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Abstract

Motivation: We present dnadna, a flexible python-based software for deep learning inference in population genetics. It is
task-agnostic and aims at facilitating the development, reproducibility, dissemination, and reusability of neural networks
designed for population genetic data.
Results: dnadna defines multiple user-friendly workflows. First, users can implement new architectures and tasks, while
benefiting from dnadna utility functions, training procedure and test environment, which saves time and decreases the
likelihood of bugs. Second, the implemented networks can be re-optimized based on user-specified training sets and/or
tasks. Newly implemented architectures and pretrained networks are easily shareable with the community for further
benchmarking or other applications. Finally, users can apply pretrained networks in order to predict evolutionary history
from alternative real or simulated genetic datasets, without requiring extensive knowledge in deep learning or coding in
general.
dnadna comes with a peer-reviewed, exchangeable neural network, allowing demographic inference from SNP data, that
can be used directly or retrained to solve other tasks. Toy networks are also available to ease the exploration of the
software, and we expect that the range of available architectures will keep expanding thanks to community contributions.
Availability and Implementation: dnadna is a Python (≥3.7) package, its repository is available at gitlab.com/

mlgenetics/dnadna and its associated documentation at mlgenetics.gitlab.io/dnadna/.
Contact and Supplementary Information: flora.jay@lri.fr and jean.cury@normalesup.org

Introduction

In recent years, deep learning has been applied to biology

with the hope of facilitating complex data analyses and

information discovery, and methods are now flourishing in

population genetics (Borowiec et al., 2022). As reviewed by

Sanchez et al. (2020), we distinguish two families: those

processing many summary statistics, with fully connected

or convolutional networks and those based on ’raw’ genetic

data leveraging deep architectures to automatically construct

informative features (e.g. Chan et al., 2018; Flagel et al., 2019;

Montserrat et al., 2019; Torada et al., 2019; Adrion et al.,

2020b; Battey et al., 2020; Sanchez et al., 2020; Battey et al.,

2021; Deelder et al., 2021; Fonseca et al., 2021; Gower et al.,

2021; Isildak et al., 2021; Wang et al., 2021; Yelmen et al.,

2021; Burger et al., 2022; Meisner and Albrechtsen, 2022; Perez

et al., 2022; Qin et al., 2022). Previous studies have made

their implementations available at least for reproducibility

and sometimes with a specific effort for re-usability. Even

so, each of them focuses on a specific network for a specific

task. Adapting them requires careful understanding of the

code and its direct modification since many options are hard-

coded. This is not only error-prone, but also leads to a rapid

code divergence between parallel projects, accompanied by

complex maintenance. The community demands flexible and

rigorous tools as demonstrated by stdpopsim, a library for

population genetic simulations which allows contributions from

many researchers (Adrion et al., 2020a). In genomics a suite of

tools has been developed to facilitate deep learning applications

(e.g. Kopp et al., 2020; Zhang et al., 2021; Routhier et al.,

2020). However, none is able to handle population genetic

datasets and tasks. For these reasons we developed dnadna,

Deep Neural Architectures for DNA, a task-agnostic software

(in the context of population genetics) that aims at facilitating

applications, development, distribution and exchanges around

neural networks in the field.
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from dnadna import nets
from torch.nn.functional import relu

class myNet(nets.Network):

super().__init__()
self.param1 = param1

(x):

Only change
compared to
using only
pytorch

def __init__(param1):

def forward
...
...

E

Simulations

Train

Validation

Test

Preprocessing Training

Ne

Time

Prediction

00010101
10010010
01001101

Genetic Data

Filter out

plugin plugin

Ne

Time

msprime, SLiM, ... SNP, TreeSequence, ... pyTorch regression
classification

dnadna simulation dnadna preprocess dnadna train dnadna predict

1/ dnadna preprocess Demo_preprocessing_config.yml
--dataset-config=Demo_dataset_config.yml

3/ dnadna predict run_xxx/Demo_run_xxx_best_net.pth Testset/*/*npz

2/ dnadna train Demo_training_config.yml --plugin local_net.py

B

1/ dnadna predict trained_net.pth myData/*npz --prepocessing

Apply same prepocessing
e.g. filter out sequences with less 
than X SNPs and N individuals

C

A

Standard workflow: train a newly implemented network on
 existing simulations

describes a previously
simulated training set

- Try new architecture
- Update hyperparameters

output data and results in different self-contained folder named run_xxx

Standard workflow: reuse a trained network on one's dataset

Contains optimized weight,
and all config parameters
used for training.
Contains means and std to unstandardize prediction

Example of a network plugin

simulation:
inherit: model_simulation_config.yml

learned_params:

network:

optimizer:

event_time:
  type: regression
  log_transform: true
  loss_func: MSE
event_size:
  type: regression
  log_transform: true
  loss_func: MSE  

  name: myNet
    params:
      param1: 3
n_epochs: 5

  name: Adam
    params:
      learning_rate: 0.001
      weight_decay: 0.1
...

...
# the simulation configuration

Example of a 
training 

config file

--plugin local_net.py

F   Regression task G   Classification task

) $

)

$

  
 

1
0

(

) $

Fig. 1. A: dnadna workflow and its corresponding commands. Each step could be done as a standalone: (1) simulation of a large genetic dataset according

to evolutionary scenarios and priors; genetic data type is not enforced and can be boolean (classical SNP data), integer (e.g. genotype data 0/1/2), or

float (e.g. local density of SNPs as in Gower et al. (2021) or summary statistics along the genome as in Xue et al. (2021)) ; (2) preprocessing, mainly to

filter out examples that do not fit minimal requirements and split the rest into train/validation/test sets; (3) training neural networks; (4) predicting on

test or real datasets using optimized neural networks. Note that simulations can be skipped if the user already possesses a labelled dataset. Similarly,

training can be skipped if the user reuses a pretrained network. Here is a subset of options at each step: (1a) generating simulations: name of predefined

scenario to be simulated and its related parameters, such as number of individuals, number of replicates, mutation rate, demographic parameters; (1b)

handling simulations: location on disk and filesystem layout; (2) preprocessing: initial data transformations, filtering values such as minimal number of

sampled individuals or SNPs; (3a) architecture design: network name and related arguments (number of filters, layers, ...); (3b) training: loss functions,

optimization and training hyperparameters (number of epochs, learning rate, batch size, optimizer name, ...); (3c) on-the-fly data transformations

(subsampling, cropping, ...). B and C: illustration of two standard use cases of dnadna. D: extract of a training configuration file in YAML format.

E: view of a plugin python file, that will be passed to dnadna train, where users can implement novel networks based on PyTorch. F: Illustration

of a regression task with a pretrained network. Here we only need to use ’dnadna predict’ since the network is already trained. Dotted lines denote

true known histories, while boxplots indicate the population sizes predicted for 100 independent genomic regions at each time step. The estimates for a

“complete” genome are given by the averaged predicted values. The error corresponds to the relative squared errors averaged over the whole time period.

G: Illustration of a classification task, following Quickstart tutorial 2. The network was trained on a toy dataset (2000 independent population samples

split into training and validation) and tested on 2000 additional samples to discriminate whether the population underwent a decline or an expansion of

its size. The contingency table shows that for this classification task, the accuracy is 85.3% on a test set. See mlgenetics.gitlab.io/dnadna/tutorials.html

for details on both experiments.
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Software

dnadna is a python-based software for population genetics

inference that enables researchers to (1) develop new networks

or re-use existing architectures, (2) train them for a given

task (regression, classification, or a mix of those), and (3)

share them in such a way that users can easily apply these

trained networks to their own dataset. In particular, it already

implements several neural networks that have been tested

for inferring demographic and adaptive histories from genetic

data. Pre-trained networks can be used directly on real and

simulated genetic data for the prediction step. Networks can

also be re-trained on new simulations (e.g. corresponding

to another species or evolutionary model) and/or to solve

other tasks (e.g. classifying introgressed vs non-introgressed

segments or inferring recombination). Finally, any user can

implement new architectures and tasks, while benefiting from

training procedure, test environment, routines that may be

otherwise overlooked (such as proper preprocessing or efficient

data loading), and the possibility to easily share a network to

facilitate re-use and benchmarking.

Figure 1 provides an overview of dnadna steps. It is accessible

without coding knowledge thanks to its YAML configuration

files which provide the user with a variety of options at each step

of the process. Because each use-case has its own specificity, we

developed a system which allows users to implement plugins

(e.g. data transformations, simulators, or networks) without

modifying the core of the code.

dnadna is a Python (≥3.7) package with multiple

dependencies, the main one being the open source machine

learning library PyTorch. It has a command line interface and

an API (mlgenetics.gitlab.io/dnadna/api.html). It is highly

flexible thanks to a structured configuration file system based

on YAML and JSON Schema. dnadna is dual-licensed under

the GNU Lesser General Public License (LGPLv3+) and

the compatible CeCILL-C Free Software License Agreement.

Release 1.0 is available from PyPI at pypi.org/project/dnadna/

and Anaconda at anaconda.org/mlgenetics/dnadna. Docker

images are available at hub.docker.com/u/mlgenetics.

Tutorial examples

We showcase various dnadna use-cases via tutorials that will

continue to expand. It is not required to have coding knowledge

to perform similar tasks. A first tutorial walks the user through

the complete process from configuring and generating simulated

genetic data, to running data pre-processing, and training a

convolutional network to solve a regression task (here predicting

the parameters of a two-step population size history). A second

tutorial solves a classification task instead (Figure 1G). A

third tutorial helps users who already have simulated data, to

familiarize themselves with dnadna and train a SPIDNA network

on a provided dataset. Finally, we provide tutorials in the form

of jupyter notebooks (mlgenetics.gitlab.io/dnadna/tutorials.

html and Figure 1F).
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