
HAL Id: hal-03352910
https://hal.science/hal-03352910v4

Submitted on 5 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

dnadna: a deep learning framework for population
genetics inference

Théophile Sanchez, Erik Madison Bray, Pierre Jobic, Jérémy Guez,
Anne-Catherine Letournel, Guillaume Charpiat, Jean Cury, Flora Jay

To cite this version:
Théophile Sanchez, Erik Madison Bray, Pierre Jobic, Jérémy Guez, Anne-Catherine Letournel, et al..
dnadna: a deep learning framework for population genetics inference. Bioinformatics, 2023, 39 (1),
pp.btac765. �10.1093/bioinformatics/btac765�. �hal-03352910v4�

https://hal.science/hal-03352910v4
https://hal.archives-ouvertes.fr

Journal Title Here, 2022, pp. 1–3

doi: DOI HERE

Advance Access Publication Date: Day Month Year

Paper

PAPER

dnadna: a deep learning framework for population
genetics inference

Théophile Sanchez,1,+ Erik Madison Bray,1,+ Pierre Jobic,1,2 Jérémy Guez,1,3

Anne-Catherine Letournel,1 Guillaume Charpiat,1 Jean Cury1,4,o,∗ and Flora Jay1,o,∗

1Université Paris-Saclay, CNRS UMR 9015, INRIA, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400, Orsay, France, 2ENS

Paris-Saclay France, 3UMR7206 Eco-Anthropologie, Muséum National d’Histoire Naturelle, CNRS, Université de Paris, Paris, France,
4SEED, U1284, INSERM, Université de Paris, Paris, France, +These first authors contributed and oThese last authors contributed equally
∗Corresponding authors. flora.jay@lri.fr jean.cury@normalesup.org

FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

Motivation: We present dnadna, a flexible python-based software for deep learning inference in population genetics. It is
task-agnostic and aims at facilitating the development, reproducibility, dissemination, and reusability of neural networks
designed for population genetic data.
Results: dnadna defines multiple user-friendly workflows. First, users can implement new architectures and tasks, while
benefiting from dnadna utility functions, training procedure and test environment, which saves time and decreases the
likelihood of bugs. Second, the implemented networks can be re-optimized based on user-specified training sets and/or
tasks. Newly implemented architectures and pretrained networks are easily shareable with the community for further
benchmarking or other applications. Finally, users can apply pretrained networks in order to predict evolutionary history
from alternative real or simulated genetic datasets, without requiring extensive knowledge in deep learning or coding in
general.
dnadna comes with a peer-reviewed, exchangeable neural network, allowing demographic inference from SNP data, that
can be used directly or retrained to solve other tasks. Toy networks are also available to ease the exploration of the
software, and we expect that the range of available architectures will keep expanding thanks to community contributions.
Availability and Implementation: dnadna is a Python (≥3.7) package, its repository is available at gitlab.com/

mlgenetics/dnadna and its associated documentation at mlgenetics.gitlab.io/dnadna/.
Contact and Supplementary Information: flora.jay@lri.fr and jean.cury@normalesup.org

Introduction

In recent years, deep learning has been applied to biology

with the hope of facilitating complex data analyses and

information discovery, and methods are now flourishing in

population genetics (Borowiec et al., 2022). As reviewed by

Sanchez et al. (2020), we distinguish two families: those

processing many summary statistics, with fully connected

or convolutional networks and those based on ’raw’ genetic

data leveraging deep architectures to automatically construct

informative features (e.g. Chan et al., 2018; Flagel et al., 2019;

Montserrat et al., 2019; Torada et al., 2019; Adrion et al.,

2020b; Battey et al., 2020; Sanchez et al., 2020; Battey et al.,

2021; Deelder et al., 2021; Fonseca et al., 2021; Gower et al.,

2021; Isildak et al., 2021; Wang et al., 2021; Yelmen et al.,

2021; Burger et al., 2022; Meisner and Albrechtsen, 2022; Perez

et al., 2022; Qin et al., 2022). Previous studies have made

their implementations available at least for reproducibility

and sometimes with a specific effort for re-usability. Even

so, each of them focuses on a specific network for a specific

task. Adapting them requires careful understanding of the

code and its direct modification since many options are hard-

coded. This is not only error-prone, but also leads to a rapid

code divergence between parallel projects, accompanied by

complex maintenance. The community demands flexible and

rigorous tools as demonstrated by stdpopsim, a library for

population genetic simulations which allows contributions from

many researchers (Adrion et al., 2020a). In genomics a suite of

tools has been developed to facilitate deep learning applications

(e.g. Kopp et al., 2020; Zhang et al., 2021; Routhier et al.,

2020). However, none is able to handle population genetic

datasets and tasks. For these reasons we developed dnadna,

Deep Neural Architectures for DNA, a task-agnostic software

(in the context of population genetics) that aims at facilitating

applications, development, distribution and exchanges around

neural networks in the field.

1

© The Author(s) 2022. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac765/6851140 by guest on 05 D

ecem
ber 2022

email:flora.jay@lri.fr
email:jean.cury@normalesup.org
gitlab.com/mlgenetics/dnadna
gitlab.com/mlgenetics/dnadna
mlgenetics.gitlab.io/dnadna/
email:flora.jay@lri.fr
email:jean.cury@normalesup.org

2 Sanchez et al.

D

from dnadna import nets
from torch.nn.functional import relu

class myNet(nets.Network):

super().__init__()
self.param1 = param1

(x):

Only change
compared to
using only
pytorch

def __init__(param1):

def forward
...
...

E

Simulations

Train

Validation

Test

Preprocessing Training

Ne

Time

Prediction

00010101
10010010
01001101

Genetic Data

Filter out

plugin plugin

Ne

Time

msprime, SLiM, ... SNP, TreeSequence, ... pyTorch regression
classification

dnadna simulation dnadna preprocess dnadna train dnadna predict

1/ dnadna preprocess Demo_preprocessing_config.yml
--dataset-config=Demo_dataset_config.yml

3/ dnadna predict run_xxx/Demo_run_xxx_best_net.pth Testset/*/*npz

2/ dnadna train Demo_training_config.yml --plugin local_net.py

B

1/ dnadna predict trained_net.pth myData/*npz --prepocessing

Apply same prepocessing
e.g. filter out sequences with less
than X SNPs and N individuals

C

A

Standard workflow: train a newly implemented network on
 existing simulations

describes a previously
simulated training set

- Try new architecture
- Update hyperparameters

output data and results in different self-contained folder named run_xxx

Standard workflow: reuse a trained network on one's dataset

Contains optimized weight,
and all config parameters
used for training.
Contains means and std to unstandardize prediction

Example of a network plugin

simulation:
inherit: model_simulation_config.yml

learned_params:

network:

optimizer:

event_time:
 type: regression
 log_transform: true
 loss_func: MSE
event_size:
 type: regression
 log_transform: true
 loss_func: MSE

 name: myNet
 params:
 param1: 3
n_epochs: 5

 name: Adam
 params:
 learning_rate: 0.001
 weight_decay: 0.1
...

...
the simulation configuration

Example of a
training

config file

--plugin local_net.py

F Regression task G Classification task

) $

)

$

1
0

(

) $

Fig. 1. A: dnadna workflow and its corresponding commands. Each step could be done as a standalone: (1) simulation of a large genetic dataset according

to evolutionary scenarios and priors; genetic data type is not enforced and can be boolean (classical SNP data), integer (e.g. genotype data 0/1/2), or

float (e.g. local density of SNPs as in Gower et al. (2021) or summary statistics along the genome as in Xue et al. (2021)) ; (2) preprocessing, mainly to

filter out examples that do not fit minimal requirements and split the rest into train/validation/test sets; (3) training neural networks; (4) predicting on

test or real datasets using optimized neural networks. Note that simulations can be skipped if the user already possesses a labelled dataset. Similarly,

training can be skipped if the user reuses a pretrained network. Here is a subset of options at each step: (1a) generating simulations: name of predefined

scenario to be simulated and its related parameters, such as number of individuals, number of replicates, mutation rate, demographic parameters; (1b)

handling simulations: location on disk and filesystem layout; (2) preprocessing: initial data transformations, filtering values such as minimal number of

sampled individuals or SNPs; (3a) architecture design: network name and related arguments (number of filters, layers, ...); (3b) training: loss functions,

optimization and training hyperparameters (number of epochs, learning rate, batch size, optimizer name, ...); (3c) on-the-fly data transformations

(subsampling, cropping, ...). B and C: illustration of two standard use cases of dnadna. D: extract of a training configuration file in YAML format.

E: view of a plugin python file, that will be passed to dnadna train, where users can implement novel networks based on PyTorch. F: Illustration

of a regression task with a pretrained network. Here we only need to use ’dnadna predict’ since the network is already trained. Dotted lines denote

true known histories, while boxplots indicate the population sizes predicted for 100 independent genomic regions at each time step. The estimates for a

“complete” genome are given by the averaged predicted values. The error corresponds to the relative squared errors averaged over the whole time period.

G: Illustration of a classification task, following Quickstart tutorial 2. The network was trained on a toy dataset (2000 independent population samples

split into training and validation) and tested on 2000 additional samples to discriminate whether the population underwent a decline or an expansion of

its size. The contingency table shows that for this classification task, the accuracy is 85.3% on a test set. See mlgenetics.gitlab.io/dnadna/tutorials.html

for details on both experiments.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac765/6851140 by guest on 05 D

ecem
ber 2022

mlgenetics.gitlab.io/dnadna/tutorials.html

dnadna 3

Software

dnadna is a python-based software for population genetics

inference that enables researchers to (1) develop new networks

or re-use existing architectures, (2) train them for a given

task (regression, classification, or a mix of those), and (3)

share them in such a way that users can easily apply these

trained networks to their own dataset. In particular, it already

implements several neural networks that have been tested

for inferring demographic and adaptive histories from genetic

data. Pre-trained networks can be used directly on real and

simulated genetic data for the prediction step. Networks can

also be re-trained on new simulations (e.g. corresponding

to another species or evolutionary model) and/or to solve

other tasks (e.g. classifying introgressed vs non-introgressed

segments or inferring recombination). Finally, any user can

implement new architectures and tasks, while benefiting from

training procedure, test environment, routines that may be

otherwise overlooked (such as proper preprocessing or efficient

data loading), and the possibility to easily share a network to

facilitate re-use and benchmarking.

Figure 1 provides an overview of dnadna steps. It is accessible

without coding knowledge thanks to its YAML configuration

files which provide the user with a variety of options at each step

of the process. Because each use-case has its own specificity, we

developed a system which allows users to implement plugins

(e.g. data transformations, simulators, or networks) without

modifying the core of the code.

dnadna is a Python (≥3.7) package with multiple

dependencies, the main one being the open source machine

learning library PyTorch. It has a command line interface and

an API (mlgenetics.gitlab.io/dnadna/api.html). It is highly

flexible thanks to a structured configuration file system based

on YAML and JSON Schema. dnadna is dual-licensed under

the GNU Lesser General Public License (LGPLv3+) and

the compatible CeCILL-C Free Software License Agreement.

Release 1.0 is available from PyPI at pypi.org/project/dnadna/

and Anaconda at anaconda.org/mlgenetics/dnadna. Docker

images are available at hub.docker.com/u/mlgenetics.

Tutorial examples

We showcase various dnadna use-cases via tutorials that will

continue to expand. It is not required to have coding knowledge

to perform similar tasks. A first tutorial walks the user through

the complete process from configuring and generating simulated

genetic data, to running data pre-processing, and training a

convolutional network to solve a regression task (here predicting

the parameters of a two-step population size history). A second

tutorial solves a classification task instead (Figure 1G). A

third tutorial helps users who already have simulated data, to

familiarize themselves with dnadna and train a SPIDNA network

on a provided dataset. Finally, we provide tutorials in the form

of jupyter notebooks (mlgenetics.gitlab.io/dnadna/tutorials.

html and Figure 1F).

Acknowledgements

TAU and Kepler GPU platforms. DIM One Health 2017

RPH17094JJP, Human Frontier Science Project RGY0075/2019,

Paris-Saclay CDS 2.0 (IRS), CNRS-80Prime TransIA, ANR-20-

CE45-0010-01 RoDAPoG for funding. M Fumagalli and the

participants of the School ”Inference using full genome data” (DFG

SPP1819) for beta-testing. S Ribeiro for her comments.

References

Adrion, J. R. et al. (2020a). A community-maintained standard

library of population genetic models. eLife, 9, e54967.

Adrion, J. R. et al. (2020b). Predicting the Landscape of

Recombination Using Deep Learning. Molecular Biology and

Evolution, 37(6), 1790–1808.

Battey, C. et al. (2020). Predicting geographic location from genetic

variation with deep neural networks. eLife, 9, e54507.

Battey, C. J. et al. (2021). Visualizing population structure with

variational autoencoders. G3 , 11(1), 1–11.

Borowiec, M. L. et al. (2022). Deep learning as a tool for ecology and

evolution. Methods in Ecology and Evolution, 13(8), 1640–1660.

Burger, K. et al. (2022). Neural networks for self-adjusting mutation

rate estimation when the recombination rate is unknown. PLOS

Computational Biology, 18, e1010407.

Chan, J. et al. (2018). A Likelihood-Free Inference Framework for

Population Genetic Data using Exchangeable Neural Networks. In

Advances in Neural Information Processing Systems, volume 31.

Deelder, W. et al. (2021). Using deep learning to identify recent

positive selection in malaria parasite sequence data. Malaria

Journal, 20(1), 270.

Flagel, L. et al. (2019). The Unreasonable Effectiveness of

Convolutional Neural Networks in Population Genetic Inference.

Molecular Biology and Evolution, 36(2), 220–238.

Fonseca, E. M. et al. (2021). Phylogeographic model selection using

convolutional neural networks. Molecular Ecology Resources,

21(8), 2661–2675.

Gower, G. et al. (2021). Detecting adaptive introgression in human

evolution using convolutional neural networks. eLife, 10, e64669.

Isildak, U. et al. (2021). Distinguishing between recent balancing

selection and incomplete sweep using deep neural networks.

Molecular Ecology Resources, 21(8), 2706–2718.

Kopp, W. et al. (2020). Deep learning for genomics using Janggu.

Nature Communications, 11(1), 3488.

Meisner, J. and Albrechtsen, A. (2022). Haplotype and population

structure inference using neural networks in whole-genome

sequencing data. Genome Research, 32(8), 1542–1552.

Montserrat, D. M. et al. (2019). Class-Conditional VAE-GAN for

Local-Ancestry Simulation. arXiv:1911.13220 .

Perez, M. F. et al. (2022). Coalescent-based species delimitation

meets deep learning: Insights from a highly fragmented cactus

system. Molecular Ecology Resources, 22(3), 1016–1028.

Qin, X. et al. (2022). Deciphering signatures of natural selection

via deep learning. Briefings in Bioinformatics, 23(5), bbac354.

Routhier, E. et al. (2020). Keras dna: A Wrapper For

Fast Implementation Of Deep Learning Models In Genomics.

Bioinformatics, 37(11), 1593–1594.

Sanchez, T. et al. (2020). Deep learning for population size history

inference: Design, comparison and combination with approximate

Bayesian computation. Molecular Ecology Resources, 21(8),

2645–2660.

Torada, L. et al. (2019). ImaGene: a convolutional neural

network to quantify natural selection from genomic data. BMC

Bioinformatics, 20(S9), 337.

Wang, Z. et al. (2021). Automatic inference of demographic

parameters using generative adversarial networks. Molecular

Ecology Resources, 21(8).

Xue, A. T. et al. (2021). Discovery of Ongoing Selective Sweeps

within Anopheles Mosquito Populations Using Deep Learning.

Molecular Biology and Evolution, 38(3), 1168–1183.

Yelmen, B. et al. (2021). Creating artificial human genomes using

generative neural networks. PLOS Genetics, 17(2), e1009303.

Zhang, Z. et al. (2021). An automated framework for efficiently

designing deep convolutional neural networks in genomics. Nature

Machine Intelligence, 3(5), 392–400.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac765/6851140 by guest on 05 D

ecem
ber 2022

mlgenetics.gitlab.io/dnadna/api.html
pypi.org/project/dnadna/
anaconda.org/mlgenetics/dnadna
hub.docker.com/u/mlgenetics
mlgenetics.gitlab.io/dnadna/tutorials.html
mlgenetics.gitlab.io/dnadna/tutorials.html

	Introduction
	Software
	Tutorial examples

