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Introduction

In recent years, deep learning has been applied to biology with the hope of facilitating complex data analyses and information discovery, and methods are now flourishing in population genetics [START_REF] Borowiec | Deep learning as a tool for ecology and evolution[END_REF]. As reviewed by [START_REF] Sanchez | Deep learning for population size history inference: Design, comparison and combination with approximate Bayesian computation[END_REF], we distinguish two families: those processing many summary statistics, with fully connected or convolutional networks and those based on 'raw' genetic data leveraging deep architectures to automatically construct informative features (e.g. [START_REF] Chan | A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks[END_REF][START_REF] Flagel | The Unreasonable Effectiveness of Convolutional Neural Networks in Population Genetic Inference[END_REF][START_REF] Montserrat | Class-Conditional VAE-GAN for Local-Ancestry Simulation[END_REF][START_REF] Torada | ImaGene: a convolutional neural network to quantify natural selection from genomic data[END_REF]Adrion et al., 2020b;[START_REF] Battey | Predicting geographic location from genetic variation with deep neural networks[END_REF][START_REF] Sanchez | Deep learning for population size history inference: Design, comparison and combination with approximate Bayesian computation[END_REF][START_REF] Battey | Visualizing population structure with variational autoencoders[END_REF][START_REF] Deelder | Using deep learning to identify recent positive selection in malaria parasite sequence data[END_REF][START_REF] Fonseca | Phylogeographic model selection using convolutional neural networks[END_REF][START_REF] Gower | Detecting adaptive introgression in human evolution using convolutional neural networks[END_REF][START_REF] Isildak | Distinguishing between recent balancing selection and incomplete sweep using deep neural networks[END_REF][START_REF] Wang | Automatic inference of demographic parameters using generative adversarial networks[END_REF][START_REF] Yelmen | Creating artificial human genomes using generative neural networks[END_REF][START_REF] Burger | Neural networks for self-adjusting mutation rate estimation when the recombination rate is unknown[END_REF][START_REF] Meisner | Haplotype and population structure inference using neural networks in whole-genome sequencing data[END_REF][START_REF] Perez | Coalescent-based species delimitation meets deep learning: Insights from a highly fragmented cactus system[END_REF][START_REF] Qin | Deciphering signatures of natural selection via deep learning[END_REF]. Previous studies have made their implementations available at least for reproducibility and sometimes with a specific effort for re-usability. Even so, each of them focuses on a specific network for a specific task. Adapting them requires careful understanding of the code and its direct modification since many options are hardcoded. This is not only error-prone, but also leads to a rapid code divergence between parallel projects, accompanied by complex maintenance. The community demands flexible and rigorous tools as demonstrated by stdpopsim, a library for population genetic simulations which allows contributions from many researchers (Adrion et al., 2020a). In genomics a suite of tools has been developed to facilitate deep learning applications (e.g. [START_REF] Kopp | Deep learning for genomics using Janggu[END_REF][START_REF] Zhang | An automated framework for efficiently designing deep convolutional neural networks in genomics[END_REF][START_REF] Routhier | Keras dna: A Wrapper For Fast Implementation Of Deep Learning Models In Genomics[END_REF]. However, none is able to handle population genetic datasets and tasks. For these reasons we developed dnadna, Deep Neural Architectures for DNA, a task-agnostic software (in the context of population genetics) that aims at facilitating applications, development, distribution and exchanges around neural networks in the field. 

Software

dnadna is a python-based software for population genetics inference that enables researchers to (1) develop new networks or re-use existing architectures, (2) train them for a given task (regression, classification, or a mix of those), and (3) share them in such a way that users can easily apply these trained networks to their own dataset. In particular, it already implements several neural networks that have been tested for inferring demographic and adaptive histories from genetic data. Pre-trained networks can be used directly on real and simulated genetic data for the prediction step. Networks can also be re-trained on new simulations (e.g. corresponding to another species or evolutionary model) and/or to solve other tasks (e.g. classifying introgressed vs non-introgressed segments or inferring recombination). Finally, any user can implement new architectures and tasks, while benefiting from training procedure, test environment, routines that may be otherwise overlooked (such as proper preprocessing or efficient data loading), and the possibility to easily share a network to facilitate re-use and benchmarking.

Figure 1 provides an overview of dnadna steps. It is accessible without coding knowledge thanks to its YAML configuration files which provide the user with a variety of options at each step of the process. Because each use-case has its own specificity, we developed a system which allows users to implement plugins (e.g. data transformations, simulators, or networks) without modifying the core of the code.

dnadna is a Python (≥3.7) package with multiple dependencies, the main one being the open source machine learning library PyTorch. It has a command line interface and an API (mlgenetics.gitlab.io/dnadna/api.html). It is highly flexible thanks to a structured configuration file system based on YAML and JSON Schema. dnadna is dual-licensed under the GNU Lesser General Public License (LGPLv3+) and the compatible CeCILL-C Free Software License Agreement. Release 1.0 is available from PyPI at pypi.org/project/dnadna/ and Anaconda at anaconda.org/mlgenetics/dnadna. Docker images are available at hub.docker.com/u/mlgenetics.

Tutorial examples

We showcase various dnadna use-cases via tutorials that will continue to expand. It is not required to have coding knowledge to perform similar tasks. A first tutorial walks the user through the complete process from configuring and generating simulated genetic data, to running data pre-processing, and training a convolutional network to solve a regression task (here predicting the parameters of a two-step population size history). A second tutorial solves a classification task instead (Figure 1G). A third tutorial helps users who already have simulated data, to familiarize themselves with dnadna and train a SPIDNA network on a provided dataset. Finally, we provide tutorials in the form of jupyter notebooks (mlgenetics.gitlab.io/dnadna/tutorials. html and Figure 1F).

  Fig.1. A: dnadna workflow and its corresponding commands. Each step could be done as a standalone: (1) simulation of a large genetic dataset according to evolutionary scenarios and priors; genetic data type is not enforced and can be boolean (classical SNP data), integer (e.g. genotype data 0/1/2), or float (e.g. local density of SNPs as in[START_REF] Gower | Detecting adaptive introgression in human evolution using convolutional neural networks[END_REF] or summary statistics along the genome as in[START_REF] Xue | Discovery of Ongoing Selective Sweeps within Anopheles Mosquito Populations Using Deep Learning[END_REF]) ; (2) preprocessing, mainly to filter out examples that do not fit minimal requirements and split the rest into train/validation/test sets; (3) training neural networks; (4) predicting on test or real datasets using optimized neural networks. Note that simulations can be skipped if the user already possesses a labelled dataset. Similarly, training can be skipped if the user reuses a pretrained network. Here is a subset of options at each step: (1a) generating simulations: name of predefined scenario to be simulated and its related parameters, such as number of individuals, number of replicates, mutation rate, demographic parameters; (1b) handling simulations: location on disk and filesystem layout; (2) preprocessing: initial data transformations, filtering values such as minimal number of sampled individuals or SNPs; (3a) architecture design: network name and related arguments (number of filters, layers, ...); (3b) training: loss functions, optimization and training hyperparameters (number of epochs, learning rate, batch size, optimizer name, ...); (3c) on-the-fly data transformations (subsampling, cropping, ...). B and C: illustration of two standard use cases of dnadna. D: extract of a training configuration file in YAML format. E: view of a plugin python file, that will be passed to dnadna train, where users can implement novel networks based on PyTorch. F: Illustration of a regression task with a pretrained network. Here we only need to use 'dnadna predict' since the network is already trained. Dotted lines denote true known histories, while boxplots indicate the population sizes predicted for 100 independent genomic regions at each time step. The estimates for a "complete" genome are given by the averaged predicted values. The error corresponds to the relative squared errors averaged over the whole time period. G: Illustration of a classification task, following Quickstart tutorial 2. The network was trained on a toy dataset (2000 independent population samples split into training and validation) and tested on 2000 additional samples to discriminate whether the population underwent a decline or an expansion of its size. The contingency table shows that for this classification task, the accuracy is 85.3% on a test set. See mlgenetics.gitlab.io/dnadna/tutorials.html for details on both experiments.
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