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ABSTRACT

We present dnadna, a flexible python-based software for deep learning inference in population
genetics. It is task-agnostic and aims at facilitating the development, reproducibility, dissemination,
and reusability of neural networks designed for population genetic data.
dnadna defines multiple user-friendly workflows. First, users can implement new architectures
and tasks, while benefiting from dnadna utility functions, training procedure and test environment,
which saves time and decreases the likelihood of bugs. Second, the implemented networks can be
re-optimized based on user-specified training sets and/or tasks. Newly implemented architectures
and pretrained networks are easily shareable with the community for further benchmarking or other
applications. Finally, users can apply pretrained networks in order to predict evolutionary history
from alternative real or simulated genetic datasets, without requiring extensive knowledge in deep
learning or coding in general.
dnadna comes with a peer-reviewed, exchangeable neural network, allowing demographic inference
from SNP data, that can be used directly or retrained to solve other tasks. Toy networks are also
available to ease the exploration of the software, and we expect that the range of available architectures
will keep expanding thanks to community contributions.
Availability: dnadna repository is available at gitlab.com/mlgenetics/dnadna and its associ-
ated documentation at mlgenetics.gitlab.io/dnadna/.
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1 Introduction

In the past decade, many deep learning methods have been implemented with the hope of facilitating complex data
analyses and information discovery in various applied fields. In the context of biological research, they have been
increasingly used to derive novel insights from high-dimensional biological data (Angermueller et al., 2016). Population
genetics did not escape this trend and deep learning based approaches are now flourishing. As reviewed by Sanchez
et al. (2020), we distinguish two families of deep learning approaches for population genetic inference: those processing
many summary statistics, with either fully connected or convolutional deep neural networks (e.g. Sheehan and Song,
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2016; Mondal et al., 2019; Xue et al., 2021; Villanea and Schraiber, 2019; Montinaro et al., 2021) and those based on
’raw’ genetic data.

The latter, which are the main targets of dnadna, leverage deep neural networks to automatically construct informative
features and bypass handcrafted summary statistics. Since 2008, a wide range of networks (fully-connected, convolu-
tional, exchangeable convolutional, recurrent, adversarial, restricted Boltzmann machines, variational autoencoder)
have been applied to multiple population genetic tasks, namely the inference of recombination or mutation rates (Chan
et al., 2018; Adrion et al., 2020b; Burger et al., 2022), various types of selection (Flagel et al., 2019; Deelder et al.,
2021; Torada et al., 2019; Gower et al., 2021; Isildak et al., 2021; Qin et al., 2022), species delimitation (Derkarabetian
et al., 2019; Perez et al., 2022), local or global introgression and ancestry (Flagel et al., 2019; Montserrat et al., 2020;
Karim et al., 2020; Wang et al., 2021; Fonseca et al., 2021; Meisner and Albrechtsen, 2022), past effective population
sizes (Sanchez et al., 2020; Wang et al., 2021), geographic location (Battey et al., 2020) and the visualization and/or
generation of individual genomes (Yelmen et al., 2021; Battey et al., 2021; Montserrat et al., 2019; Chen et al., 2020),
to name a few.

Previous studies have made their implementations available at least for reproducibility and sometimes with a specific
effort for re-usability. Even so, each of them focuses on a specific network for a specific task. These implementations
can usually be adapted to newly simulated datasets, and some hyperparameters can be modified. However, this requires
careful reading and understanding of the code, and its direct modification since many options are hard-coded. This
is not only error-prone, but also leads to a very rapid divergence of code between parallel projects, accompanied by
complex maintenance. We know the importance of having flexible and rigorous tools for the community, and this was
recently demonstrated by the emergence of stdpopsim, a standardized library for population genetic simulations that
provides thoroughly checked demographic scenarios, corresponding to previously inferred species histories, and which
allows contributions from many researchers (Adrion et al., 2020a). In genomics a suite of tools, including Janggu
(Kopp et al., 2020), AMBER (Zhang et al., 2021), pysster (Budach and Marsico, 2018), Selene (Chen et al., 2019),
keras_dna (Routhier et al., 2020), Kipoi (Avsec et al., 2019)), has been developed to facilitate one or several classical
steps of deep learning pipelines (data formatting, network optimization, etc). However, none of them is able to handle
population genetic datasets and tasks, as they focus instead on genomic tasks applied to single sequences, such as the
prediction of transcription factor binding sites, histone modifications, or others (Routhier and Mozziconacci, 2022).

For these reasons we developed dnadna, Deep Neural Architectures for DNA, a comprehensive tool for population
genetic inference. It is a task-agnostic software (in the context of population genetics) that aims at facilitating
applications, development, distribution and exchanges around neural networks in the field. dnadna notably enables
researchers to (1) develop new networks or re-use existing architectures, (2) train them for a given task and (3) share
them in such a way that users can easily apply these trained networks to their own dataset.

2 Software

dnadna is a python-based software currently based on PyTorch. It implements the two main supervised machine
learning tasks used for population genetic inference: regression and classification, and any tasks that are a mix of
these. In particular, it already implements several neural networks that have been tested for inferring demographic and
adaptive histories from genetic data. Pre-trained networks can be used directly on real and simulated genetic data for
the prediction step. Implemented networks can also be retrained on new simulations (e.g. corresponding to another
species or another evolutionary models) and/or to solve other tasks (e.g. classifying introgressed vs non-introgressed
segments or inferring recombination). Finally, any user can implement new architectures and tasks, while benefiting
from training procedure, test environment, routines that may be otherwise overlooked (such as proper preprocessing or
efficient data loading), and the possibility to easily share a network to facilitate re-use and benchmarking.

Figure 1 provides an overview of dnadna steps, all of which are independent: (1) simulating, (2) preprocessing, (3)
training, (4) predicting on test or real datasets. Note that the simulation step can be skipped if the user already possess a
labelled dataset. Similarly, training can be skipped if the user reuses a pretrained network.

dnadna is accessible without coding knowledge thanks to its YAML configuration files which provide the user with a
variety of options at each step of the process. We highlight here a few of the options for: (1a) generating simulations:
name of predefined scenario to be simulated and its related parameters, such as number of individuals, number of
replicates, mutation rate, demographic parameters; (1b) handling simulations: location on disk and filesystem layout;
(2) preprocessing: initial data transformations, filtering values such as minimal number of sampled individuals or
SNPs; (3a) architecture design: network name and related arguments (number of filters, layers, ...); (3b) training: loss
functions, optimization and training hyperparameters (number of epochs, learning rate, batch size, optimizer name, ...);
(3c) on-the-fly data transformations (subsampling, cropping, ...).
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from dnadna import nets
from torch.nn.functional import relu

class myNet(nets.Network):

super().__init__()
self.param1 = param1

(x):

Only change
compared to
using only
pytorch

def __init__(param1):

def forward
...
...

E

Simulations

Train

Validation

Test

Preprocessing Training
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Time

Prediction
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Genetic Data

Filter out

plugin plugin

Ne

Time

msprime, SLiM, ... SNP, TreeSequence, ... pyTorch regression
classification

dnadna simulation dnadna preprocess dnadna train dnadna predict

1/ dnadna preprocess Demo_preprocessing_config.yml
--dataset-config=Demo_dataset_config.yml

3/ dnadna predict run_xxx/Demo_run_xxx_best_net.pth Testset/*/*npz

2/ dnadna train Demo_training_config.yml --plugin local_net.py

B

1/ dnadna predict trained_net.pth myData/*npz --prepocessing

Apply same prepocessing
e.g. filter out sequences with less 
than X SNPs and N individuals

C

A

Standard workflow: train a newly implemented network on
 existing simulations

describes a previously
simulated training set

- Try new architecture
- Update hyperparameters

output data and results in different self-contained folder named run_xxx

Standard workflow: reuse a trained network on one's dataset

Contains optimized weight,
and all config parameters
used for training.
Contains means and std to unstandardize prediction

Example of a network plugin

simulation:
inherit: model_simulation_config.yml

learned_params:

network:

optimizer:

event_time:
  type: regression
  log_transform: true
  loss_func: MSE
event_size:
  type: regression
  log_transform: true
  loss_func: MSE  

  name: myNet
    params:
      param1: 3
n_epochs: 5

  name: Adam
    params:
      learning_rate: 0.001
      weight_decay: 0.1
...

...
# the simulation configuration

Example of a 
training 

config file

--plugin local_net.py

Figure 1: A: dnadna workflow and its corresponding commands. Each step could be done as a standalone. They are
the classical steps required for any simulation-based supervised machine learning algorithm: (1) simulation of a large
genetic dataset according to evolutionary scenarios and priors; genetic data type is not enforced and can be boolean
(classical SNP data), integer (e.g. genotype data 0/1/2), or float (e.g. local density of SNPs as in Gower et al. (2021) or
summary statistics along the genome as in Xue et al. (2021)) ; (2) preprocessing, mainly to filter out examples that do
not fit minimal requirements and split the rest into train/validation/test sets; (3) training neural networks; (4) predicting
on test or real datasets using optimized neural networks. B and C: illustration of two standard use cases of dnadna. D:
extract of a training configuration file in YAML format. E: view of a plugin python file, that will be passed to dnadna
train, where users can implement novel networks based on PyTorch.
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B) Classification
dnadna predict pretrained_SPIDNA_net.pth data/*/*.npz dnadna train classif_config.yaml

dnadna predict classif_best_net.pth test_set/*npz
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Figure 2: Illustration of two of dnadna’s use cases. A) Regression task with a pretrained network. Here we
only need to use ’dnadna predict’ since the network is already trained. Dotted lines denote true known histories,
while boxplots indicate the population sizes predicted for 100 independent genomic regions at each time step. The
estimates for a “complete” genome are given by the averaged predicted values. The error corresponds to the relative
squared errors averaged over the whole time period. B) Classification task, following the quickstart tutorial 2. The
network was trained on a toy dataset (2000 independent population samples split into training and validation) and
tested on 2000 additional samples to discriminate whether the population underwent a decline or an expansion of
its size. The contingency table shows that for this classification task, the accuracy is 85.3% on a test set. See
https://mlgenetics.gitlab.io/dnadna/tutorials.html for details on both experiments.

Because each use-case has its own specificity, we developed a plugin system which allows users to adapt dnadna. For
instance, users can implement new simulators, new data transformations or new networks, on top of what is already
shipped with dnadna, without modifying the core of the code (see plugin documentation). By default, plugins need to
be shared along with the optimized network, but they could also be merged into the code to benefit from maintenance,
unit tests, and continuous integration to facilitate their adoption.

For the exhaustive and up-to-date list of parameters, options and detailed instruction for each step of the process, the
reader should refer to the online documentation https://mlgenetics.gitlab.io/dnadna/.

3 Tutorial examples

We provide multiple tutorials that will continue to expand. These tutorials aim at showcasing the various use-cases of
dnadna. It is not required to have coding knowledge for the user to perform similar tasks.

A first Quickstart Tutorial walks the user through the complete dnadna process from configuring and generating
simulated genetic data, to running data pre-processing on the simulated dataset, and training a convolutional network to
solve a regression task (here predicting the parameters of a two-step population size history) based on that dataset. A
msprime Simulator Tutorial illustrates how to implement a simulation plugin, here based on msprime (Kelleher et al.,
2016), that can be integrated into dnadna (i.e. callable with dnadna simulation and outputting files in dnadna
format). A second Quickstart tutorial proposes an alternative, where the user solves a classification task instead
(discriminate between population declines and expansions). The accuracy obtained from training a classifier on a
small dataset is approximately 85% and is presented in Figure 2B. A third Quickstart tutorial helps users who already
have simulated data, to familiarize themselves with dnadna. It shows how to train a SPIDNA network on a provided
dataset. Note that users could input non-binary data encoding any type of genetic markers or summary statistics. We
also provide tutorials in the form of jupyter notebooks. A first one presents an alternative to the simulator tutorial:
how few lines can be added into an existing msprime script to save the genetic data directly in the dnadna format. A
second notebook guides the user to reconstruct a piecewise-constant population size history with 21-steps thanks to a
pre-trained network, such as the SPIDNA network optimized by Sanchez et al. (2020). A sample of the predictions are
shown and evaluated in Figure 2.
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4 Implementation and distribution

dnadna is a Python (>=3.7) package with multiple dependencies, the main one being the open source machine learning
library PyTorch. It has a command line interface and an API (https://mlgenetics.gitlab.io/dnadna/api.
html). It is highly flexible thanks to a structured configuration file system based on YAML and JSON Schema.

dnadna is dual-licensed under the GNU Lesser General Public License (LGPLv3+) and the compatible CeCILL-C
Free Software License Agreement (CECILL-C). Release 1.0 is available from PyPI at https://pypi.org/project/
dnadna/ and from Anaconda at https://anaconda.org/mlgenetics/dnadna. Docker images are available at
https://hub.docker.com/u/mlgenetics.

For developers, we recommend cloning the GitLab repository (follow installation instructions). This also enables
running the test suite via pytest -v. These tests are run automatically when contributing to the GitLab project thanks
to the continuous integration pipeline (tests are run on both CPU and GPU).

5 Conclusion

dnadna’s aim is to help researchers to focus on their research project, be it the analysis of population genetic data
or building new population genetic methods, while benefiting from good development practice (testing, continuous
integration, documentation, etc.). Having a common interface, instead of having many parallel projects, will limit
the presence of bugs in the code. We emphasize that dnadna can be used both by users and developers of population
genetic inference methods, and we encourage a culture of user-developers.

With this paper, we release dnadna version 1.0, which is a stable version with all features required to develop, share and
reuse a network, as described above. However, due to the complexity of developing deep learning methods for population
genomics, and to the huge number of (hyper)parameters involved, some tasks or formats may not be implemented yet. We
cannot anticipate all configurations, yet by continuing the development of the plugin system, we hope to cover as many
cases as possible. In the future, we plan to make dnadna framework-agnostic (permitting networks built with TensorFlow
or Keras in addition to PyTorch) thanks to the MMdnn library (https://github.com/Microsoft/MMdnn). Overall
dnadna is a substantial software with lots of ambition. We are eager for the deep learning and population genetics
communities to embrace it, provide feedback and contribute to it.
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