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Abstract: Multispectral photoacoustic imaging is a powerful noninvasive medical imaging technique
that provides access to functional information. In this study, a set of methods is proposed and
validated, with experimental multispectral photoacoustic images used to estimate the concentration
of chromophores. The unmixing techniques used in this paper consist of two steps: (1) automatic
extraction of the reference spectrum of each pure chromophore; and (2) abundance calculation of each
pure chromophore from the estimated reference spectra. The compared strategies bring positivity
and sum-to-one constraints, from the hyperspectral remote sensing field to multispectral photoa-
coustic, to evaluate chromophore concentration. Particularly, the study extracts the endmembers
and compares the algorithms from the hyperspectral remote sensing domain and a dedicated algo-
rithm for segmentation of multispectral photoacoustic data to this end. First, these strategies are
tested with dilution and mixing of chromophores on colored 4% agar phantom data. Then, some
preliminary in vivo experiments are performed. These consist of estimations of the oxygen saturation
rate (sO2) in mouse tumors. This article proposes then a proof-of-concept of the interest to bring
hyperspectral remote sensing algorithms to multispectral photoacoustic imaging for the estimation
of chromophore concentration.

Keywords: photoacoustic imaging; spectral unmixing; blood oxygen concentration evaluation

1. Introduction

Photoacoustic imaging is a hybrid medical imaging technique that provides access to
functional information. Nanosecond laser pulse illumination can provide optical properties
of biological tissues that are related to molecular composition. The transmitted optical
energy is absorbed by the optical absorbers in the tissues, which then undergo thermal
expansion. At each laser pulse, this phenomenon generates ultrasonic waves that can be
detected at the tissue surface by a conventional ultrasound system. The use of several
laser wavelengths provides the multispectral absorption characteristics that can be used to
distinguish the imaged tissues from each other [1,2]. In addition, as the absorption by a
chromophore is linearly related to its concentration, multispectral photoacoustic imaging
can also be used to determine the concentrations of chromophores present in the imaged
region [3,4].
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These two properties, discrimination of tissues and concentration evaluation, are of
major interest, depending on the application at hand. They can be exploited to determine
different concentrations of the same chromophore (e.g., estimation of the concentration of
a contrast agent in the body [5]), or to distinguish one particular chromophore from all of
the other imaged ones without considering its dilution (e.g., determination of the level of
vascularization and calculation of the concentration of oxygenated and deoxygenated blood,
for oxygenation rate evaluation [6,7], cancer tissue evaluation [8], or imaging connectivity
in brain [9]).

In photoacoustic images, each pixel can be interpreted as a mixture of pure chro-
mophores, where the weights represent their average concentrations. The spectra of pure
chromophores are called endmembers, and their weights are the abundance coefficients.
Unmixing techniques for multispectral photoacoustic data are presented in this article,
with the objective being to estimate the concentrations of the chromophores present in
the imaged area. In the field of photoacoustic imaging, several unmixing methods have
already been used to detect chromophores from the body [10] or contrast agents injected
into tissues. For instance, principal component analysis (PCA) and independent compo-
nent analysis were used in Reference [3]. However, the abundance matrices calculated by
these two methods do not allow accurate estimation of concentrations of chromophores.
In particular, these matrices can contain negative values that cannot be interpreted as
concentrations even after scaling. This issue is one of the challenges addressed in this paper.
Indeed, this study highlights experimental results as a proof of concept of the usefulness of
photoacoustic imaging to evaluate chromophore concentration.

The concentration of an endmember should be equal to zero if the chromophore is
absent in the considered pixel, and equal to one if it is a pure pixel. The endmember will
lie in the interval (0, 1) if the pixel is partly composed of the chromophore (i.e., diluted
chromophore, or a mix of chromophores). The abundance matrix must then be subject to
the following constraints: (1) each abundance coefficient must be in the range [0, 1]; and
(2) for a given pixel, the sum of all K abundance coefficients, which correspond to the
K endmembers, must be less than 1 (i.e., diluted chromophore) or equal to 1 (i.e., pure
chromophore, or a mixture of chromophores). These constraints have never been investi-
gated in the field of photoacoustics, while they are usually encountered in remote sensing,
where imaged areas might contain, for example, roads, buildings, rivers, or forests, which
correspond to the chromophores to be unmixed. The abundances are, thus, related to the
local concentrations of the chromophores in the scene. Spectral unmixing is also a widely
explored field for various applications, like food safety [11,12], pharmaceutical process
monitoring [13], and industrial and forensic applications [14,15]. However, unmixing of
remote sensing data is the most closely related area to our multispectral photoacoustic data.
As many efficient algorithms have been devised and analyzed over the last decade, we
focus on this particular field in this study. The main challenge of this paper is then to show
that photoacoustic imaging can benefit from these innovations, principally considering the
constraints presented above, because of the similarities between these two fields. However,
photoacoustic imaging contains less spectral bands than remote sensing and is subject to
spectrally dependent light attenuation which makes the unmixing even more challenging.
Moreover, the methods presented in this study are based on relative comparison between
spectra. Even if PCA is also a relative method, as mentioned before, it does not allow
proper evaluation of concentration, based on authors preliminary experiments. The study
explores, then, other field to adapt unmixing methods that better suit the considered goal.
As all spectra are impacted in the same way by the light absorption and ultrasound at-
tenuation for each wavelength, and these methods allow us to avoid taking into account
these parameters.

2. Unmixing of Photoacoustic Data

A multispectral photoacoustic image consists of a two-dimensional area that is imaged
at L wavelengths. Each pixel xi is characterized by its coordinates si ∈ IN2 and is endowed
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with a spectrum Ai ∈ IRL. The N samples, xi, of the region of interest are expressed
as follows:

xi = [si, Ai] ∈ X, (1)

with i ∈ {1, . . . , N} as the sample index; see Figure 1a. Before any other processing, the
data need to be normalized over the range [0, 255]. This allows the same range of values for
data from different acquisition systems. Two types of pixels are illustrated in Figure 1: pixel
x1 contains only noise, called the background, with low and flat photoacoustic amplitudes
at all wavelengths (Figure 1b, green curve A1), and pixel x2 provides information on the
optical absorbers, with a high photoacoustic signal (Figure 1b, purple curve A2).

Figure 1. Multispectral photoacoustic image. (a) The signals are acquired at several wavelengths.
Two pixels are identified: x1 in green, and x2 in purple. (b) Spectra of the pixels x1 and x2: A1 (in
green) is a background pixel with low and flat photoacoustic amplitudes at all wavelengths, and A2

(in purple) is a pixel with significant photoacoustic amplitudes (a.u., arbitrary units).

2.1. Linear Mixing Model

The acquisition of photoacoustic data over a region of interest at several wavelengths
provides a multispectral (i.e., three-dimensional) image, where each pixel is endowed with
a spectrum. This spectrum is either pure, and is then considered as a single endmember, or
mixed if it is composed of a mixture of endmembers. The linear mixing model (LMM) [16]
considers that each mixed pixel is a convex combination of the spectra of the endmembers.
More formally, this is defined as follows:

Ai =
K
∑

k=1
ukiEk + gi, ∀ i ∈ {1, . . . , N}, (2)

where Ai ∈ IRL is the spectrum at the i-th pixel, L is the number of wavelengths, K is the
number of endmembers, uki is the abundance of the k-th endmember in the i-th pixel, Ek is
the L-dimensional spectrum of the k-th endmember, and gi is a vector of zero-mean white
noise that defines the sensor noise and the error of the model. All of the vectors are column
vectors. Then, U is used for the matrix of abundances with the generic (i, j)-th entry uij. As
abundances are relative contributions, they must be positive and their sum has to be equal
to one: 

uki ≥ 0, ∀ i ∈ {1, . . . , N}, ∀k ∈ {1, . . . , K}
K
∑

k=1
uki = 1, ∀ i ∈ {1, . . . , N}. (3)

The LMM is a simple but effective model that is widely used in remote sensing [16].
For medical applications, the LMM can be a powerful tool for estimation of concentration
of chromophores. In this context, it is assumed that the observed spectra can either
correspond to a fully concentrated chromophore or a diluted chromophore, or to a mixture
of several chromophores. The original LMM with the constraints of Equation (3) does not
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consider dilution. It can, however, be extended to this scenario by relaxing the sum-to-one
constraint, which can be performed by considering a zero endmember with the LMM,
called a shadow endmember.

2.2. Unmixing Strategy

Data unmixing requires inversion of a mixing model that can be either linear or
nonlinear, depending on the hypotheses. The study focus on unsupervised methods to be
robust to the various photoacoustic systems that exist. Unsupervised algorithms have been
devised in remote sensing to extract endmembers and to estimate the abundance matrix.
Unsupervised methods, such as group lasso with unit sum and positivity constraints
(GLUP) [17] and vertex component analysis (VCA) [18], can do both of these simultaneously,
subject to constraints (3). Other unsupervised methods, such as N-FINDR [19], only extract
the endmembers. A supervised unmixing algorithm is then required to calculate the
abundances. The fully constrained least-square algorithm (FCLS) [20] usually provides
satisfactory performance as long as the endmembers are accurately extracted. FCLS can be
used with GLUP, VCA, and N-FINDR [17], or with any other strategy for extraction of the
endmembers. In this study, we use FCLS to estimate the abundance matrices.

In the following, we use GLUP, VCA (that was already used in photoacoustic imaging
in Reference [21]), and N-FINDR to estimate the endmembers in experimental multispectral
photoacoustic data to evaluate the interest of remote sensing methods to process these data.
We compare their performances with the spatio-spectral mean-shift (SSM-S) algorithm [22]
devised by some of the present authors.

3. Method
3.1. Pre-Processing

The pre-processing introduced in this section aims to discriminate pixels of interest
from the background. Among the possible strategies, background pixels can be determined
by thresholding filtered data with a Sobel filter. The Sobel threshold λS can be set as follows:

λS = 2 ∗
√
∇S, (4)

where ∇S is the mean of the Sobel gradient magnitude [23]. For our application, only the
edges detected by the Sobel filter were used to calculate ∇S. Threshold λS was applied to
the sum over all of the wavelengths of the multispectral photoacoustic image, to design
a mask where the background pixels were set to 0. The estimation methods introduced
hereafter were only applied to pixels out of the background.

3.2. Endmember Extraction
3.2.1. GLUP Algorithm

Group lasso with unit sum and positivity constraints assumes that the endmembers
are not known but are present in the form of some pure (unmixed) pixels in the image [17].
Based on this assumption, the LMM (2) can be reformulated as follows:

Ai =
N
∑

j=1
uG ji Aj + gi, ∀ i ∈ {1, . . . , N}, (5)

where uG ji is the abundance of Aj in Ai. On the one hand, if Aj is an endmember, the j-th
row UGj of matrix UG calculated with GLUP should have nonzero entries that represent
the abundance map of Ai. On the other hand, if Aj is a mixed pixel, UGj should have all
of its entries equal to zero. This means that UG should have N − K rows of zero, with the
other K rows equal to the rows of U.

The premise in GLUP is that UG allows the identification of the endmembers in
observation A through its nonzero rows. The resulting unmixing problem requires that UG
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only has a few rows different from zero, in addition to the non-negativity and sum-to-one
constraints. This leads to the following convex optimization problem:

min
UG

(
1
2

N

∑
j=1
‖A− AUG‖2

F + µ
N

∑
j=1
‖UGj‖2

)
(6)

subject to:


uGji ≥ 0, ∀ i, j ∈ {1, . . . , N}
N
∑

j=1
uG ji = 1, ∀ i ∈ {1, . . . , N},

where µ > 0 is a small regularization parameter that is set by the user, and A = [A1, . . . , AN ]
is the matrix of all pixels to unmix. The first term in Eqtuation (6) ensures that the
observations match the model in Equation (5), and the second term is the group lasso
regularizer that induces sparsity by possibly driving several rows of UG to zero [24]. The
minimization problem has constraints to ensure that the abundances obey the positivity and
the sum-to-one constraints. This optimization problem can be solved with a primal-dual
method; see Reference [17] for details.

To conclude, GLUP allows the identification of the endmembers in A by identification
of the nonzero rows in UG. GLUP also provides the estimated abundances that correspond
to the nonzero rows in the estimated matrix UG. In this paper, similarly to Reference [17],
we did not use the abundances estimated by GLUP. For a fair comparison with other
algorithms, we re-estimated the abundances with the FCLS algorithm from the endmember
spectra estimated using GLUP.

3.2.2. VCA Algorithm

Vertex component analysis also assumes the presence of pure pixels in the data [18].
The driving principle of the VCA algorithm is to project the data onto a direction orthog-
onal to the subspace spanned by the endmembers already extracted. The new extracted
endmember is the farthest signal in this projection domain. Considering this endmember,
a new subspace is calculated, and the same procedure is iteratively performed until the
preset number K of endmembers to extract is reached.

The first step of the VCA algorithm consists of determination of the initial subspace. Two
methods are recommended, which depend on the signal-to-noise ratio. If the signal-to-noise
ratio is greater than λV in Equation (7), this first subspace is calculated using the singular
value decomposition algorithm [25]. Otherwise, the subspace considered is constructed using
principle component analysis. The threshold λV is defined in Reference [18] as follows:

λV = 15 + 10 log10(K). (7)

Let us use Sk to denote the subspace available at iteration k. A vector vk orthonormal
to Sk is calculated as follows:

vk =
rk − SkS+

k rk

‖rk − SkS+
k rk‖

, (8)

where rz is a zero-mean random vector, and S+
z is the pseudo inverse of Sk. The observed

spectra A are then projected onto direction vk:

f k = v>k A. (9)

The largest entry of f k in absolute values allows the designation of the spectrum in A to be
considered as a new endmember. This endmember is then added to the set of endmembers
that have already been extracted, to define the subspace Sk+1 that is considered at the next
iteration. The procedure is stopped when the number K of desired endmembers is reached.
They are stored in matrix EV , and the abundance matrix UV is calculated by projecting A
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onto EV . For a fair comparison with other algorithms, we estimated the abundances with
the FCLS algorithm from the endmember spectra EV estimated with VCA.

3.2.3. N-FINDR algorithm

N-FINDR also assumes that a pure pixel for each chromophore to unmix is present
in the dataset [19,26]. The first step is the random generation of a set of K endmembers to
produce the matrix E0 of endmembers that are available at iteration 0. At each iteration k,
the following volume is calculated:

V k =
|det(Ek)|
(K− 1)!

, (10)

with Ek =

[
1 . . . 1

E(1)
k . . . E(K)

k

]
,

where E(p)
k is the p-th endmember in the matrix of endmembers Ek available at the k-th it-

eration. All of the pixels Ai in A take place successively in Ek, where they are successively
substituted to all possible columns p. Volume V k+1 is updated as follows, for instance:

V k+1 =

∣∣∣∣∣det

[
1 . . . 1 . . . 1

E(1)
k . . . Ai . . . E(K)

k

]∣∣∣∣∣
(K− 1)!

. (11)

If the new volume is greater than the previous one, V k and Ek are updated with the new
values. The procedure is stopped when the N pixels of the dataset have been tested. The
resulting endmembers are stored in matrix EN . No abundance coefficients are calculated
with this method, and the FCLS can be used to this end.

3.2.4. SSM-S Algorithm

Spatio-spectral mean-shift is a clustering method that was introduced by Reference [22]
for chromophore discrimination in multispectral photoacoustic images. It is based on a
spatio-spectral regularization, to cluster the pixels that are spatially and spectrally close.

Consider a pixel xi. Its neighbors in spatial dimensions at a radial distance less than
RS are first considered. These pixels xj =

[
sj, Aj

]
have to satisfy the following:

1
RS
‖si − sj‖2 ≤ 1. (12)

Assuming that spectra of the same chromophore are close, we also consider that two spectra
can be from the same chromophore if their distance is less than Rλ; namely,

1
Rλ
‖Ai − Aj‖∞ ≤ 1. (13)

Note that we found it interesting in Equation (13) to consider the infinite norm, to discrimi-
nate more effectively spectra that might differ only in narrow frequency bands.

The SSM-S only applies to pixels that satisfy both constraints of Equations (12) and (13).
It consists of updating their locations and spectra as follows:

x[t+1]
i =

N
∑

j=1
gS(s

[t]
i ; s[t]j ) · gλ(A[t]

i ; A[t]
j ) · x[t]j

N
∑

j=1
gS(s

[t]
i ; s[t]j ) · gλ(A[t]

i ; A[t]
j )

, (14)
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where gS(s
[t]
i ; s[t]j ) = 1 and gλ(A[t]

i ; A[t]
j ) = 1, if Equations (12) and (13) hold, respectively,

and 0 otherwise. This iterative procedure is applied to all of the pixels xi until convergence;
see Reference [22] for details. Unlike the GLUP, VCA, and N-FINDR algorithms, note
that SSM-S uses spatial information in addition to spectral information. SSM-S is studied
here because of this particular capacity which is not often taken into account to process
multispectral photoacoustic data. Updating of Equation (14) leads to clusters of pixels,
with each defined by a centroid. Each centroid can be considered as an endmember and
stored in a matrix, which is denoted by ES. As no abundance coefficients are calculated
with this method, the FCLS can be used to this end.

Before concluding this section, we want to draw attention to the following: that, unlike
the N-FINDR and SSM-S algorithms, GLUP and VCA converge to stationary points that
can vary significantly depending on their initialization.

3.3. Abundances Estimation

The FCLS algorithm is widely used in remote sensing to estimate abundances, based
on endmember knowledge. It considers the constraints of Equation (3) when solving the
following optimization problem:

min
U

(
1
2

N

∑
j=1
‖A−UE‖2

F

)
, (15)

with


uji ≥ 0, ∀ i, j
N
∑

j=1
uji = 1, ∀ i

.

4. Materials
4.1. Acquisition System

A commercial multispectral photoacoustic system (Vevo LAZR; Visualsonics, Fujifilm)
was used for this study; see Figure 2. The optical source of this system is a Nd:YAG pulsed
laser with a pulse duration of 5 ns and a 20 Hz repetition rate, which is coupled to an
optical parametric oscillator to select the transmission wavelengths [27]. The wavelength
can be set from 680 nm to 970 nm. The photoacoustic probe that was used (LZ400) is
composed of 256 elements, which can acquire ultrasound signals in the frequency range
from 18 MHz to 38 MHz. The imaging depth is approximately 1.5 cm and the imaged
region of interest is around 1 cm. The images are reconstructed with a delay-and-sum
algorithm. For every acquisition, the corresponding fluence is saved. For the acquisitions
presented in this study, the fluence is varying of only 2% between the minimal and maximal
fluences. As the variation is low and the proposed methods are based on unsupervised
endmembers extraction with relative comparison between spectra, the images were not
normalized by the fluence.

Figure 2. Commercial multispectral photoacoustic system: Vevo LAZR.
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The data were acquired using the full range of available wavelengths (680 nm, 970 nm)
with 1 nm steps, which required less than 1 min of acquisition time. The time to switch
from one wavelength to the other and to acquire the corresponding image is around
0.2 s. Usually, in multispectral photoacoustic imaging, from 5 to 10 wavelengths are used
because the information collected is then sufficient to discriminate or quantify biological
chromophores with an acceptable processing time. To get closer to this framework, only
eight of the acquired wavelengths were selected to construct our dataset, from 680 nm
to 820 nm, with 20 nm steps. These wavelengths were chosen because the used optical
absorbers (blue and green inks) can be discriminated in this range (see Figure 3).

The algorithms were computed with MATLAB (The MathWorks Inc., Natick, MA,
USA) on a computer with a 16-GB memory and an Intel Core i7-5500U CPU at 2.40 GHz.

Figure 3. Spectra, measured with a Perkin Elmer Lambda900 spectrometer for the study [28], of the
blue and green inks used to make the phantoms (a.u., arbitrary units).

4.2. Imaged Phantoms

The homemade colored phantoms used to construct the dataset were composed of
three different 4% colored agar parts. The ones on the left side in Figure 4a were prepared
using only blue ink (400 g water, 16 g agar, 380 µL ink), and the ones on the right with only
green ink (400 g water, 16 g agar, 950 µL ink). Both of these are considered as relative ink
concentrations equal to 1 (i.e., pure chromophores). The blue and green ink quantities were
not equal because both of these inks do not show the same maximum photoacoustic signal
amplitude. Based on a previous study [28], the ink quantities were chosen to obtain the
same maximum photoacoustic signal amplitude, on the range from 400 nm to 1200 nm, for
both of these pure chromophores. The used blue and green inks spectra, measured with a
Perkin Elmer Lambda900 spectrometer for the study [28], are shown in Figure 3, on the
wavelength range of interest for the present study.

In Figure 4b, the sample of shown spectra seems to highlight that the fully concentrated
blue and green parts do not exhibit the same, even approximately, spectral intensities for
both phantoms. However, this is only due to the spectra shown here. Nevertheless, the
Figure shows that the shape of blue or green spectra are quite similar which is the property
used by the proposed methods in this study.

4.2.1. Chromophore Dilution

The central part of the left phantom in Figure 4a is composed of a 0.53 dilution of the
blue ink relative to the pure concentration indicated above. Therefore, here 100 g water,
4 g agar, and 50 µL blue ink were used. This phantom is referred to as B-Bdil-G(Vevo) in
the following.

4.2.2. Mixing of the Chromophores

The central part of the second phantom, shown in Figure 4a-right, is a mix of the
blue and green inks (50 g water, 2 g agar, 20 µL blue ink, 80 µL green ink). This means
that the mix corresponds to a blue concentration of 0.42 and a green concentration of 0.67,
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relative to the pure concentrations indicated above. This phantom will be referred to as
B-mix-G(Vevo) in the following.

Figure 4. (a) Left: Blue/0.53 blue dilution/green colored phantom. Right: Blue/0.42 blue & 0.67 green
mix/green colored phantom. (b) Spectra of each region of interest. Each spectrum corresponds to a
specific pixel. These pixels are highlighted on the images (c) at λ = 680 nm. (a.u., arbitrary units) (c) Left:
The B-Bdil-G(Vevo) dataset (mean value over all 8 wavelengths: 12.05 a.u.). Right: The B-mix-G(Vevo)
dataset (mean value over all 8 wavelengths: 26.72 a.u.). The image axes are in millimeters.

4.3. Performance Evaluation on Phantoms

The performances of the GLUP/FCLS, VCA/FCLS, N-FINDR/FCLS, and SSM-S/FCLS
strategies were evaluated on the phantoms described in Section 4.2. This means that FCLS
was used to estimate the concentrations of the endmembers extracted beforehand with the
other methods presented in Section 3.2. The resulting abundance maps were compared to
the ground truth.

For each abundance map of each endmember, a mean concentration was calculated for
each part of the imaged region, as illustrated in Figure 5. The illustrative phantom consid-
ered in Figure 5 is composed of a pure blue chromophore, a dilution of this chromophore,
and a pure green chromophore (from left to right). Considering the abundances related to
the blue endmember, three average values were calculated: one for each part, as circled by
the yellow dotted line in Figure 5. As we assume that the pure blue chromophore, which
corresponds to the endmember of interest, is present in the image, the mean values were
normalized by their maximum, as circled by the orange dashed line in Figure 5. Where
the data would be perfectly unmixed, the maximum value should correspond to the pure
blue part of the phantom (i.e., the left part), which is then set to 1 after normalization.
The other normalized values should correspond to the relative concentrations of the pure
chromophore, i.e., the relative concentration of blue in the illustrative example in Figure 5.

This calculation was performed to estimate the abundance maps provided by the
different unmixing strategies. Indeed, by considering the light absorption and the diffusion
in tissue, each pixel of similar region exhibit similar spectra shape tendency (see Figure 4b).
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For each pixel, a particular concentration is then evaluated. The normalized mean values
were compared with the ground truth to evaluate the performances of the algorithms on
each whole part.

Figure 5. Performance validation procedure on an illustrative synthetic phantom. The validation
here is for the estimation of the blue concentration.

4.4. In Vivo Data Acquisitions

Images were acquired with the Vevo LAZR system. For imaging the mice tumors, the
BALBc MMTV-Neu transgenic mouse model was used, which expresses the Her-2/neu
V664E oncogene [29]. This model develops spontaneous mammary tumors that are visible
with the photoacoustic system after 17 weeks (between 5 mm3 and 10 mm3 in size). Palpable
tumors are detected around 20 weeks old; see Figure 6, where the white arrows indicate
some of the tumors, and the green square denote the imaged one. A 20-week-old mouse
was used for the imaging, where the region of interest was shaved the day before using
a commercial hair remover cream (Veet, Cream hair remover; Reckitt Benckiser, UK) to
avoid any imaging noise coming from the mouse hair. The mouse was anesthetized
with a mix of 3.5% isoflurane and 96.5% oxygen before the photoacoustic acquisitions,
using an anesthesia mask. During the imaging procedure, the mouse was maintained
asleep through inhalation of a mix that contained 1.5% isoflurane (Figure 6a), to minimize
movements during the acquisitions at the different wavelengths. Heartbeat and breathing
were monitored by several devices connected to the mouse paws (Figure 6b, red arrows) and
the anesthesia mask, respectively. This allowed monitoring of the health of the mouse and
the acquisition of images at the same position. In this way, heartbeat and breathing motions
were avoided as much as possible. The mice were maintained in the specific pathogen free
animal facility at the Cancer Research Center of Lyon, at Center Léon Bérard. All of the
mice experiments were performed in accordance with the animal care guidelines of the
European Union and were validated by the local Animal Ethics Evaluation Committee and
the French Ministry of Higher Education and Research (C2EA-15 and 02296.02).

The dataset used to test this strategy was composed of 15 images that were acquired
from 680 nm to 960 nm, in 20 nm steps. The results were compared to the Vevo LAZR sO2
map. To this end, acquisitions on the same tumor were also performed using the Vevo
LAZR Oxy-Hemo mode.
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Figure 6. Mouse with breast tumors in the Vevo LAZR system. White and red arrows indicated the
tumors and heartbeat detectors, respectively. In (a) the anesthesia mask can be seen (white block). The
green square in (b) highlights the imaged region-of-interest.

4.5. sO2 Calculation with Vevo LAZR Oxy-Hemo Mode

The Oxy-Hemo mode acquires two photoacoustic images, at 750 nm and 850 nm.
With both of these images, the concentrations of deoxygenated hemoglobin (Hb) and
oxygenated hemoglobin (HbO2) were measured, which are expressed as [Hb] and [HbO2],
respectively [30]. The oxygen saturation was then calculated as follows:

sO2 =
[HbO2]

[Hb] + [HbO2]
. (16)

This ratio is classically used in biomedical applications to provide oxygenation in-
formation [31,32]. Both of the concentration maps were saved, as well as the Vevo LAZR
sO2 displayed map, for further comparisons. The sO2 acquisition is conducted just after
the acquisitions on the whole range of wavelength, allowing then a fair comparison of the
estimated concentrations.

5. Results

As indicated in Section 3.2, the N-FINDR and SSM-S algorithms converge to a single
set of estimated endmembers, regardless of their initialization. On the contrary, the GLUP
and VCA methods can converge to different sets of endmembers, which depend on the
initialization. For the acquisitions with the phantoms, the results presented for GLUP and
VCA are the best ones that were achieved. For the preliminary in vivo results, the sets of
endmembers obtained with the different techniques are presented and discussed.

5.1. Chromophore Dilution

The endmembers estimated with GLUP, VCA, N-FINDR, and SSM-S are presented
in Figure 7a–d, respectively. They allow us to discriminate the pure blue and green chro-
mophores even if they do not exactly fit the reference spectra measured with a spectrometer
(Figure 3). Indeed, as already mentioned, light absorption and diffusion in tissue impact
the pure chromophore spectrum. The shape tendency is, however, kept. The shadow
endmember is also plotted in each panel.

The abundance maps and the estimated mean concentrations are presented in Figure 8,
for both the endmembers. All of these methods localize both of the pure chromophores
well. The green abundance maps clearly highlight the green part, i.e., that on the right.
The SSM-S achieves the best performance, as it leads to small green abundances for both
parts of the blue phantom. Indeed, the mean concentrations are 0.05 and 0.07 for the blue
and the diluted blue parts, respectively. The blue abundance maps are, nevertheless, also
characterized by relatively large values in the green part. The SSM-S blue abundance
map shows the smallest value of 0.26, and estimates a dilution value of 0.51, as compared
to 0.53 for the ground truth. In conclusion, for this dataset, SSM-S/FCLS achieves the
best performance.
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Figure 7. Endmembers estimated with (a) GLUP, (b) VCA, (c) N-FINDR, and (d) SSM-S (a.u.,
arbitrary units).

Figure 8. Unmixing method results for the B-Bdil-G(Vevo) dataset with the algorithms indicated,
combined with FCLS. Left columns: green endmember and unmixing results summary. Right
columns: blue endmember and unmixing results summary. The values in black are the average
normalized values as explain in Figure 5. The ground truth is shown in both cases, in the first row.
The image axes are in millimeters.

5.2. Mixing of the Chromophores

The unmixing methods were also tested with mixed chromophores using the
B-mix-G(Vevo) dataset. The endmembers extracted by the different methods are pre-
sented in Figure 9. The extracted spectra differ from one strategy to another, but all blue
spectra have similar evolutions, which matches the ground truth multispectral characteris-
tics, in term of curve evolution, of this blue ink (Figure 3). The shadow endmembers are
also plotted.

The abundance maps and the estimated mean concentrations are presented in Figure 10,
for both of the endmembers. The blue abundance maps calculated with the endmembers
extracted by GLUP and VCA localize the pure blue chromophore part (left) well, while the
pure green part is more difficult to delimit. Indeed, the abundance values are similar in
the central and right parts. For the N-FINDR and SSM-S blue abundance maps, the three
parts are more visible. On the SSM-S abundance maps, the green part is characterized
by a low concentration of 0.10, which is close to the ground truth value. For the green
abundance maps, all of the methods allow discrimination of the blue part (left) and the
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mixed part (center). The VCA abundance map does not allow for clear discrimination of
the mixed (central) and green (right) parts, while this is possible with the other methods.

Figure 9. Endmembers extracted with (a) GLUP, (b) VCA, (c) N-FINDR, and (d) SSM-S (a.u., arbi-
trary units).

Figure 10. Unmixing method results for the B-mix-G(Vevo) dataset with the algorithms indicated,
combined with FCLS. Left columns: green endmember and unmixing results summary. Right
columns: blue endmember and unmixing results summary. The values in black are the average
normalized values as explain in Figure 5. The ground truth is shown in both cases, in the first row.
The image axes are in millimeters.

For the estimated mean concentrations in Figure 10, the first result to be noted is
the blue concentration of the mixed chromophore estimated using VCA, which is equal
to the ground truth of 0.42, as circled by the red dashed line. Nevertheless, the other
concentrations estimated with VCA are larger than the ground truth concentrations: 0.89
for the green in the mixed chromophore instead of 0.67, 0.27 for the blue in the pure green
chromophore instead of 0, and 0.20 for the green in the pure blue chromophore instead of
0. Consider now the performance of the SSM-S/FCLS, as circled with the orange dashed
line in Figure 10. The estimated concentrations in the mix of chromophores are 0.35 for the
blue and 0.73 for the green, instead of 0.42 and 0.67 for the ground truth, respectively. This
corresponds to an error of less than 7%, which is already an interesting result in terms of the
targeting of biological applications. Note that the estimated abundances where the ground
truth concentration equals 0 were estimated at values less than 0.1 by SSM-S, which is a
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satisfying performance compared to the other methods. As a conclusion, for this dataset,
SSM-S/FCLS achieves the best performance.

5.3. Preliminary In Vivo Results

The analyzed strategies were used on biological tissues to calculate the oxygen satura-
tion rate (sO2). This measurement is of great interest for various medical applications, such
as the follow-up of tumors and the evaluation of tissue aging [33].

The pre-processing steps described in Section 3.1 were followed. Then, the endmember
estimation methods were applied to extract two endmembers, which corresponded to the
Hb and HbO2 chromophores (the theoretical Hb and HbO2 spectra are shown Figure 11).
Finally, the abundance maps of both of these endogeneous chromophores were estimated
using the FCLS algorithm. The sO2 at each pixel was determined using the resulting
abundance maps and Equation (16). These results were compared to the one provided by
the Vevo LAZR. Indeed, the Vevo LAZR can provide abundance maps of the Hb and HbO2
chromophores. We used these abundance maps with Equation (16) to calculate the oxygen
saturation rates; see Figure 12. The authors are aware that Vevo LAZR Oxy-Hemo mode is
not the real ground truth. However, this scanner represents a significant reference since it
is typically used for sO2 measurements in photoacoustic imaging.

Figure 11. Theoretical Hb and HbO2 spectra (mean values are: 0.43 and 0.35, respectively).

Figure 12. Oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (Hb) concentration maps
and sO2 map (in %) calculated with the Vevo LAZR concentration maps and Equation (16), from left
to right, respectively. The image axes are in millimeters.

Figure 13, left column, shows the endmember spectra estimated with GLUP, VCA, N-
FINDR, and SSM-S. Recall that the GLUP and VCA algorithms can converge to different sets
of endmembers, depending on their initialization. The GLUP and VCA spectra represented
in Figure 13 are those that then lead to the best sO2 maps compared to the Vevo LAZR
map, which are considered as the relative ground truth. FCLS was used with all of these
endmember spectra, to estimate the abundance maps of Hb and HbO2. The sO2 maps were
then calculated using Equation (16); see Figure 13, center column. With this strategy, it
appears that many pixels have strong sO2 values, when VCA and N-FINDR algorithms
are used. In addition, the endmembers extracted with both these algorithms are really
similar, but not exactly the same, even if it is quite hard to see their differences on Figure 13.
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However, the sO2 maps calculated with this strategy are different, which highlights the
endmembers differences.

To characterize the performances of these methods, the relative deviations between
each estimated sO2 map (see Figure 13, center column) and the Vevo LAZR map calculated
with Equation (16) (see Figure 12, right column) were computed. This relative deviation
defines the absolute difference between the Vevo LAZR sO2 values and each of the esti-
mated sO2 values, for each pixel. This is provided in %, as the sO2 values are also in %. The
relative deviation maps are presented in Figure 13, right column. Note that skin, tumor,
and other biological tissues are present in the imaged area. The mean relative deviation
was first calculated for all of these tissues. However, as the study was focused on the tumor
only, the mean relative deviation was also calculated for the restricted regions delimited by
the green rectangles in Figure 13. These relative deviations for all of these tissues and just
for the tumor are in the black and green characters on the right in Figure 13, respectively.
For both regions, the best estimations were reached with GLUP and SSM-S, which give
similar relative deviations: 24.04% and 15.86% for GLUP, and 24.07% and 15.29% for SSM-S.

Figure 13. Results for (a) GLUP, (b) VCA, (c) N-FINDR, and (d) SSM-S. The extracted endmembers
are shown (left). The mean values of the endmembers are: 0.17, 0.39, 0.41, and 0.61 for Hb (in blue)
and 0.16, 0.24, 0.24, and 0.48 for HbO2 (in red), respectively for GLUP, VCA, N-FINDR, and SSM-S.
The sO2 maps estimated using the FCLS with the extracted endmembers and Equation (16) are
highlighted (center). The relative deviation maps between these sO2 maps and the Vevo LAZR map
in Figure 12 are presented (right). The mean relative deviations for the whole image (black) and
limited to the tumor (green) are given on the far right. The minimal relative deviations are circled in
red. The image axes are in millimeters.

6. Discussion

This study experimentally evaluates the interest of using multispectral photoacoustic
imaging to estimate chromophore concentration. To tackle such objectives, several methods
coming from the remote sensing field have been tested to evaluate their potential performances
in the photoacoustic domain. Principally, the constraints of Equation (3) can benefit also for
chromophore concentration evaluation purpose. The interests and disadvantages of each
method, highlighted by the in vivo proof of concept to evaluate sO2, are here discussed.
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First, the variabilities of GLUP and SSM-S have to be analyzed. As already mentioned,
GLUP and VCA can converge to different sets of endmembers, which depend on their
initialization. Here, we focus only on GLUP as VCA, regardless, gives inaccurate sO2
values. Figures 14 and 15 illustrate this phenomenon with the results from 200 runs for the
GLUP method. If GLUP can lead to small relative deviations, it should be noted that only
17 runs provided mean relative deviations less than 25%. In contrast, 59 runs provided
mean errors greater than 50%. It is, however, interesting to note that the endmembers
extracted with VCA and N-FINDR have the closest spectra to the theoretical ones [1]; see
Figure 16a. This observation should be considered with caution though, as the theoretical
spectra shown do not take into account the characteristics of the acquisition system, which
might modify the acquired spectra. As well as for the inks study, light absorption and
diffusion in tissue also impact the pure chromophore spectrum. This could explain the bad
results given by these two methods even if the extracted spectra seem the similar ones.

Figure 14. Endmembers extracted with GLUP. Left column: sets of extracted endmembers. Right col-
umn: mean spectra and standard deviations.

Figure 15. Mean relative deviations on sO2 maps estimated with GLUP over 200 runs.

Figure 16. Results using the theoretical absorbance spectra of Hb and HbO2. (a) The theoretical
spectra (mean values of Hb and HbO2 are: 0.43 and 0.35, respectively), (b) sO2 map estimated using
the FCLS with the theoretical spectra and Equation (16), and (c) the relative deviation maps between
the sO2 map and the Vevo LAZR map in Figure 12. The image axes are in mm.

Finally, considering its robustness, SSM-S is an interesting solution, as it converges to
a unique solution while achieving a small relative deviation. However, it is important to
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note that the endmembers extracted with SSM-S do not look like the theoretical ones; see
Figure 16a. As mentioned earlier, this could be due to the characteristics of the acquisition
system and the light absorption and diffusion in tissue. In addition, in tumor tissues, pure
Hb and HbO2 are not the most frequently present chromophores. The Vevo LAZR sO2
values (Figure 12) confirm this observation as they are mainly comprised between 25% and
75%, and then correspond to a mix of pure chromophores. This means that the endmembers
that were actually extracted probably represent mixed chromophores instead of the pure
Hb and HbO2. Regardless, the results obtained with the SSM-S/FCLS strategy are very
encouraging in allowing accurate measurements of sO2 with photoacoustic imaging.

Table 1 summarizes all of the results, the abundances are calculated with the FCLS
algorithm, and the mentioned methods are the ones used to extract the endmembers. This
table shows that the minimum mean relative deviation was obtained with the theoretical
spectra, but the mean relative deviations remain large, as these spectra do not take the
characteristics of the acquisition system into account as well as the light absorption and
diffusion in tissue. Nevertheless, this result is interesting, as it is independent of the
Vevo LAZR Oxy-Hemo mode, and it provides a convenient basis for comparing results.
In this sense, given the proximity to the performance obtained with SSM-S/FCLS, these
complementary experiments confirm the potential of this strategy to quantify photoacoustic
in vivo data. GLUP/FCLS also have similar performance but only for some runs, as
mentioned before. This strategy could then be more studied and compared to SSM-S/FCLS
on various cases.

Table 1. Summary of the average sO2 relative deviation values. The abundances are estimated using
the FCLS algorithm.

Endmember Extraction Whole Image Limited to Tumor

GLUP 24.04% 15.86%
VCA 58.79% 38.96%

N-FINDR 76.81% 51.63%
SSM-S 24.07% 15.29%

Theoretical spectra 21.52% 13.33%

However, the proposed strategies of hyperspectral imaging suffer from spectral
coulouring effect [34,35]. Indeed, in the proposed strategies, the endmembers are evaluated
without taking into account any fluence evolution through the sample. Such effect has
demonstrated to bias the sO2 estimation and would required deeper study to be conducted.
However, in the context of this work and its comparison to the sO2 evaluation of the Vevo
LAZR, we did not evaluate its impact.

These results are encouraging to be used for various clinical applications requiring
chromophore quantification. Indeed, the evaluation of chromophore concentrations is of
major interest for various applications, like concentration of contrast agent in the body [5],
calculation of the concentration of oxygenated and deoxygenated blood for oxygenation
rate evaluation [6,7], or cancer tissue evaluation [8]. The endmembers extraction could
be either automatic or manually selected by the user coupled with a fast inverse prob-
lem (FCLS).

7. Conclusions and Perspectives

Several methods for characterization of multispectral photoacoustic data have been
considered, with the aim to estimate chromophore concentrations. These strategies mainly
consist of two steps: (1) an endmember extraction step, to estimate the spectrum of each
pure chromophore to be quantified; and (2) an abundance calculation step, to evaluate
their concentrations. For the first step, different algorithms were compared (GLUP, VCA,
N-FINDR, and SSM-S). The second step was performed using the FCLS algorithm.

For nonbiological tissues and using the Vevo LAZR acquisition system, we demon-
strated that the SSM-S/FCLS procedure provides accurate estimates of chromophore con-
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centrations for dilutions and mixtures. The positivity and sum-to-one constraints imposed
by the FCLS, and coming from the remote sensing field, are interesting to take into account
for chromophore concentration evalution. In some cases, the sum-to-one constraint is,
however, questionable. It is a strong assumption, particularly when dilutions are imaged.
To relax this constraint, a shadow endmember was introduced in this study, among the
other possible strategies.

The methods were tested on a mouse tumor, where the sO2 calculation was performed
and compared to the sO2 values calculated by the Vevo LAZR Oxy-Hemo mode. GLUP and
SSM-S provided equivalent optimal performance to extract endmembers. GLUP algorithm
should, however, be used with caution because of its variability. Nonetheless, it again
highlights the interest of the constraints of Equation (3) in the photoacoustic field for
chromophore concentration evaluation purpose. The SSM-S algorithm, which converges to
a unique solution, appears to be more appropriate for endmember extraction, but further
study on various cases should be done to quantify the performances of SSM-S/FCLS and
GLUP/FCLS on various cases.

The endmember extraction and sum-to-one constraint relaxation still needs to be
studied in more detail, but these primary results with biological tissues are encouraging.
Moreover, the ground truth of the oxygenation rate in the imaged tumor was not known. It
is, thus, difficult to know exactly which method is the most accurate to estimate the sO2
values. In addition, considering the presence of only Hb and HbO2 in the imaged area is a
strong hypothesis. The water and other tissue absorbances should probably be taken into
account. Further, other wavelengths can be tested to characterize their influence on the
results. In the future, these experiments should be correlated with blood extraction and
sO2 evaluation using blood measurements to have the real ground truth.
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