eµ

)k−1

, j1

(

1 +
λ

2eµ

)k

− 1

]

,

and j < j2. To leave any level it is enough to multiply the number of the
best individuals by 1+ λ

2eµ
, and the probability of this event is at least 1

4
. By

12



Theorem 1 we have

E[τj1,j2(i)] ≤
m−1
∑

k=1

4 = 4

⌈

ln j2
j1

ln
(

1 + λ
2eµ

)

⌉

≤ 4
ln j2

j1

ln λ
2eµ

+ 4.

We note that the proof of Lemma 4 holds for the weaker assumption
λ
µ
> 2e as well. However in order not to confuse the reader in Section 3.3

where we consider the case λ
µ
> ee and where this lemma is used, we formulate

Lemma 4 with unnecessarily stronger condition.
When j2 = µ and j1 = 1 the bound yielded by Lemma 4 is at least as

tight as that of (1). For the general values of j1 and j2 our bound is at
least as tight as the bound (4). When λ/µ ≥ ee the bound (4) simplifies to
O(log j2

j1
). If λ = ω(µ) and j2

j1
= ω(1) then we have

4
ln j2

j1

ln λ
2eµ

+ 4 = o

(

log
j2
j1

)

.

Therefore, in this case the bound given in Lemma 4 is asymptotically smaller
than (4). In all other cases the two bounds are asymptotically equal.

The reason that we have obtained a tighter bound is that we have proven
that the number of the fit individuals is multiplied by a more than con-
stant factor with constant probability, while the proof of [Sud09, Lemma 2]
considers only the multiplication by a constant factor.

We now use Lemmas 3 and 4 to prove estimates for the time it takes to
obtain a strictly better individual once the population contains at least one
individual of fitness i. We define T̃i as the number of iterations before the
algorithm finds an individual with fitness greater than i, if it already has an
individual with fitness i in the population. As before, this random variable
depends on the precise initial state, but since our results do not rely on the
initial state, we suppress it in this notation.

To prove upper bounds on T̃i, we estimate the time it takes until some
number µ0(i) ∈ [1..µ] of individuals with fitness at least i are in the pop-
ulation and then estimate the time to find an improving solution from this
situation. We phrase our results here in terms of µ0(i) and optimize the value
of µ0(i) in the later subsections.

13



Corollary 1. For any i ∈ [0..n− 1] and µ0(i) ∈ [1..µ], we have

E[T̃i] ≤ µ0(i) +
2eµ

λ
(ln(µ0(i)) + 1) +

eµn

λ(n− i)µ0(i)
.

Proof. Even if the algorithm has only one best individual in the population,
in τ1,µ0(i)(i) iterations it will have at least µ0(i) individuals with fitness at
least i. Assume that at this time we have no individuals with fitness better
than i (since otherwise we are done). Let τ+(i) be the runtime until the
algorithm creates an individual with fitness at least i+ 1 if it already has at
least µ0(i) individuals with fitness i in the population.

In this setting the probability p′(i) that a particular offspring has fit-
ness better than i is at least the probability to choose one of the µ0(i) best
individuals and to flip only one of n− i zero-bits in it. We estimate

p′(i) ≥ µ0(i)(n− i)

µn

(

1− 1

n

)n−1

≥ (n− i)µ0(i)

eµn
.

By Lemma 2 the probability p′′(i) to create at least one superior individual
among the λ offspring is

p′′(i) ≥ 1− (1− p′(i))λ ≥ 1

1 + 1
λp′(i)

≥ 1

1 + eµn
λ(n−i)µ0(i)

. (5)

With p′′(i) we estimate E[τ+(i)] ≤ 1
p′′(i)

. Therefore, by Lemma 3 we have

E[T̃i] ≤ E[τ1,µ0(i)(i) + τ+(i)] = E[τ1,µ0(i)(i)] + E[τ+(i)]

≤ E[τ1,µ0(i)(i)] +
1

p′′(i)

≤ 2eµ

λ
(lnµ0(i) + 1) + (µ0(i)− 1) + 1 +

eµn

λ(n− i)µ0(i)

= µ0(i) +
2eµ

λ
(ln(µ0(i)) + 1) +

eµn

λ(n− i)µ0(i)
.

Corollary 2. If λ
µ
> ee then for any i ∈ [0..n−1] and µ0(i) ∈ [1..µ], we have

E[T̃i] ≤ 4
lnµ0(i)

ln λ
2eµ

+
eµn

λ(n− i)µ0(i)
+ 5.

Proof. Using the same arguments as in the proof of Corollary 1 (in particular,
the estimate for p′′(i) given in (5)) and by Lemma 4 we estimate

E[T̃i] ≤ E[τ1,µ0(i)(i) + τ+(i)] = E[τ1,µ0(i)(i)] + E[τ+(i)]

14



≤ E[τ1,µ0(i)(i)] +
1

p′′(i)

≤ 4
lnµ0(i)

ln λ
2eµ

+ 4 + 1 +
eµn

λ(n− i)µ0(i)

= 4
lnµ0(i)

ln λ
2eµ

+
eµn

λ(n− i)µ0(i)
+ 5.

We note that Lemma 4 is tight in the sense that we cannot obtain a better
upper bound using only the argument of copying the fit individuals.

To formalize this we assume that there is a set D ⊆ {0, 1}n of desired
individuals. We regard the variant EA0 of the (µ+ λ) EA which only accepts
offspring which are desired individuals identical to their parent. Note that
the number of desired individuals in a run of this artificial algorithm can
never decrease. Assuming that the initial population of the EA0 contains
exactly j1 desired individuals, we define τ ∗j1,j2(i) as the number of iterations
until the population of the EA0 contains at least j2 desired individuals (unlike
before, this notation does not depend on the precise initial population as long
as it has exactly j1 desired individuals, but this fact is not important in the
following). We show the following result.

Lemma 5. Let λ
µ
≥ ee. Let j1, j2 be some integer numbers in [1..µ] such that

j2 > j1. Then

E[τ ∗j1,j2(i)] = Ω

(

log j2
j1

log λ
µ

+ 1

)

.

Proof. If j2
j1

≤ λ
µ
, then

log j2
j1

log λ
µ

+ 1 = Ω(1)

and the claim is trivial, since we need at least one iteration to increase the
number of the copies in the population.

Consider j2
j1

≥ λ
µ
≥ ee. Let j(t) be the number of the desired individuals

after iteration t. We have j(0) = j1. Let N(t) be the number of desired
individuals newly created in iteration t. Then N(t) follows a binomial law

Bin(λ, j(t−1)
enµ

), where en := (1− 1
n
)−n ≥ e. Hence, we have E[N(t) | j(t−1)] =

j(t−1)λ
enµ

≤ j(t−1)λ
eµ

.

For any t ∈ N we have j(t) ≤ j(t − 1) + N(t), where strict inequality
occurs only if j(t− 1) +N(t) > µ. Therefore, we have

E[j(t)] = E[E[j(t) | j(t− 1)]] ≤ E[E[j(t− 1) +N(t) | j(t− 1)]]
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= E[j(t− 1)] + E[E[N(t) | j(t− 1)]] ≤ E[j(t− 1)] + E

[

j(t− 1)λ

eµ

]

= E[j(t− 1)] +
λ

eµ
E[j(t− 1)] =

(

1 +
λ

eµ

)

E[j(t− 1)].

By induction, we obtain

E[j(t)] ≤
(

1 +
λ

eµ

)t

j(0) =

(

1 +
λ

eµ

)t

j1,

and by Markov’s inequality, we have

Pr[j(t) ≥ j2] ≤
E[j(t)]

j2
≤
(

1 +
λ

eµ

)t
j1
j2
.

For

t :=
ln j2

2j1

ln
(

1 + λ
eµ

) = Ω

(

log j2
j1

log λ
µ

)

we obtain

Pr[j(t) ≥ j2] ≤
1

2
.

Hence, the probability that the EA0 does not obtain j2 desired individuals
in t = Ω( log(j2/j1)

log(λ/µ)
) iterations is at least constant. Thus, the expected number

of iterations before this happens is at least Ω( log(j2/j1)
log(λ/µ)

).

3.2 Unconditional Upper Bound

Having the results of Section 3.1 we first prove the following upper bound,
which is valid for all values of µ and λ. When λ is not significantly larger
than µ, then the (µ+ λ) EA typically increases the best fitness by at most a
constant in each iteration. For this reason, we can use Theorem 1 and obtain
a runtime bound that will turn out to be tight for this case.

Theorem 2. The expected number of iterations for the (µ+ λ) EA to opti-
mize the OneMax problem is

O

(

n logn

λ
+

nµ

λ
+ n

)

.

Proof. To use Theorem 1 we define levels A0, . . . , An such that level Ai,
i ∈ [0..n], consists of all populations having maximum fitness equal to i.
In Corollary 1 we have already estimated the expected times E[T̃i] the
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(µ+ λ) EA takes to leave these levels. These estimates depended on the
number µ0(i) of individuals of fitness i we aim at before leaving the level. By
choosing suitable values for the µ0(i) we prove our bound.

The choice of µ0(i) is guided by the following trade-off. If we choose
µ0(i) = µ, then after having µ best individuals in the population we have
the highest probability to find a better individual. However, we pay for it
with the time we spend on obtaining µ copies of the best individual. On
the other hand, if we choose µ0(i) = 1 we do not spend any iteration filling
the population with copies of the best individual, but we have a low chance
to increase the current fitness. How this trade-off is optimally resolved, and
hence the optimal value of µ0(i), depends on the probability to create a better
individual and thus on the current fitness i.

We distinguish three cases depending on current fitness i. The “mile-
stones” which mark the transition between these cases are the fitness values
i = ⌈n− n

2+λ/(eµ)
⌉ and i = ⌊n− n

µ(2+λ/e)
⌋. While the best fitness is below the

first milestone, the probability to increase the fitness is so high that we do
not need to have more than one best individual in the population. Beyond
the second milestone this probability is so low that we better spend the time
to fill the population with the copies of the best individual. Between the
two milestones we have to find a suitable value of µ0(i) to give a balanced
trade-off.

To simplify the notation, we define ∆i := 1 +
√

1 + nλ
e(n−i)µ

. Note that

1 +

√

n

n− i

√

λ

eµ
≤ ∆i ≤ 1 +

√

n

n− i

√

1 +
λ

eµ
. (6)

This value of ∆i arises from the computation of the derivative of the upper
bound on E[T̃i] from Corollary 1, which is needed to find the optimal value
of µ0(i) in the second case, when the current fitness is between the two
milestones.

For i ≤ ⌈n− n
2+λ/(eµ)

⌉ we define µ0(i) := 1. By Corollary 1 we have

E[T̃i] ≤
eµn

λ(n− i)
+

2eµ

λ
+ 1.

Let T1 be the number of iterations before the (µ+ λ) EA finds an individual
with fitness greater than ⌈n− n

2+λ/(eµ)
⌉ for the first time. Then by Theorem 1

we have

E[T1] ≤
⌈n− n

2+λ/eµ
⌉

∑

i=0

E[T̃i] ≤
⌈n− n

2+λ/eµ
⌉

∑

i=0

(

eµn

λ(n− i)
+

2eµ

λ
+ 1

)
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≤ eµn

λ

(

ln(n)− ln

(

n

2 + λ/eµ

)

+ 1

)

+
2eµ

λ
n+ n

=
eµn

λ
ln

(

2 +
λ

eµ

)

+
3eµn

λ
+ n

= O
(µn

λ

)

+O(n),

where we used the estimate eµ
λ
ln(2 + λ

eµ
) = O(1 + µ

λ
) that holds for any

asymptotic behavior of µ/λ.
For ⌈n− n

2+λ/(eµ)
⌉ < i ≤ ⌊n− n

µ(2+λ/e)
⌋ we define µ0(i) := ⌈ n

(n−i)∆i
⌉. By

Corollary 1 we have

E[T̃i] ≤
n

(n− i)∆i
+ 1 +

2eµ

λ

(

ln
n

(n− i)∆i
+ 2

)

+
eµ∆i

λ
.

By (6), we have

E[T̃i] ≤
n

(n− i)
(

1 +
√

n
n−i

√

λ
eµ

) + 1

+
2eµ

λ



ln
n

(n− i)
(

1 +
√

n
n−i

√

λ
eµ

) + 2





+
eµ

λ

(

1 +

√

n

n− i

√

1 +
λ

eµ

)

.

(7)

Let T2 be the number of iterations until the (µ+ λ) EA finds an individual
with fitness greater than ⌊n− n

µ(2+λ/e)
⌋ for the first time if it already has an

individual with fitness greater than ⌈n − n
2+λ/(eµ)

⌉ in the population. By
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Theorem 1 and by (7), we obtain

E[T2] ≤
⌊n− n

µ(2+λ/e)
⌋

∑

i=⌈n− n
2+λ/(eµ)

⌉+1

E[T̃i]

≤ n

⌊n− n
µ(2+λ/e)

⌋
∑

i=⌈n− n
2+λ/(eµ)

⌉+1

1

(n− i)
(

1 +
√

n
n−i

√

λ
eµ

)

+
eµ

λ

⌊n− n
µ(2+λ/e)

⌋
∑

i=⌈n− n
2+λ/(eµ)

⌉+1

(

1 +

√

n

n− i

√

1 +
λ

eµ

)

+
2eµ

λ

⌊n− n
µ(2+λ/e)

⌋
∑

i=⌈n− n
2+λ/(eµ)

⌉+1

ln

(

n

(n− i)∆i

)

+
2eµ

λ
2n+ n.

(8)

We regard three sums in (8) separately. First, by the estimate
∑n

i=1 1/
√
i ≤ 1 +

∫ n

1
(1/

√
x)dx < 2

√
n, we obtain

⌊n− n
µ(2+λ/e)

⌋
∑

i=⌈n− n
2+λ/(eµ)

⌉+1

1

(n− i)
(

1 +
√

n
n−i

√

λ
eµ

)

≤
⌊n− n

µ(2+λ/e)
⌋

∑

i=⌈n− n
2+λ/(eµ)

⌉+1

1

(n− i)
√

n
n−i

√

λ
eµ

=

√

eµ

λn

⌊n− n
µ(2+λ/e)

⌋
∑

i=⌈n− n
2+λ/(eµ)

⌉+1

1√
n− i

≤
√

eµ

λn
· 2
√

n

2 + λ/(eµ)
≤ 2

√

eµ

λn

√

n

λ/(eµ)
= 2e

µ

λ
.

(9)

To analyze the second sum we also use the estimate 1+t
2+t

< 1 valid for all
t ∈ [0,+∞). We obtain
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⌊n− n
µ(2+λ/e)

⌋
∑

i=⌈n− n
2+λ/(eµ)

⌉+1

(

1 +

√

n

n− i

√

1 +
λ

eµ

)

≤ n+

√

n

(

1 +
λ

eµ

)

⌊n− n
µ(2+λ/e)

⌋
∑

i=⌈n− n
2+λ/(eµ)

⌉+1

1√
n− i

≤ n+

√

n

(

1 +
λ

eµ

)

· 2
√

n

2 + λ/(eµ)

= n + 2n

√

1 + λ/(eµ)

2 + λ/(eµ)
≤ 3n.

(10)

For the last sum we use the logarithmic version of Stirling’s formula, that
is, ln(n!) = n ln(n) − n + O(log(n)) (see, e.g. [Rob55] or [Doe20, Theorem

1.4.10]), and the estimate ln(2+t)+2
2+t

≤ 2 for all t ∈ [0,+∞). We obtain

⌊n− n
µ(2+λ/e)

⌋
∑

i=⌈n− n
2+λ/(eµ)

⌉+1

ln

(

n

(n− i)∆i

)

≤
⌊n− n

µ(2+λ/e)
⌋

∑

i=⌈n− n
2+λ/(eµ)

⌉+1

ln

(

n

(n− i)

)

≤
⌈

n

2 + λ/(eµ)

⌉

ln(n)− ln





n
∏

i=⌈n− n
2+λ/(eµ)

⌉

(n− i)





≤
⌈

n

2 + λ/(eµ)

⌉

ln(n)− ln

(⌈

n

2 + λ/(eµ)

⌉

!

)

=

⌈

n

2 + λ/(eµ)

⌉(

ln(n)− ln

⌈

n

2 + λ/(eµ)

⌉

+ 1

)

+O

(

log

⌈

n

2 + λ/(eµ)

⌉)

≤ n

2 + λ/(eµ)

(

ln

(

2 +
λ

eµ

)

+ 2

)

+ o(n)

≤ 2n+ o(n).

(11)
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Finally, by putting (9), (10) and (11) into (8) we obtain

E[T2] ≤ n · 2eµ
λ
+

eµ

λ
· 3n+

2eµ

λ
(2n+ o(n)) +

4eµn

λ
+ n

=
13eµn

λ
+ n + o

(µn

λ

)

= O
(µn

λ
+ n
)

.

For n − 1 ≥ i > ⌊n − n
µ(2+λ/e)

⌋ we define µ0(i) := µ. Note that this

case can only appear when n
µ(2+λ/e)

≥ 1 and thus µ ≤ n
(2+λ/e)

= O(n/λ). By
Corollary 1 the expected waiting time for a fitness gain is at most

E[T̃i] ≤ µ+
2eµ

λ
(ln(µ) + 1) +

en

λ(n− i)
.

Let T3 be the number of iterations until the (µ+ λ) EA finds the optimum
starting from the moment when it has an individual with fitness greater than
⌊n− n

µ(2+λ/e)
⌋ in the population. Then by Theorem 1 we have

E[T3] ≤
n−1
∑

i=⌊n− n
µ(2+λ/e)

⌋+1

E[T̃i]

≤
n−1
∑

i=⌊n− n
µ(2+λ/e)

⌋+1

(

µ+
2eµ

λ
(ln(µ) + 1) +

en

λ(n− i)

)

≤ µ
n

µ(2 + λ/e)
+

2eµ

λ
(ln(µ) + 1)

n

µ(2 + λ/e)

+
en

λ

(

ln
n

µ(2 + λ/e)
+ 1

)

= O
(n

λ

)

+O

(

n log µ

λ2

)

+O

(

n log n

λ

)

= O

(

n logµ

λ2

)

+O

(

n logn

λ

)

= O
(µn

λ

)

+O

(

n logn

λ

)

.

Summing the expected runtimes for all cases, we obtain the upper bound
for the expected total runtime.

E[T ] ≤ E[T1] + E[T2] + E[T3]

= O
(µn

λ
+ n
)

+O
(µn

λ
+ n
)

+O

(

µn

λ
+

n log n

λ

)

= O

(

n logn

λ
+

µn

λ
+ n

)

.
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3.3 Upper Bound with Large λ

In this section we consider the case when λ
µ
> ee. Due to the large number

of offspring the algorithm performs significantly better in this case. The first
reason of this speed-up is that the algorithm can now gain several fitness
levels in one iteration with high probability when the current-best fitness
is small. The second reason is the faster increase of the number of best
individuals, see Corollary 2.

These two observations allow us to prove the following upper bound on
the runtime.

Theorem 3. If λ
µ
≥ ee then the expected number of iterations for the (µ+ λ)

EA to optimize the OneMax problem is

O

(

n log log λ
µ

log λ
µ

+
n logn

λ

)

.

Note that the bound given in Theorem 3 is asymptotically the same as the
bound given in Theorem 2 when λ

µ
= Θ(1). The difference between the two

bounds becomes asymptotically significant only when λ
µ
= ω(1). Therefore

it does not matter which constant we choose to distinguish the fast regime
of the algorithm. The main purpose of the choice of ee as a border value
is to simplify the proofs and to improve their readability. However without
proof we note that all arguments used in this section hold also for the smaller
values of λ

µ
which are greater than 2e.

To prove Theorem 3 we split the optimization process into four phases.
Each phase corresponds to some range of the best fitness values, and the
phase transition occurs at fitness values n − n

ln λ
µ

, n − µn
λ

and n − n
λ
. In

each phase the (µ+ λ) EA has a specific behavior, so we analyze each phase
separately in the following four lemmas.

During the first phase, while the fitness of the best individual is below
n − n

ln λ
µ

, regardless of the number of best individuals, with constant prob-

ability we generate an offspring increasing the best fitness in the population

by at least γ := ⌊ ln λ
µ

2 ln ln λ
µ

⌋. So we need not more than an expected number of

O(n
γ
) iterations to finish the first phase.

Let R1 be the runtime of the (µ+ λ) EA until it finds an individual with
fitness at least n − n

ln λ
µ

, in other words, the duration of the first phase. We

prove the following upper bound on the expected value of R1.
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Lemma 6 (Phase 1). If λ
µ
≥ ee, then we have

E[R1] = O

(

n log log λ
µ

log λ
µ

)

.

Proof. To use Theorem 1, we split the space of populations S into levels
A1, . . . Am, where

m :=

⌈⌊n− n
ln λ

µ

⌋
γ

⌉

+ 1.

If k < m, then the populations of level Ak have the fitness of the best
individual in [(k−1)γ..kγ−1] (but less than n− n

ln λ
µ

). The level Am consists

of all populations containing an individual of fitness at least n− n
ln λ

µ

.

To show that we have a constant probability to leave any level, we consider
the probability that a particular offspring has a fitness exceeding the current
best fitness i by at least γ. This is at least the probability to choose one of
the best individuals and to flip exactly γ zero-bits in it and not to flip the
other n− γ bits, namely

(

n− i

γ

)

j

µnγ

(

1− 1

n

)n−γ

≥ j

eµ

(

n− i

nγ

)γ

=: pγ(i).

The probability to increase the best fitness by at least γ with one of λ
offspring is at least 1−(1−pγ(i))

λ. Thus, by Lemma 2, the expected number
of iterations for this to happen is not larger than

1

1− (1− pγ(i))λ
≤ 1 + e

µ

λ

(

nγ

n− i

)γ

.

Since λ
µ
≥ ee, we have γ = ⌊ ln λ

µ

2 ln ln λ
µ

⌋ ≥ ⌊ e
2
⌋ = 1. Using this and the

estimate n
n−i

≤ ln λ
µ
valid during this phase, we compute

(

nγ

n− i

)γ

≤ exp

(

γ ln

(

γ ln
λ

µ

))

≤ exp

(

ln λ
µ

2 ln ln λ
µ

ln

(

ln2 λ
µ

2 ln ln λ
µ

))

≤ exp

(

ln λ
µ

2 ln ln λ
µ

2 ln ln
λ

µ

)

= exp

(

ln
λ

µ

)

=
λ

µ
.

Therefore, the expected time to increase the fitness by γ (and thus to
leave level Ak for any k < m) is at most 1 + e. Summing over the levels
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A1, . . . , Am−1 , by Theorem 1 we have

E[R1] ≤
m−1
∑

k=1

(1 + e) < (1 + e)m < (1 + e)
n

γ
= O

(

n log log λ
µ

log λ
µ

)

.

Having found an individual with fitness at least n− n
ln λ

µ

, we enter the sec-

ond phase. Due to the elitist selection, the minimum fitness in the population
does not decrease, so there is no risk of a fall-back into the first phase.

In the second phase, due to the smaller distance from the optimum, fit-
ness gains by more than a constant are too rare to be exploited profitably.
However, even when we only have one best individual in the population, the
probability to create at least one better individual in one iteration will still
be constant. Consequently, we do not need the arguments of Section 3.1
analyzing how the the number of best individuals grows. This phase ends
when the best fitness in the population is n− µn

λ
or more.

Let R2 be the runtime of the (µ+ λ) EA until it finds an individual with
fitness at least n − µn

λ
starting from the moment when it has an individual

with fitness at least n − n
ln λ

µ

in the population. In other words, R2 is the

duration of the second phase.

Lemma 7 (Phase 2). If λ
µ
≥ ee, then we have

E[R2] = O

(

n

log λ
µ

)

.

Proof. For

i ∈
[

⌈

n− n

ln λ
µ

⌉

..

⌈

n− µn

λ

⌉

− 1

]

,

the level Bi is defined as the set of all populations in which the best individ-
uals have fitness i. For i = ⌈n− µn

λ
⌉ let the level Bi consist of all populations

with best fitness at least i.
By Corollary 2 and defining µ0(i) := 1 for all i, we have

E[T̃i] ≤
eµn

λ(n− i)
+ 5 ≤ e+ 5,

where the last estimate follows from i ≤ n− µn
λ
. Therefore, by Theorem 1

E[R2] ≤
⌈n−nµ/λ⌉−1
∑

i=⌈n−n/ ln λ
µ
⌉

E[T̃i] ≤ (5 + e)
n

ln λ
µ

= O

(

n

log λ
µ

)

.
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After completion of the second phase, generating a strictly better indi-
vidual is so difficult that it pays off (in the analysis) to wait for more than
one best individual in the population. More precisely, depending on the cur-
rent best fitness i we define a number µ0(i) and compute the time to reach
µ0(i) best individuals and argue that the expected time to generate a strict
improvement when at least µ0(i) best individuals are in the population is
only constant. Since, as discussed in Section 3.1, specifically in Lemma 4,
the number of the best individuals in the population roughly increases by
a factor (1 + λ

2eµ
) in each iteration, the algorithm obtains µ0(i) individuals

reasonably fast.
Let R3 be the runtime of the (µ+ λ) EA until it finds an individual with

fitness at least n− n
λ
, the end of the third phase, starting from the moment

when it has an individual with fitness at least n− µn
λ

in the population.

Lemma 8 (Phase 3). If λ
µ
≥ ee, then we have

E[R3] = O
(µn

λ

)

.

Proof. During this phase the best fitness i in the population satisfies

n− µn

λ
≤ i < n− n

λ
,

which implies

λ

µ
≤ n

n− i
< λ. (12)

For these values of i we define µ0(i) := ⌈ nµ
(n−i)λ

⌉. Note that µ0(i) ∈ [1..µ].
For

i ∈
[

⌈n− µn

λ
⌉..⌈n− n

λ
⌉ − 1

]

,

level Ci is defined as a set of all populations in which the best individuals
have fitness i. For i = ⌈n− n

λ
⌉ let the level Ci consist of all populations with

best fitness at least i.
By Corollary 2 and by the definition of µ0(i) we have

E[T̃i] ≤ 4
lnµ0(i)

ln λ
2eµ

+
eµn

λ(n− i)µ0(i)
+ 5

≤ 4

ln λ
2eµ

(

ln
nµ

(n− i)λ
+ 1

)

+ e+ 5.
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By Theorem 1 we obtain

E[R3] ≤
⌈n−n/λ⌉−1
∑

i=⌈n−nµ/λ⌉

T̃i

≤
⌈n−n/λ⌉−1
∑

i=⌈n−nµ/λ⌉

(

4

ln λ
2eµ

(

ln
nµ

(n− i)λ
+ 1

)

+ e+ 5

)

≤ 4

ln λ
2eµ





nµ

λ
+

⌈n−n/λ⌉−1
∑

i=⌈n−nµ/λ⌉

ln
nµ

(n− i)λ



 +
nµ

λ
(e + 5).

We estimate
⌈n−n/λ⌉−1
∑

i=⌈n−nµ/λ⌉

ln nµ
(n−i)λ

using Stirling’s formula as in (11). We

also notice that this phase occurs only when nµ
λ

> 1, thus we have (ln nµ
λ
−

ln⌊nµ
λ
⌋) ≤ 1. Hence, we obtain.

⌈n−n/λ⌉−1
∑

i=⌈n−nµ/λ⌉

ln
nµ

(n− i)λ
≤

⌊nµ/λ⌋
∑

i=1

ln
nµ

iλ

=
⌊nµ

λ

⌋

ln
nµ

λ
−
⌊nµ

λ

⌋

ln
⌊nµ

λ

⌋

+
⌊nµ

λ

⌋

+O
(

log
⌊nµ

λ

⌋)

=
⌊nµ

λ

⌋(

ln
nµ

λ
− ln

⌊nµ

λ

⌋

+ 1
)

+ o
(µn

λ

)

≤ 2
nµ

λ
+ o
(µn

λ

)

.

Therefore,

E[R3] ≤ (5 + e)
µn

λ
+ 4

2nµ
λ
+ o
(

µn
λ

)

+ nµ
λ

ln λ
2eµ

= O
(µn

λ

)

.

When the algorithm is closer to the optimum than in the third phase,
then we cannot expect to have a constant probability for a strict fitness
improvement even when the whole population consists of individuals of best
fitness. In this forth and last phase, we thus always wait (in the analysis)
until the population only contains best individuals and then estimate the
expected time for an improvement. We denote by R4 the runtime until the
algorithm finds the optimum if it already has an individual with fitness at
least n− n

λ
in the population.
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Lemma 9 (Phase 4). If λ
µ
≥ ee then

E[R4] = O

(

n log n

λ

)

.

Proof. For

i ∈
[⌈

n− n

λ

⌉

..n− 1

]

we define level Di as a set of all populations in which the best individuals
have fitness i. We also define µ0(i) = µ for these values of i.

By Corollary 2 we have

E[T̃i] ≤ 4
lnµ

ln λ
2eµ

+
en

λ(n− i)
+ 5.

Therefore, by Theorem 1, we obtain

E[R4] ≤
n−1
∑

i=⌈n−n
λ
⌉

(

4 lnµ

ln λ
2eµ

+
en

λ(n− i)
+ 5

)

≤ 4n lnµ

λ ln λ
2eµ

+
en(ln n

λ
+ 1)

λ
+

5n

λ

= O

(

n

log λ
µ

)

+O

(

n log n

λ

)

.

Finally, we prove Theorem 3.

Proof (Theorem 3). Since we consider an elitist algorithm that cannot reduce
the best fitness, by linearity of expectation and Lemmas 6 to 9 we have

E[T ] ≤ E[R1] + E[R2] + E[R3] + E[R4] = O

(

n log log λ
µ

log λ
µ

+
n log n

λ

)

.
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3.4 Comparison With Other Upper Bounds

We first note that our upper bound

O

(

n logn

λ
+

n

λ/µ
+

n log+ log+(λ/µ)

log+(λ/µ)

)

for the runtime of the (µ+ λ) EA on OneMax subsumes the known bounds

O(n logn+ µn)

for the (µ+ 1) EA [Wit06] and

O

(

n logn

λ
+

n log+ log+ λ

log+ λ

)

for the (1 + λ) EA [DK15].
We are not aware of any previous result for the (µ+ λ) EA for general

values of µ and λ. Using a standard domination argument, however, the
results of Dang and Lehre [DL16] for the (µ, λ) EA can be extended to the
(µ+ λ) EA. Recall that the (µ, λ) EA differs from the (µ+ λ) EA only in
the selection mechanism, which disallows the (µ, λ) EA to select any parent
individual into the next population, even the ones which are better than all
λ offspring. This imposes a constraint on the parameters requiring λ to be at
least µ. For the case that λ > (1+ε)eµ, ε > 0 a constant1, and λ = Ω(log n),
Dang and Lehre [DL16, Theorem 14] proved that the (µ, λ) EA within an
expected number of

O(n logλ)

iterations finds the optimum of OneMax.
Since the (µ+ λ) EA uses elitist selection, it can be shown that the

fitness values of its population always stochastically dominate those of the
population of the (µ, λ) EA. More precisely, for a run of the (µ+ λ) EA let us
for i ∈ [1..µ] and t ∈ N denote by fit the fitness of the i-th individual in the
parent population after iteration t, where we assume that the individuals are
sorted by decreasing fitness. Let us denote by f ′

it the same for the (µ, λ) EA.
Then for all i and t, the random variable fit stochastically dominates f ′

it. This
can be shown via coupling in a similar fashion as in the proof of Theorem 23
in [Doe19]. Thus the upper bound given by Dang and Lehre is also valid for
the (µ+ λ) EA. For the case λ > (1 + ε)eµ and λ = Ω(log n) regarded by
Dang and Lehre, our bound becomes

O(n),

which is of an asymptotically slightly smaller order than that of [DL16].

1In [DL16] only λ > eµ is required, but from analyzing their proof we suspect that the
stronger condition is implicitly used.
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4 Lower Bounds

In this section, we show the lower bounds corresponding to the upper bounds
we proved in the previous section. They in particular imply the lower bounds
for the (µ+ 1) EA given in [Wit06] and the (1 + λ) EA given in [DK15].
Hence our proof method is a unified approach to both these algorithms as
well. The arguments we use do not consider selection phase at all, thus they
hold also for all functions with a unique optimum and for other selection
mechanisms, including the (µ, λ) EA.

The main problem when proving lower bounds for population-based al-
gorithms is that many individuals which are created during the run of the
EA are removed at some stage by selection operations. This creates a com-
plicated population dynamics, which is very hard to follow via mathematical
means.

One way to overcome this difficulty is to try to disregard the effect of se-
lection and instead regard an optimistic version of the evolutionary process in
which no individuals are removed. This idea can be traced back to [RRS98].
In the context of evolutionary computation, it has been first used in [Wit03]
(see [Wit08] for an extended version) in the analysis of a steady-state genetic
algorithm with fitness-proportionate selection. In [JW05], this argument
was used in the analysis of a (µ+1) evolution strategy (in continuous search
spaces). Not surprisingly, the analysis of the (µ+ 1) EA [Wit06] uses the
artificial populations argument as well.

This technique then found applications in the analysis of memetic algo-
rithms [Sud09], aging-mechanisms [JZ11], and non-elitist algorithms [Leh10,
LY12]. The artificial population argument was also used to overcome the
difficulties imposed by another removal mechanism, namely Pareto domina-
tion in evolutionary multi-objective optimization [DKV13]. While similar
in spirit, this work however uses quite different techniques, e.g., it does not
represent the search process via tree structures.

Of course, to make the new process really an optimistic version of the
original one, we have to ensure that, despite the larger population present,
each individual which is also present in the true population has the same
power of creating good solutions as in the original process. To ensure this in
our process, we assume that in the artificial process each individual creates
Bin(λ, 1/µ) offspring. This assumption, in fact, leads to a much more drastic
growth of the artificial population than the fact that we disregard selection.

When working with such an artificially enlarged population, there is a
risk that the larger population finds it easier to create the optimal solution.
This would give weaker lower bounds. So the main art in this proof approach
is setting up the arguments in a way that the larger population does still, in
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an asymptotic sense, not find the optimum earlier than the original process.
The reason why this is possible at all is that once selection is disregarded, the
process consists only of independent applications of the mutation operator.
This allows to use strong-concentration arguments which in the end give the
desired result that none of the many members of the artificial population is
the optimal solution.

To make this approach formal, we use the following notion of a complete
tree, which, in simple words, describes all possible (iterated) offspring which
could occur in a run of the evolutionary algorithm. This notion is different
from those used in the works above, which all work with certain subtrees of
the complete tree and use suitable arguments to reason that the restricted
tree still covers all individuals that can, with reasonable probability, appear.
We feel that our approach of working in the complete tree is technically sim-
pler. For example, compared to [Wit06], we do not first need to argue that
with high probability the true tree has only certain depths and then, con-
ditional on this event, argue that it does not contain an optimal solution.
Working in the complete tree, we also do not need arguments from branch-
ing processes as used in [LY12]. Of course, the key argument that without
selection we only do repeated unguided mutation, is used by us in the same
flavor as in all previous works.

More precisely, the complete tree with initial individual x0 is defined
recursively as follow. Every vertex is labeled with some individual (a bit-
string) which could potentially occur in the evolution process. The labels
are not necessarily unique, but every vertex, except the root vertex v0 is
uniquely defined by the tuple (v, t, i), where v is the parent vertex (that is
either the root vertex, or another vertex defined by a tuple), t ∈ N is the
iteration when this vertex was created and i ∈ [1..λ] is the number of the
vertex among the vertices with the same v and t. The tree T0 = (V0, E0)
at time t = 0 consists of the single (root) vertex v0 that is labeled with
the bit-string c(v0) = x0. Hence E0 = ∅. If Tt = (Vt, Et) is defined for
some t ≥ 0, then we define the tree Tt+1 = (Vt+1, Et+1) as follows. For each
vertex in Vt, we add λ vertices, connect them to this vertex, and generate
their labels via standard-bit mutation from the parent. More precisely, let
Nt+1 := {(vt, t + 1, i) | vt ∈ Vt, i ∈ [1..λ]} and Vt+1 = Vt ∪ Nt+1. We call
vt the parent of (vt, t + 1, i) and (vt, t, i) the i-th child of vt in iteration
t+1. We generate the label c(vt, t+1, i) by applying standard-bit mutation
to c(vt). We connect each new vertex with its parent, that is, we define
Et+1 = Et ∪ {(vt, (vt, t + 1, i)) | vt ∈ Vt, i ∈ [1..λ]}. A simple example of a
complete tree structure is shown in Figure 1.

It is easy to see that a complete tree at time t contains exactly (λ + 1)t

nodes, since each vertex from Vt has exactly λ new children in Vt+1. As said
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1 2 1 2 1 21 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

Figure 1: The structure of the complete tree for the (3 + 2) EA after t = 2
iterations. The green vertices are the initial vertices, the blue vertices were
created in the first iteration and the orange vertices were created in the
second iteration. Each vertex is uniquely defined by a tuple of its parent
vertex v, iteration it was created t and its number i among the children of
its parent vertex created at the same iteration (the vertices in the figure are
labeled with this number i). The highlighted vertices are the ones which were
actually created by the algorithm. The labels are omitted in this illustration
for reasons of readability

earlier, it thus massively overestimates the size of the true population of the
EA.

For our purposes, it is not so much the total size of the tree that is
important, but rather the number of nodes in a certain distance from the
root. We estimate these in the following elementary lemma. Here and in the
remainder, by distance we mean the graph theoretic distance, that is, the
length of the (in this case unique) path between the two vertices. Observe
that this can be different from the iteration in which a node was generated.
For example, the vertex (v0, t, i), which is generated in iteration t from the
initial vertex, has distance one from v0.

Lemma 10. Let Tt be a complete tree at time t. Let ℓ ∈ N0. Then Tt

contains exactly
(

t

ℓ

)

λℓ

nodes in distance exactly ℓ from the root.

Proof. If t < ℓ, then there are no vertices in distance ℓ (recall that in our
notation

(

t
ℓ

)

= 0 in this case). Otherwise, let v be a vertex in distance
exactly ℓ from the root. Then there are times 1 ≤ t1 < · · · < tℓ ≤ t and
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offspring numbers i1, . . . , iℓ ∈ [1..λ] such that with the recursive definition
of the vertices v1, . . . , vℓ via vd = (vd−1, td, id) for all d ∈ [1..ℓ], we have
v = vℓ. Hence, there are at most

(

t
ℓ

)

λℓ vertices in distance ℓ from the root.
Conversely, each tuple of times and offspring numbers as above defines a
different vertex in distance ℓ. Hence, there are at least

(

t
ℓ

)

λℓ different vertices
in distance ℓ from the root.

Since there is no selection in the complete tree, the vertex labels simply
arise from repeated mutation. More precisely, a vertex in distance ℓ from the
root has a label that is obtained from ℓ times applying mutation to the root
label. This elementary observation allows to estimate the probability that a
node label is equal to some target string.

Lemma 11. Consider a complete tree with root label c(v0) = x0. Let x∗ ∈
{0, 1}n with H(x∗, x0) ≥ n/4 (where H is the Hamming distance). Let x be
the node label of a node in distance ℓ from v0. Then

Pr[x = x∗] ≤ min

{

1,

(

ℓ

n− 1

)n/4
}

=: p(ℓ, n).

Proof. The probability that x = x∗ is at most the probability that each of
the H(x0, x

∗) bits in which x0 and x∗ differ was flipped in at least one of the
ℓ applications of the mutation operator which generated x from x0. For one
particular position the probability that this position was involved in one of
ℓ mutations is 1 − (1 − 1

n
)ℓ. For H(x0, x

∗) positions the probability that all
of them were involved in one of ℓ mutations is

(

1−
(

1− 1

n

)ℓ
)H(x0,x∗)

≤
(

1− exp

(

− ℓ

n− 1

))
n
4

≤
(

ℓ

n− 1

)
n
4

,

where we used the estimates (1 − 1/n)(n−1)r ≥ e−r valid for all n ≥ 1 and
any positive r ∈ R, and e−r ≥ 1− r valid for all r ∈ R.

We are now ready to prove our lower bound. Since the proof is valid
not only for the OneMax function, but for any pseudo-Boolean function
with a unique optimum, we formulate the result for such functions. We show
extensions to many functions with multiple optima in the following section.

Theorem 4. If µ is polynomial in n, then the (µ + λ) EA with any type
of selection of the new parent population (including only selecting from the
offspring population) needs an expected number of

Ω

(

n log n

λ
+

µn

λ

)
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iterations to optimize any pseudo-Boolean function with a unique optimum.
If further λ

µ
≥ ee, then the stronger bound

Ω

(

n log n

λ
+

n log log λ
µ

log λ
µ

)

holds.

Proof. Without any loss of generality in this proof we assume that the func-
tion optimized by the algorithm has an optimum in x∗ = (1, . . . , 1).

In our proofs we use the following tool. To prove that the expected
runtime of the algorithm is Ω(f(n)) for some function f(n), it is enough to
prove that the probability that the runtime is less than f(n) is less than
some constant γ < 1, since in this case the expected runtime is not less than
(1− γ)f(n).

We first note that the bound Ω(n logn
λ

) is easy to prove for the One-

Max function. A short, but deep argument for this bound is that the
(µ+ λ) EA is an unary unbiased black-box complexity algorithm in the sense
of Lehre and Witt [LW12]. Any such algorithm needs an expected number
of Ω(n log n) [LW12] or, more precisely, of at least en ln(n)−O(n) [DDY16]
fitness evaluations to find the optimum of the OneMax function.

However, we prove the lower bounds for any function with a unique op-
timum, so we use an elementary argument essentially identical to the one
of [Wit06] as follows. The lower bound Ω(n logn

λ
) needs to be shown only in

the case µ ≤ c logn, where c is an arbitrarily small constant. For any bit po-
sition we have the probability q1 that all individuals in the initial population
have a zero-bit in that position that is calculated as

q1 =

(

1

2

)µ

≥
(

1

2

)c log(n)

= exp(c log(n) log(1/2)) = n−c log(2).

Thus, the expected number z of the bit positions such that all individuals in
the initial population have a zero-bit in that position is

E[z] =

n
∑

i=1

q1 = n1−c log(2).

We call such positions initially wrong positions. Since the bit values in each
bit position and each initial individual are independent, each position is
initially wrong or not independently on other positions. Hence, by Chernoff
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bounds (see, e.g., Theorem 1.10.5 in [Doe20]) the probability q2 that we have
at least E[z]/2 = n1−c log(2)/2 such bit positions is calculated as

q2 = Pr [z ≥ (1− δ)E[z]] ≥ 1− exp

(

−δ2E[z]

2

)

= 1− exp

(

−n1−c log(2)

8

)

.

Now we are ready to show that the algorithm does not flip at least one of
the bits in the initially wrong positions in t := ⌊α(n−1) log(n)

λ
⌋ iterations, where

α is a constant that will be defined later, with a high (at least 1 − o(1))
probability. We calculate the probability q3 that one particular bit is flipped
at least once in t iterations (or in λt mutations) as

q3 = 1−
(

1− 1

n

)λt

= 1−
(

1− 1

n

)(n−1) λt
(n−1)

≤ 1− exp

(

− tλ

(n− 1)

)

≤ 1− e−α log(n) = 1− n−α.

If we have at least n1−c log(2)/2 initially wrong positions, then the probability
q4 that all of them are flipped at least once in t iterations is

q4 = q
n1−c log(2)

2
3 ≤ (1− n−α)

n1−c log(2)

2

= (1− n−α)n
α·n

1−c log(2)−α

2 ≤ exp

(

−n1−c log(2)−α

2

)

Thus we have the probability q5 that at least one of the initially wrong bits is
not flipped (and thus, the optimum is not found) in t = Θ(n log(n)

λ
) iterations

at least

q5 ≥ q2(1− q4)

≥
(

1− exp

(

−n1−c log(2)

8

))(

1− exp

(

−n1−c log(2)−α

2

))

≥ 1− 2 exp

(

−n1−c log 2−α

8

)

.

(13)

Hence, if α and c satisfy c log(2) + α < 1, (e.g., α := 1
2
and c := 1

2
) then

the expected runtime of the algorithm is Ω(n log(n)
λ

).
To prove the remaining two bounds, we argue as follows. Again using

a simple Chernoff bound argument, we first observe that the probability q6
that the number of zero-bits y in the one particular individual in the initial
population is less than n/4, is estimated as

q6 = Pr

[

y ≤ E[y]

2

]

= Pr [y ≤ (1− 1/2)E[y]] ≤ exp
(

− n

16

)

.
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Hence, all µ individuals of the initial population have a Hamming distance
of at least n/4 from the optimum x∗ with probability

q7 = (1− q6)
µ ≥

(

1− exp
(

− n

16

))µ

≥ exp

(

− µ

e
n
16 − 1

)

Since µ is polynomial in n, we have µ

e
n
16 −1

= o(1) and therefore, q7 = 1−o(1).

Further in this proof we assume that all initial individuals have at least n/4
zero-bits.

Clearly, a run of the (µ+ λ) EA creates a subforest of µ disjoint complete
trees with random root labels (complete forest). Whether a node of the
complete forest appears in the forest describing the run of the (µ+ λ) EA
(the forest of the family trees) depends on the node labels (more precisely,
on their fitness). However, regardless of the node labels the following is
true: If some node vs is present in the population at iteration t, then the
edge (vs, (vs, t, i)) is present in the subforest at most with probability 1/µ,
because for this it is necessary that the i-th offspring generated in iteration
t chooses vs as parent. Consequently, regardless of the nodes labels, the
probability that a node in distance ℓ from the root in the complete forest
enters the population of the (µ+ λ) EA, is at most µ−ℓ. Since we have not
taken into account the node labels, we observe that the probability that a
particular node of the complete forest (i) is labeled with the optimum and
(ii) makes it into the population of the (µ+ λ) EA, is at most µ−ℓp(ℓ, n) with
p(ℓ, n) as defined in Lemma 11.

Using a union bound over all nodes in the complete forest up to iteration t,
cf. Lemma 10, we see that the probability that the (µ+ λ) EA finds the
optimum within t iterations, is at most

qopt ≤ µ
t
∑

ℓ=0

(

t

ℓ

)(

λ

µ

)ℓ

p(ℓ, n). (14)

Let first t := ⌊µn/8eλ⌋. Using the inequality
(

t
ℓ

)

≤ (et/ℓ)ℓ that follows
from Stirling’s formula, we estimate the summand s(ℓ) :=

(

t
ℓ

)

(λ
µ
)ℓp(ℓ, n) of

qopt for every ℓ ∈ [0..t].

• By Lemma 11 we have p(ℓ, n) ≤ 1. Thus, if ℓ ≥ n/4, we estimate

s(ℓ) =

(

t

ℓ

)(

λ

µ

)ℓ

p(ℓ, n) ≤
(

etλ

ℓµ

)ℓ

≤
( n

8ℓ

)ℓ

≤ (1/2)ℓ ≤ (1/2)n/4.

• By Lemma 11 we have p(ℓ, n) ≤ (ℓ/(n− 1))n/4. Hence, if n/4 ≥ ℓ > 0,
we estimate

s(ℓ) =

(

t

ℓ

)(

λ

µ

)ℓ

p(ℓ, n) ≤
(

etλ

ℓµ

)ℓ(
ℓ

n− 1

)n/4

≤
( n

8ℓ

)ℓ
(

ℓ

n− 1

)n/4
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≤
( n

4ℓ

)ℓ
(

ℓ

n− 1

)n/4

≤
(

n

4ℓ
· ℓ

n− 1

)n/4

≤ (1/2)n/4.

• Finally, for ℓ = 0 we have p(ℓ, n) = 0 and thus s(ℓ) = 0.

Consequently, the optimum is found in less than t iterations if either there
is an individual with less than n/4 zero-bits in the initial population, or with
an exponentially small probability otherwise. Therefore, the probability q8
of finding the optimum in less than t iterations is bounded as

q8 ≤ (1− q7) + q7µ

t
∑

ℓ=0

s(ℓ)

≤
(

1− exp

(

− µ

e
n
16 − 1

))

+ µ

t
∑

ℓ=1

(1/2)n/4

≤ µ

e
n
16 − 1

+
µ2n

8eλ
(1/2)n/4 = o(1),

(15)

since we assumed µ to be at most polynomial in n.

We finish the proof by showing the lower bound Ω

(

n log log λ
µ

log λ
µ

)

in case

when λ
µ
≥ ee. For this purpose let t = ⌊ (e−2)n ln ln λ

µ

4(e+1) ln λ
µ

⌋. Using the complete tree

notation we show that the probability that the algorithm finds an optimum
in less than t iterations is very small.

For all ℓ ∈ [0..t] consider s(ℓ). Using the inequality
(

t
ℓ

)

≤ (et/ℓ)ℓ we
estimate the upper bound for it as follows.

s(ℓ) =

(

t

ℓ

)(

λ

µ

)ℓ

p(ℓ, n) ≤
(

etλ

ℓµ

)ℓ(
ℓ

n− 1

)n/4

= exp

(

ℓ ln
etλ

ℓµ
+

n

4
ln

ℓ

n− 1

)

.

(16)

Consider precisely the argument of the exponential function from the
last equality in (16). For this purpose define f(ℓ) := ℓ ln etλ

ℓµ
+ n

4
ln ℓ

n−1
. By

considering the derivative of f(ℓ) on segment [0, t] one can see that it is a
monotonically increasing function. Since t ≥ ℓ and λ

µ
≥ ee, we have etλ

ℓµ
≥ ee+1

and thus, ln etλ
ℓµ

≥ e+ 1. Hence,

f ′(ℓ) = ln
etλ

ℓµ
− 1 +

n

4ℓ
≥ e+ 1− 1 > 0
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Thus, f(ℓ) reaches its maximum when ℓ = t. Therefore,

f(ℓ) ≤ f(t) ≤ t ln
eλ

µ
+

n

4
ln

t

n− 1

≤
(e− 2)n ln ln λ

µ

4(e+ 1) ln λ
µ

(

ln
λ

µ
+ 1

)

+
n

4
ln

(e− 2)n ln ln λ
µ

4(e+ 1)(n− 1) ln λ
µ

=
(e− 2)

4(e+ 1)
n ln ln

λ

µ

(

1 +
1

ln λ
µ

)

+
n

4

(

ln ln ln
λ

µ
− ln ln

λ

µ
+ ln

(e− 2)n

4(e+ 1)(n− 1)

)

≤ n

4
ln ln

λ

µ

(

(e− 2)

(e + 1)

(

1 +
1

e

)

+
ln ln ln λ

µ

ln ln λ
µ

− 1 +
ln (e−2)n

4(e+1)(n−1)

ln ln λ
µ

)

.

Notice that lnx
x

≤ 1
e
for all x ≥ 1 and that ln (e−2)n

4(e+1)(n−1)
< 0 for all n > 1.

Therefore we have

f(ℓ) ≤ n

4
ln ln

λ

µ

(

(e− 2)

(e+ 1)

(

1 +
1

e

)

−
(

1− 1

e

))

= −
n ln ln λ

µ

4e
.

Thus, by (16) we have

s(ℓ) ≤ exp

(

−
n ln ln λ

µ

4e

)

=

(

ln
λ

µ

)−n/4e

.

By (14) summing up µs(ℓ) for all ℓ ∈ [0..t] we obtain the following upper
bound on the probability q9 that the algorithm finds the optimum in less

than t = Θ(
n log log λ

µ

log λ
µ

) iterations.

q9 ≤ (1− q7) + q7µ

t
∑

ℓ=0

s(ℓ)

≤ µ

e
n
16 − 1

+ µ
(e− 2)n ln ln λ

µ

4(e+ 1) ln λ
µ

(

ln
λ

µ

)−n/4e

.

(17)

Notice that q9 is o(1), since we assumed that µ is polynomial in n. Hence,

the expected runtime of the algorithm is Ω(
n log log λ

µ

log λ
µ

)
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Comparison With Other Lower Bounds

Since all results involved are asymptotically tight, our lower bounds subsume
the previous bounds for the (µ+ 1) EA and the (1 + λ) EA in the way as
discussed for upper bounds in Section 3.4.

For general values of µ and λ, the only result [QYZ16] we are aware of
proves that for any µ and λ that are at most polynomial in n the runtime
of the (µ+ λ) EA on every pseudo-boolean function with a unique global
optimum is

Ω

(

n logn

λ
+

µ

λ
+

n log logn

logn

)

. (18)

By comparing the three terms of this bound with the corresponding terms
of our bound

Ω

(

n logn

λ
+

n

λ/µ
+

n log+ log+(λ/µ)

log+(λ/µ)

)

,

we immediately see that our bound is asymptotically at least as large as
the one in (18); note that for the third term, this follows trivially from the

assumption that λ is polynomial in n and the fact that x 7→ log log(x)
log(x)

is
decreasing for x sufficiently large.

There are two cases when our bound is asymptotically greater than (18).
Setting 1. Let λ

µ
= O(1) and µ = ω(log(n)). Then our bound is Ω(nµ

λ
),

which is at least Ω(n). On the other hand, (18) is

n logn

λ
+

µ

λ
+

n log logn

log n
=

n o(µ)

λ
+

µ

λ
+ o(n) = o

(nµ

λ

)

.

Setting 2. Let log λ
µ
= ω(logn). This implies that λ

µ
= ω(n) and thus

logn = o

(

n log log n

logn

)

= o

(

λ
µ
log log λ

µ

log λ
µ

)

.

Therefore, we have

n logn

λ
= o

(

n log log λ
µ

µ log λ
µ

)

= o

(

n log log λ
µ

log λ
µ

)

.

Hence, the lower bound given in Theorem 4 simplifies to Ω(
n log log λ

µ

log λ
µ

).

On the other hand, the bound (18) is of the asymptotically smaller order
o(log n) + o(1) +O(n log logn

logn
) = O(n log logn

logn
).
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5 Extending the Lower Bounds to All Func-

tions Having Not Excessively Many Global

Optima

Since the family tree technique depends little on the particular function to
be optimized, Witt [Wit06] extended his lower bounds for OneMax to a
much broader class of functions. He proved that the (µ+ 1) EA needs Ω(µn)
iterations to find a global optimum of any function that satisfies one of the
following conditions. (i) The function has at most 2o(n) optima. (ii) All
optima have at least n/2 + εn one-bits or all optima have at least n/2 + εn
zero-bits, where ε > 0 is an arbitrary constant.

In this section we extend our lower bounds of Section 4 to a wide class of
functions as well. In particular, we show that Witt’s results are valid for all
functions with at most 2βn optima, where β is some constant less than 1

16 ln 2
,

regardless of the positions of the optima.
To reach our goal we exploit the fact that in Theorem 4 we proved very

small values for the probabilities that the runtime is less than some threshold
(see (13), (15) and (17)), while it would have been enough to prove that they
are some constants less than one.

Theorem 5. For any constant ε > 0 there exists another constant c > 0 such
that if µ < c lnn, then for any n-dimensional pseudo-Boolean function with
not more than 2n

1−ε
optima the (µ+ λ) EA takes at least Ω(n logn

λ
) iterations

in expectation and with high probability to find an optimum.

Proof. Let c be some arbitrary small positive constant and let µ < c lnn.
By (13) the probability that the algorithm finds a particular optimum in less
than t := αn logn

λ
iterations (where α is some arbitrary constant) is

1− q5 ≤ 2 exp

(

−n1−c ln 2−α

8

)

.

If we have at most 2n
1−ε

optima, then by a union bound over all optima
we obtain that the probability q10 that the algorithm finds an optimum in
less than t iterations is

q10 ≤ (1− q5)2
n1−ε ≤ 2 exp

(

−n1−c ln 2−α

8

)

exp
(

n1−ε ln 2
)

= 2 exp

(

n1−ε ln 2− n1−c ln 2−α

8

)

.
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This probability q10 tends to zero with growing n if and only if the argu-
ment of the exponential function tends to negative infinity. It does so if and
only if α and c satisfy α + c ln 2 < ε. Since ε is a positive constant, we can
choose α := ε/2 and c := ε/2 to satisfy this condition.

The actual reason that the algorithm cannot find an optimum faster than
in Ω(n logn

λ
) iterations is the coupon collector effect when the algorithm tries

to flip the few wrong bits left in the end of the optimization. However, if
we have 2Θ(n) optima, the algorithm avoids this effect. To illustrate this
idea consider the (1 + 1) EA that optimizes the OneMax function, but the
bit-strings with less than cn zero-bits, where c is some small constant, are
considered optimal. Thus, this functions has no more than O(2c log2(1/c)n) ⊆
2Θ(n) optima. Clearly, the runtime of the (1 + 1) EA on such function is
linear, which may be proven with simple additive drift argument.

The following two theorems extend our Ω(nµ
λ
) and Ω(

n log log λ
µ

log λ
µ

) bounds to

the functions with 2O(n) optima.

Theorem 6. If µ is at most polynomial in n, then the (µ+ λ) EA optimizes
any pseudo-Boolean function with at most 2βn optima, where β is some con-
stant less than 1

16 ln 2
, in Ω(µn

λ
) iterations. If λ

µ
> ee, then the stronger bound

Ω(
n log log λ

µ

log λ
µ

) holds.

Proof. By (15) the probability that the algorithm finds a particular optimum
in less than t := ⌊ µn

8eλ
⌋ iterations is

q8 ≤
µ

e
n
16 − 1

+
µ2n

8eλ

(

1

2

)
n
4

.

By a union bound taken over no more than 2βn optima, the probability q11
that the algorithm finds any optimum in this time is

q11 ≤ q82
βn ≤ µe(ln 2)βn− n

16

1− e−
n
16

+
µ2n

8eλ
2βn−

n
4 .

Since β < 1
16 ln 2

and β is a constant, we have both (ln 2)βn− n
16

< 0 and
βn− n

4
< 0 (and both of them are linear in n). Thus, q11 tends to zero with

growing n. Hence, the expected runtime of the algorithm is Ω(t) = Ω(µn
λ
).

To prove the Ω(
n log log λ

µ

log λ
µ

) bound we argue in a similar way. By (17)

the probability that the algorithm finds a particular optimum in less than
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t := ⌊ (e−2)n ln ln λ
µ

4(e+1) ln λ
µ

⌋ iterations is

q9 ≤
µ

e
n
16 − 1

+ µ
(e− 2)n ln ln λ

µ

4(e+ 1) ln λ
µ

(

ln
λ

µ

)−n/4e

.

By a union bound taken over no more than 2βn optima, the probability
q12 that the algorithm finds any optimum in this time is

q12 ≤ q92
βn ≤ µeβn ln 2−n/16

1− e−
n
16

+ µ
(e− 2)n ln ln λ

µ

4(e+ 1) ln λ
µ

eβn ln 2−n/4.

Since β < 1
16 ln 2

and β is a constant, we have both (ln 2)βn − n
16

< 0
and βn ln 2 − n

4
< 0 (and both of them are linear in n). Thus, q12 tends

to zero with growing n. Hence, the expected runtime of the algorithm is

Ω(t) = Ω(
n log log λ

µ

log λ
µ

).

6 Analysis of the (λ
1:1
+ λ) EA

In this section we prove that our results (both upper bound from Theorem 2
and lower bound from Theorem 4) hold in an analogous fashion also for

the (λ
1:1

+ λ) EA, that is, we show that this algorithm optimizes OneMax

in an expected number of Θ(n logn
λ

+ n) iterations. This improves over the

O(n logn
λ

+ n log λ) proven bound and the O(n logn
λ

+ n log log n) conjecture
of [CHS+09].

Due to the differences in the algorithms, to prove our results we obviously
cannot just apply the previous theorems in this work to the case λ = µ. We

recall that the (λ
1:1

+ λ) EA uses a different parent selection. While the classic
(µ+ λ) EA chooses each parent independently and uniformly at random from

the µ individuals, the (λ
1:1

+ λ) EA creates exactly one offspring from each par-

ent. The pseudocode of the (λ
1:1

+ λ) EA is shown in Algorithm 2. We note
that [CHS+09] also use a slightly different way of selecting the next parent
population. In principle, they take as new parent population the µ best indi-
viduals among parents and offspring (plus-selection). If this would lead to a
new parent population only consisting of offspring, they remove the weakest
offspring and replace it with the strongest individual from the previous par-
ent population. Since this appears to be a not very common way of selecting
the new population, we shall work with the classic plus-selection, favoring
offspring in case of ties, and breaking further ties randomly (though, indeed,
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Algorithm 2: The (λ
1:1

+ λ) EA, maximizing a given function f :
{0, 1}n → R, with population size λ and mutation rate p.

1 Initialization:

2 Create a population of λ individuals by choosing x(i) ∈ {0, 1}n,
1 ≤ i ≤ λ uniformly at random. Let the multiset
X(0) := {x(1), ..., x(λ)} be the population at time 0. Let t := 0.

3 Optimization:

4 while an optimum has not been reached do

5 X ′ := X(t);
6 Mutation phase:

7 for i = 1, . . . , λ do

8 x := the i-th individual from X(t) (deterministic selection);
9 Create x′ by flipping each bit of x with probability p;

10 X ′ := X ′ ∪ {x′};
11 Selection phase:

12 Create the multiset X(t+1), the population at time t+ 1, by
deleting the λ individuals with lowest f -value in X ′;

13 t := t+ 1;

the tie-breaking is not important when optimizing OneMax via unary unbi-
ased black-box algorithms). We note without proof that the following results
and proofs are valid for the precise algorithm regarded in [CHS+09] as well.

We start by proving the upper bound for the runtime.

Theorem 7. The expected runtime of the (λ
1:1

+ λ) EA on the OneMax

function is O(n logn
λ

+ n).

Proof. We aim at adapting Theorem 2 for the (λ
1:1

+ λ) EA. For this purpose
we note that the proof of Theorem 2 only depends on the expected level
improvement times E[T̃i] computed in Corollary 1, which again depend on
the times needed for increasing the number of fit individuals computed in
Lemma 3. Therefore, it suffices to show that the estimates of Lemma 3 and

Corollary 1 are also valid for the (λ
1:1

+ λ) EA.

We prove that Lemma 3 holds for the (λ
1:1

+ λ) EA by observing that the
probability p2(j) to create at least one copy of the fit individual satisfies the
same estimate as the one used for the (µ+ λ) EA, which is (3), with µ = λ.

For the (λ
1:1

+ λ) EA, p2(j) is at least the probability that at least one of the j
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fit parent individuals creates as offspring a copy of it. By Lemma 2 we have

p2(j) ≥ 1−
(

1−
(

1− 1

n

)n)j

≥ 1−
(

1− 1

2e

)j

≥ 1

1 + 2e
j

,

which is the same estimate as for the (µ+ λ) EA (with µ = λ).

To prove that Corollary 1 holds for the (λ
1:1

+ λ) EA as well, it is sufficient
to show that the probability p′′(i) to create a superior individual satisfies as
well the estimate (5) in the case µ = λ. The probability p′′(i) is at least the
probability that for at least one of the µ0(i) best individuals the offspring is
better than its parent. Using Lemma 2 we calculate

p′′(i) ≥ 1−
(

1− n− i

n

(

1− 1

n

)n−1
)µ0(i)

≥ 1−
(

1− n− i

en

)µ0(i)

≥ 1− 1

1 + µ0(i)(n−i)
ne

,

which is the same value as in Corollary 1 when µ = λ.

Comparing this bound with the bound O(n logn
λ

+ n log λ) proven

in [CHS+09] and the bound O(n logn
λ

+ n log logn) conjectured in the same
work, we immediately see that ours is at least as strong as these two for all
values of λ. For λ = ω( logn

log logn
), our bound is asymptotically smaller than

both the proven bound and the conjecture.
We now prove a matching lower bound, which agrees with the one of

Theorem 4 in the case of µ = λ.

Theorem 8. If λ is polynomial in n then the expected runtime of the

(λ
1:1

+ λ) EA on the OneMax function is Ω(n logn
λ

+ n).

Proof. We show that the main arguments of the proof for this bound in
Theorem 4 are also valid for this parent selection mechanism.

To prove the Ω(n logn
λ

) bound we can repeat the arguments from The-
orem 4 without any changes. One needs to prove this bound only for
λ < c logn for some arbitrary small constant c. The main argument is that
with high probability there is a set of bits which were in a wrong position in
all initial individuals and that at least one of those bits was not flipped by
any of tλ applications of the mutation operator for some t = Θ(n logn

λ
). This

argument stays valid for the fair parent selection as well.
To prove the Ω(n) bound we consider the complete trees for the

(λ
1:1

+ λ) EA. Since in a run of the (λ
1:1

+ λ) EA each individual in the popu-
lation creates exactly one offspring, the complete trees now have a slightly
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different structure, namely each node of the tree has exactly one child at
each time step (instead of λ children). In return, we cannot argue that each
edge is present in the true family tree with probability at most 1/µ only (so
we assume that all these edges are in fact present). Since λ = µ, these two
effects cancel.

More precisely, following the proof of Theorem 4 we argue that with high
probability q7 ≥ exp(− λ

e
n
16 −1

) all initial individuals have at least n/4 wrong

bits. Next, we argue that in an analogous fashion as in (14) – and this is
where the two effects truly cancel – the probability qopt that the optimum
occurs in any tree in less than t := ⌈ n

8e
⌉ iterations is at most

qopt ≤ λ

t
∑

ℓ=0

(

t

ℓ

)

p(ℓ, n) ≤ λt

(

1

2

)n/4

.

Since we only consider λ that is polynomial in n, this entity tends to zero,
when n tends to infinity. Therefore, the probability that the algorithm finds
an optimum in t = Θ(n) iterations is at most (1 − q7) + q7qopt that is less
than some constant, if n is large enough. Hence, the expected runtime of the

(λ
1:1

+ λ) EA is Ω(n).

7 Discussion and Conclusion

In this work, we determined – tight apart from constant factors – the runtime
of the (µ+ λ) EA on the OneMax benchmark problem. This is thus one
of the few tight runtime analyses taking into account more than a single
parameter ([GW17, DD18] are the other two such works we are aware of).

Not surprisingly for a simple function like OneMax, our result does not
indicate that it is advantageous to use larger parent or offspring populations.
Indeed, it follows from [Wit13, Theorem 6.2] (see [Doe19] for a simplified
proof) that for any µ and λ the runtime of the (µ+ λ) EA stochastically
dominates the runtime of the (1 + 1) EA with best-of-µ initialization. The
runtime difference between the (1 + 1) EA with best-of-µ initialization and
with the usual random initialization is small, roughly an additive Θ(

√
n lnµ)

term [dPdLDD15].
While our result does not show an advantage of using larger populations,

it does show that using moderate-size populations is not overly costly. For
example, as long as µ, λ = O(logn), the (µ+ λ) EA takes Θ(n logn) fitness
evaluations to find the optimum. This observation could indicate that using
such population sizes is generally an interesting idea – we could speculate
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that there is no harm from using such populations, but there could be other
advantages.

In the light of recent other work, our work suggests two directions for
further research. In [GW17], a precise runtime analysis for the (1 + λ) EA
with general mutation rate c/n, c a constant, on the OneMax benchmark
was conducted. It suggests that the precise mutation rate is important when
λ is small, but less decisive when λ is large. It would be interesting to know to
what extent this result carries over to the (µ+ λ) EA. In [BLS14, DGWY19,
DWY18], it was shown that various dynamic choices of the mutation rate
can reduce the runtime of the (1 + λ) EA on OneMax. Again, it would be
interesting to see to what extend a similar behavior is true for the (µ+ λ) EA.
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