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Abstract This paper deals with a control problem of discrete event systems
subject to capacity constraints. Combined use of timed event graphs and Min-
Plus algebra is a well-known approach and efficient for handling timed be-
havior and mathematical modelling of discrete event systems. However, in
current literature, many of control approaches assume that system states are
fully observable, which is not the case in our study. Hence, we propose in this
paper a feedback control method to guarantee the respect of marking con-
straints imposed for some paths of partially observable timed event graphs.
We demonstrate that if each loop of the considered TEG contains at last one
observable transition, we can derive a realisable control law satisfying a set of
constraints.

Keywords Discrete Event Systems, Timed event graphs, Min-Plus algebra,
Marking constraints, Realizable control laws.

1 Introduction

In many industrial contexts, we find different critical specifications that must
be met to ensure the proper functioning of the systems. These functional
constraints can take several forms and they are often encountered in various
real applications like flexible manufacturing workshops including thermal or
chemical treatments, real-time systems, urban or rail transport and networked
automation systems. In this work we treat a class of deterministic controlled
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discrete event systems subject to strict constraints. In the literature, some
authors focused in their research on the respect of durations in some sensitive
areas [1], [2], [16], [30] where the objective is to satisfy temporal constraints
imposed on the behavior of systems. Others considered specifications related
to capacities which are described by marking constraints or forbidden states in
Petri nets [13], [3], [35], [33]. In our study, we are specifically interested to the
problem of control under constraints for discrete event systems represented by
timed event graphs. It’s well known that dioids are an algebraic structure that
can be used to formally generate linear models for a class of timed discrete-
event systems [4]. Combined use of TEG and Max-Plus (or Min-Plus) is a
well-known approach in the literature initiated back in the 1960’s [10] and it
is still a very active field of research. This framework has been successfully
applied to solve diverse control problems, such as dynamic scheduling [7], [11],
[17], synchronization of switching models [21], [22], trajectory tracking [8], dis-
turbance decoupling problem [29], or just-in-time control [14], [19]. Both open
loop [29] and feedback [20], [24], [23] approaches have been considered to solve
those problems. Significant efforts have also been made to apply model predic-
tive control techniques to Max-Plus linear systems [11], [32]. Other methods
are also developed to design a controller to guarantee that a Max-Plus system
evolves without violating time restrictions imposed on the state [24], or even
characterized by a semimodule [23]. The feedback control problem of Max-
Plus linear systems under temporal constraints has been addressed using a
temporal approach based on daters like in [1], [25]. The objective of calcu-
lated control laws is to ensure maximum time limits of the sojourn for tokens
in some places of a TEG. In [30], authors proposed a closed-loop control to
satisfy a critical response time for networked automation systems based on
timed event graphs and Max-Plus algebra. Others approaches deal with the
constraint control of max-plus linear systems by using its transformed version
based on power series [9], [15] which is similar to Z transform for conventional
linear system theory. An alternative method was proposed in [18], where the
constraints satisfaction is expressed as the (A, B)invariance of a semimodule.
The control problem is solved by computing the maximal of such semimodules,
included in a domain defined by constraints.
In this paper, we address the feedback control problem for TEGs under mark-
ing constraints by means of Min-Plus algebra formalisms. Historically, the
question is originally treated by Ramadge and Wonham [28], [27], using finite
automata and formal languages. The synthesized controller (supervisor) has
the role to inhibit controlled events in order to satisfy the specifications. Other
approaches are based on untimed Petri nets tools [26], where the constraints
are formulated as a problem of linear marking constraints. The role of the con-
troller is to limit the number of tokens in the some places, which can represent
the bounded stock in the industrial context: the buffer memory in communica-
tion systems or stations in transportation networks. In [13], [34], [33], authors
express various specifications to be respected by linear inequalities on mark-
ings. Monitor places are synthesized using the P-invariants property of Petri
nets. Another approach to solve the forbidden state problem in discrete event
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systems modeled by Petri nets with unobservable transitions is proposed in
[12]. This method is based on a linear constraint transformation, authors deal
with the problem of forbidden states in safe Petri nets and they establish a
maximally permissive controller without the time. Time is not taken into ac-
count in the system model and control synthesis in existing contribution on
capacity constraints. Practically for the dynamic study of systems, time pa-
rameter is very important and must be integrated into modelling and control
laws. Some studies based on timed Petri nets models dealing with the con-
trol under marking constraints appeared during these last years. We can cite
for example the approach [31] based on the TEG and the Min-Plus algebra
proposed for the control of TEGs under linear marking constraints. Authors
considered the case where all transitions of the TEG are not controllable but
all are observable. The problem posed in the case of TEGs with some non
observable transitions is that the calculated controller is not always realizable.
For this, it is necessary to assure that established control laws are given in
function of observable transitions.
The present paper deals with the design of feedback control laws for timed
discrete event systems subject to capacity constraints using Min-Plus models.
This study directly extends and improves the methods recently developed in
[31], which have a strong limitation that all transitions of the TEG are ob-
servable and measurable. In this work, we propose a new control method of
partially observable TEGs subject to linear marking constraints. The objec-
tive is to provide realizable control laws to guarantee different specifications
required on markings of TEGs. The calculated laws are expressed only in terms
of observable transition states.
The remainder of this paper is organized as follows. Section 2 recalls some
basic notions of TEGs and their linear Min-Plus algebra representations well
as so some definitions and hypothesis that are needed for the comprehension
of the sequel of document. Problem of limited capacities and linear marking
constraints is presented in section 3 where the specifications are expressed in
terms of linear inequalities in Min-Plus algebra. Section 4 is dedicated to the
description of the proposed approach. Finally, section 5 concludes this paper
with some perspectives for future work.

2 PRELIMINARIES

2.1 Min-Plus algebra

A monoid is a set, say D, endowed with an internal law, noted ⊕ which is
associative, commutative and has a neutral element denoted ⊕ (i.e., ∀a ∈
D, a⊕ ε = ε⊕a = ε), ⊗ is associative, admits a unit element denoted e = 0,
and distributes over ⊕; and ε is absorbing for the multiplicative law (∀a ∈
D, a⊗ ε = ε⊗ a = ε). The semiring is commutative when ⊗ is commutative.
A dioid (D, ⊕, ⊗) is a semiring with an idempotent internal law (i.e., ∀a ∈
D, a ⊕ a = a). The dioid is said to be commutative if the second law ⊗ is
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commutative. The Min-Plus algebra is defined as (R ∪ −∞, +∞, min, +).
This semiring, denoted R̄min, is a commutative dioid, the law ⊕ is the operator
min with neutral element ε = +∞, and the second law ⊗ is the usual addition,
with neutral element e = 0. ⊗ is abbreviated by · (dot) for convenience. (+, ×)
refers to the usual addition and multiplication.
As in classical algebra, the binary operations can be extended to the matrix
case in dioid. For a matrix A ∈ R̄(m×n), the element of the ith row and jth

column of the matrix A is denoted by Aij . For any three matrix defined by

A, B ∈ R̄(m×n)
min and C ∈ R̄(n×p)

min in Min-Plus algebra R̄min, we define: Addition
A⊕B:
[A⊕B]ij = Aij ⊕Bij = min(Aij , Bij)
Multiplication A⊗ C :
[A⊗ C]ij =

⊕n
k=1Aik ⊗ Ckj = mink=1,..,n(Aik + Ckj).

Theorem 1 [4] The implicit equation x = A · x⊕ B defined over a complete
dioid D admits x = A∗ ·B as a least solution with A∗ is the Kleene star of the
matrix A, such as:
∀A ∈ D, A∗ =

⊕
i>0A

i

where
Ai = Ai−1 ⊗A and Ai = I
I is the unit matrix, with entries equal to e on the diagonal, and ε else.

The reader is invited to consult [4] and [5] for a complete presentation of the
following theoretical recalls.

2.2 Timed Event Graphs (TEGs) and linear Min-Plus models

2.2.1 Timed Event Graphs (TEGs)

An event graph is a Petri net where each place has exactly one upstream and
one downstream transition. A timed event graph (TEG) is an event graph with
delays associated to places, the holding times, and/or transitions, the firing
times. An event is the firing of a transition. In the present work, we use the
TEG, where the delays are associated only with the places and we adopted
the following notations:
- P will denote the set of places of the considered graph and T is a set of
transitions.
- The internal transitions (transition having at least one upstream place) are
denoted by Ti (with ‖Ti‖ = N), and the source transitions or the input tran-
sitions (transition having no upstream place) are represented by Tuc (with
‖Tuc‖ = µ).
- tj denotes the jth transition of the graph,
- Tω denote the set of the observable transitions and Tβ denote the set of the
unobservable transitions, where ‖Tω‖+ ‖Tβ‖ = N ,
- pij denotes the place linking tj to ti when it exists,
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- An elementary path between two internal transitions tj and ti of a graph is an
oriented alternating sequence of transitions and places successively connected
by an arc, of the form (tj , p1j , t1, p21, t2, p32, ..., ti). This path is denoted
by ρ. The cumulated token in this path is given by mρ and their timing is
denoted by τρ where this timing is given by the sum of the places of the path
timing.
- Place of a TEG is a particularly case of the path with a longer is 1.
-An elementary path between the input transition tu and the internal transi-
tions tj is an oriented alternating sequence of transitions and places succes-
sively connected by an arc. This path is denoted by α. The cumulated tokens
in this path is given by mα and its timing is denoted by τα.
- For a number mij of tokens, several mij-token paths connecting tj to ti can
exist in general.

tj
mij ,τij−−−−−→ ti denotes the mij-token path with the maximal delay, which is

denoted by τij ,
- An empty path contains no token,
- A loop in Petri net is a path whose start node coincides with the arrival
node.
- We note that the transitions without downstream places are outputs and
those without upstream places are inputs. Others are simply called internal
transitions. Inputs are also referred to as controls.

2.2.2 Linear Min-Plus models

A TEG being a directed graph, its dynamic behavior can be described by the
linear equations thanks to counter functions xi(t) associated for each transition
ti of the graph. The counter functions u(t) attributed to the input transition
tu, with the function xi(t) represents the firing number of the transition ti
at time T. Generally, the behavior of the TEG is represented by a following
equation:

x(t) =

τmax⊕
τ=0

(Aτ · x(t− τ)⊕Bτ · u(t− τ)) (1)

where Aτ ∈ R̄N×Nmin is the matrix whose term Aτ,ij it is equal to mij which
is the number of the initial marking of the place pij if it exists and ε else.

Bτ ∈ R̄N×µmin corresponds to the initial markings of the exit places of the source
transitions.
It is known that, for a live TEG, by decomposing each place into several places
which are timed with values less than or equal to 1, the state vector can be
extended and rewriting under the following explicit form:

x(t) = A · x(t− 1)⊕B · u(t) (2)

where A = A∗0 ·A1 and B = A∗0 ·B0.
The detailed procedure for the Min-Plus equations representation of timed
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event graphs is illustrated in the application example in section 4.3 of the
page 13.
Finally, for any integer τ such that τ ≥ 1, by doing τ substitutions in (2), one
obtains:

x(t) = Aτ · x(t− τ)
⊕
⊕τ−1k=0A

k ·B · u(t− k) (3)

Property 1 : In the TEG with the assumptions that each loop of this graph
contains at last one observable transition, for any unobservable transition
ti ∈ Tβ, there exists a path δ connecting this transition to an observable tran-
sition tj ∈ Tω. The counter associated to the unobservable transition ti can be
expressed in function of the observable transition tj by the following expression:

xi(t) ≤ mδ · xj(t− τδ), (4)

where mδ represents the number of tokens in the path δ, and τδ corresponds
to the timing of this path.

Definition 1 (Observability). A transition ti is observable if it is either a con-
trol or it is linked directly to an output transition. A TEG is fully observable
if all his internal transitions ti are observable.

Definition 2 (Partially observable TEG)
A graph G is said to be partially observable if it has at least one unobservable
transition.

Definition 3 (Structural controllability)
An event graph is structurally controllable if every internal transition can be
reached by a path from at least one input transition.

Definition 4 (Valid control)
The control law u(t) is said to be a validated controller if it grantees the con-
straints imposed to the system without taking into account any other system
specification.

Definition 5 (Realizable control)
A control law is said to be realizable if it is a valid control expressed by a
causal and observable expression.

3 Problem of limited capacities and linear marking constraints

3.1 Limited capacities problem

To simplify the explanation and show the motivations of the work, we present
a simple information transmission example with two tasks A and B in series
(see Fig.1). We consider that the execution time of the task A is fixed to 1
milliseconds (ms), the execution time of the task B is fixed to 3 ms, and the
transmission delay of i1, is 2 ms.
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Fig. 1 Example of an information transmission network

Fig. 2 Model TEG of the information transmitting system

The considered system can be modeled by the TEG shown in the Fig.2. Let
us presume that the transitions (tu, t1, t3) are the only observable transitions
of this graph and we consider that the transmission line cannot transfer more
than one information at a time which implies that the number of tokens in the
place p32 cannot exceed 1 token.

The cycle time of the task B is greater than the cycle time of both the task
A and the delay of transmission. This leads to exceeding a maximum number
of the information transmitted in the transmission line. For the case where the
internal transitions of the graph are controllable, the solution of this problem
is intuitive; it is enough to add a place p23 marked with 1 tokens for example,
to ensure that the number of the tokens in the place p32 does not exceed 1
tokens. The resolution of the problem in the case where the input transition
of the place under constraint is uncontrollable is not obvious. Therefore, it is
necessary, to have other techniques to guarantee these marking constraints.
The objective of this paper is to synthesise control laws to satisfy the marking
constraints imposed on the some path of the partial observable timed event
graph with uncontrollable transitions.

3.2 Linear marking constraints

We consider a discrete event system modeled by a timed event graph. We
assume that the path ρ of this graph is subject to a marking constraint, where
the path ρ cannot contain more than b tokens throughout the system operation.
We denote by tj and ti respectively the input and the output transition of the
constrained path, and by Mρ(t) the number of the tokens in this path at time
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t. The marking constraint can be described by the following inequality:

Mρ(t) ≤ b (5)

In order to express this constraint by a linear inequality in the Min-Plus alge-
bra, we associate with each transition of the graph a counter function and we
denote by xi(t) and xj(t) respectively the counter associated to the transitions
ti and tj . By definition, the counter xj(t) represents the number of firing of the
transition tj at time t. Then, in Min-Plus algebra Mρ(t) can be represented
by ((xj(t)− xi(t)) +M0ρ), such that M0ρ is the initial marking of the path ρ.

The inequality (5) can be written as:

xj(t)− xi(t) +M0ρ ≤ b (6)

This marking constraint can be expressed by a linear inequality in Min-Plus
algebra as:

xj(t) ≤ xi(t) + (b−M0ρ) (7)

4 Control synthesis

4.1 Realizable feedback controls

In this section, we propose a formal approach for the control of the TEG
subject to one or several marking constraints. As expressed previously, the
proposed approach is based on the use of the TEG and Min-Plus algebra for
synthesizing a realizable control law on the form u(t) = F · x(t− 1). The role
of the calculated controller is to ensure the satisfaction of the marking con-
straints imposed on the considered partially observable TEG. We consider that
the firing of the transitions of the TEG is performed as soon as possible. The
transitions of this considered TEG are not all controllable i.e only the input
transitions are controllable. First, we consider the case where the system has
a single input and then we extend the results to the case where the system has
several inputs. In this work we consider that the marking constraints concerns
the places situated on the same path and we consider the following Hypothesis:

Hypothesis We assume in the following that each loop of the considered
timed event graph contains at last one observable transition.

4.1.1 Single control

a.Only one marking constraint
In this first case, we consider a timed event graph with the state equation of
this system is given by the equation (2). The path ρ connecting the transition
tj to the transition ti of this graph is subject to a marking constraint. This
constraint is given by the inequality (7). We assume that there exists at least
a path α from the control transition tu to the transition tj , where tj is the



Title Suppressed Due to Excessive Length 9

upstream transition of the constrained path ρ, and we denote by mα and τα
respectively the marking and the timing of this path.
From the definition of tu, we have:

xj(t) ≤ (Aτα ·B)j · u(t− τα) (8)

Taking τ = φ in the equation (3), xi(t) can be expressed by:

xi(t) = [

N⊕
r=1

Aφir · xr(t− φ)]⊕ [⊕φ−1k=0(Ak ·B)i · u(t− k)], (9)

where φ ≥ 1, A ∈ R̄N×Nmin , N represents the number of the internal transi-
tion of the TEG and Air indicates the ith row of the matrix Aφ.
For every integer φ ≥ 1, we take into account the Property 1 and we have the
following result.

Theorem 2 Taking φ = τα + 1, the equation:

u(t) = F1 · xr(t− τδz − 1)⊕ F2 · xr(t− 1) (10)

with, F1 = ⊕βz=1 ⊕r∈ω [(b+mδz −M0ρ)− (Aτα ·B)]j ·A(τα+1)
ir and

F2 = ⊕r∈ω[b−M0ρ − (Aτα ·B)j ] ·A(τα+1)
ir

defines realizable controls which guarantee that the constraint (7) is satis-
fied if the following condition is verified:

(Aτα ·B)j ≤ (b−M0ρ)(A
k ·B)i for k = 0 to τα (11)

Proof Let G be a timed event graph and ρ a path under marking constraint
with

Mρ(t) ≤ b

As we saw previously this constraint can be expressed by the following in-
equality:

xj(t) ≤ xi(t) + ((b−M0ρ) (12)

We consider control laws defined by the following inequality (13):

(Aτα ·B)j · u(t− τα) ≤ xi(t) + (b−M0ρ) (13)

It is clear that the combination of inequalities (13) and (8) implies the sat-
isfaction of the marking constraint (12). In other words, if we choose control
laws that verify the inequality (13) and as the expression (8) that describes the
path between two transitions tu and tj is always true, then by the transitivity
relation, we conclude that the marking constraint (12) is guaranteed.

The next step of this demonstration consists to replace the counter function
xi(t) in the inequality (13) by its expression given by the equation (9). After
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this change, the inequation (13) is divided into both conditions (14) and (15)
which are as follows:

(Bτα ·B)j · u(t− τα) ≤ (b−M0ρ) + [⊕Nr=1A
φ
ir · xr(t− φ)] (14)

(Aτα ·B)j · u(t− τα) ≤ (b−M0ρ) + [⊕φ−1k=0(Ak ·B)i · u(t− k)] (15)

We can easily see that in order to check the satisfaction of inequality (13),
it is sufficient to ensure that the two inequalities (14) and (15) if they are
simultaneously true.

The purpose is to synthesize a realizable control law in the form u(t) =
F · x(t− 1). In order to obtain the controller in this form, we take φ = τα + 1,
and the fact that u(t) ≥ u(t− 1), the inequality (15) can be given as:

(Aτα ·B)j ≤ (b−M0ρ) + (Ak ·B)i

This inequality represents the condition of the Theorem 2. The control inequal-
ity described in the Theorem 2 derived from the inequality (15), represents the
control laws which satisfy the marking constraint (12), if the condition is (14)
is satisfied.

The formula:

u(t) = ⊕Nr=1(b−M0ρ − (Aτα ·B)j) ·A(τα+1)
ir · xr(t− 1)

describes a valid controller for a partially observable TEG, but it is not a re-
alizable controller, since the formula of this controller is given in function of
the internal transitions of the TEG which contains the unobservable transi-
tions. Since each loop of the considered TEG contains at last one observable
transition, this controller can be transformed into a realizable controller by
applying the result of the proprty1. For this, we divide the controller formula
into two parts, one part according to the observable transitions and the other
part according to the unobservable transitions as described by the inequality
(17):

u(t) = [⊕r∈β(b−M0ρ − (Aτα ·B)j) ·A(τα+1)
ir · xr(t− 1)]⊕ (16)

[⊕r∈ω(b−M0ρ)(A
τα ·B)j ·A(τα+1)

ir ] · xr(t− 1).

We take into account the results described in the Property 1, where each
counter function associated to the unobservable transition can be expressed
in function of the counter function associated with observable transition. The
equation that describes the calculated control law in function of the observable
transitions is as follows:

u(t) = ⊕βz=1[⊕r∈ω[b+mδz −M0ρ]− (Aτα ·B)j ·A(τα+1)
ir · xr(t− τδz − 1)]⊕

[⊕r∈ω[(b−M0ρ − (Aτα ·B)j) ·A(τα+1)
ir ] · xr(t− 1)]
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b.Several constraints
We assume now a timed event graph with one input transition and subject
to S marking constraints. These constraints are imposed on S paths of this
graph denoted ρs for s = 1 to S. Let M0ρs and τρs respectively represent
the initial marking and the timing of the path ρs. We denote by td and td′

respectively the input and the output transition of the path ρs. xd and xd′

indicate respectively the corresponding counters.
We take into account the fact that the marking constraints concern only the
places lacated on the same path and we assume that for each s, with s = 1 to S,
there is at least one path denoted αs. This path connects the input transition
tu to the transition td, which represents the input transition of the constrained
path ρs. We denote by ταs the timing of the path αs. The different marking
constraints imposed in this graph are expressed by the following inequality:

xd(t) ≤ (bs −M0ρs) · xd′ (t) for s = 1 to S (17)

Theorem 3 The following control law:

u(t) = ⊕s≥1us(t), (18)

with

us(t) = F1s · xr(t− τδz − 1)⊕ F2s · xr(t− 1) (19)

where
F1s =

⊕β
z=1[⊕r∈ω[(bs +mδz −M0ρs)− (Aταs ·B)d ·A

(ταs+1)
ir ]] and

F2s = [⊕r∈ω[bs −M0ρs − (Aταs ·B)d) ·A
(ταs+1)

d′r
].

ensures the satisfaction of marking constraints (17) if the condition below:

(Aταs ·B)d ≤ (bs −M0ρs)(A
k ·B)d′ (20)

is verified for each s = 1 to S.

Proof According to the results obtained in the section 4.1, the controller u(t)
described in the Theorem 2 guarantees the satisfaction of the marking con-
straint (7) if the condition (11) is verified. Then, for S marking constraints the
control law us(t) prevents the violation of the Sth constraint if the condition
(20) holds. The control laws which guarantee de satisfaction of the S marking
constraints (17) are given by the following equation: u(t) = ⊕s≥1us(t), for
s = 1 to S.

4.2 Several controls

We now generalize the previous approach to solve the problem of marking con-
straints in TEGs with several input transitions. The behavior of the considered
TEG is described by the state equation (2), with u(t) ∈ R̄µmin and B ∈ R̄N×µmin ,
µ represents the number of the input transition, with µ ≥ 1. We associate with
each source transition a counter noted ul(t), for l = 1 to µ.We assume that



12 Karima Tebani, Said Amari

this graph is subject to marking constraints related for the same path. First,
we consider the case where this graph is subject to one constraint, and then
we extend the results to the case where several constraints are imposed to this
graph.
a.Single constraint
We suppose in this sub-section a TEG with µ input transitions, and subject
to one marking constraint. This constraint is imposed on a single path of this
graph denoted ρ. We denote by tj and ti respectively the input and the output
transition of the path ρ. M0ρ and τρ represent respectively initial marking and
the timing of the path ρ. This constraint can be described by the following
inequality:

Mρ(t) ≤ b (21)

The aim of the approach is to compute the components of the vector u(t)
which will satisfy the marking constraint (21). We always assume that the
input transition tj of the constrained path ρ is connected to at least one input
transition tuc of the considered TEG. This path is noted αc with c = 1 to µ.
The timing of this path is denoted by ταc .

Theorem 4 Let G be a partially observable TEG with µ input transitions,
whose dynamics is modeled by the equation (2). This graph is subject to a
marking constraint represented in (21).
The marking constraint is satisfied if there exists an index c such as

uc(t) = F1c · xr(t− τδz − 1)⊕ F2c · xr(t− 1). (22)

where
F1c = ⊕βz=1[⊕r∈ω[(b+mδz −M0ρ)− (Aτα ·B)jc ·A

τα+1
ir )

F2c = ⊕r∈ω[(b−M0ρ − (Aτα ·B)jc)] ·A
(τα+1)
ir

With ul(t) = ε for l 6= c and if the condition given by

(Aταs ·B)dc ≤ (b−M0ρ0)(Ak ·B)d′ l (23)

for l = 1 to µ is satisfied.

Proof The procedure to calculate the control laws uc(t) for a given c ∈ {1, ..., µ},
is similar that the controller synthesis u(t) proposed in the Theorem 2. In this
case, the formula (22) of the control law uc(t) is given if the condition (21) is
satisfied for an index c and then the other controls can be forced to ε.

b.Multiple constraints
In this section, we extend the work to deal with the general case, where a
partially observable TEG has µ input transitions, and is subject to s marking
constraints with s = 1 to S. In this case as well we assume that each path
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ρs is connected to at least one input transition by a path αs where ρs repre-
sents the constrained path. The marking constraints are given by the following
inequality:

Mρs(t) ≤ bs, s = 1 to S. (24)

The following Theorem gives the results for this study.

Theorem 5 Let G be a partially observable TEG with µ input transitions and
is subject to S constraints of the form (24). The following control law:

u(t) =

S⊕
s=1

ucs(t) (25)

requires compliance with the constraints (24) if the condition holds true for
each s = 1 to S

Proof The control law (25) provided from the Theorem 5, ensures the respect
of one constraint. For the case where we have several constraints, the controller
represented by the equation (22) ensures the satisfaction of all considered
constraints (25) if the condition (23) is verified for each constraint.

4.3 Example

We consider the example of the timed event graph described in the section
3. We suppose that the place p32 subject to a marking constraint, as it was
represented in the section 3, where the number of tokens in the place p32
cannot exceed 1 token. This constraint can be reformulated in the form of the
following inequality:

x2(t) ≤ x3(t) + 1 (26)

We associate for each transition of the TEG, represented by the Fig.2, a
counter function (θi(t)) for i = 1 to i = 4. The behavior of this graph can be
described by following expressions:

θ1(t) = min(0 + u(t)), 1 + θ2(t),
θ2(t) = 0 + θ1(t− 1),

θ3(t) = min(0 + θ2(t− 2)), 1 + θ4(t),
θ4(t) = 0 + θ3(t− 3),

Using Min-Plus algebra operator (⊕) for the min operator and (·) for the clas-
sical sum +, these equations can be written as:

θ1(t) = u(t)⊕ 1 · θ2(t),
θ2(t) = θ1(t− 1),

θ3(t) = θ2(t− 2)⊕ 1 · θ4(t),
θ4(t) = θ3(t− 3),
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We finally get to the following matrix notation:

θ(t) = A0 · θ(t)⊕A1 · θ(t− 1)⊕A2(t− 2)⊕A3(t− 3)⊕B0 · u(t) (27)

with:

θ(t) =


θ1(t)
θ2(t)
θ3(t)
θ4(t)

, A0 =


ε 1 ε ε
ε ε ε ε
ε ε ε 1
ε ε ε ε.

, A1 =


ε ε ε ε
e ε ε ε
ε ε ε ε
ε ε ε ε.

,

A3 =


ε ε ε ε
ε ε ε ε
ε e ε ε
ε ε ε ε

, A4 =


ε ε ε ε
ε ε ε ε
ε ε ε ε
ε ε e ε

, B0 =


e
ε
ε
ε


Using the Theorem 1, the implicit equation (27) can be replaced by the fol-
lowing explicit solution,

θ(t) = A∗0 ·A1 · θ(t− 1)⊕A∗0 ·A2 · θ(t− 2)⊕A∗0 ·A3 · θ(t− 3)⊕A∗0 ·B0 · u(t)

where A∗0 is the Kleene star of A0.

Our objective is to calculate a realizable controller which satisfies this
marking constraint. For this we apply Theorem 2. In order to obtain the state
equation of this system, we decompose each place of the TEG shown in Fig.2
with time greater than 1 time unit to several places timed to 1 time unit. The
initial graph of the information transmission network (see the Fig.2) has been
extended to the new timed event graph represented by the Fig.3). The place
p32 and the place p43 timed respectively with 2 and 3 time units has been
split respectively to 2 and 3 places timed to 1 time unit, and the intermediate
transition t5, t6 and t7 has been added.

Fig. 3 The extended TEG

We apply for this example the Min-Plus modeling approach of TEG de-
scribed in section 2.2.2. The resulting state representation of the extended
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graph is given below:

x(t) =



1 ε ε ε ε ε ε
1 ε ε ε ε ε ε
ε ε ε ε ε 1
ε ε ε ε ε ε 1
ε e ε ε ε ε ε
ε ε e ε ε ε ε
ε ε ε ε ε e ε


· x(t− 1)⊕



e
ε
ε
ε
ε
ε
ε


· u(t). (28)

We check the compliance of required conditions by the Theorem 2 for the
existence of the control laws which guarantee the constraint formalized by the
inequality 26. There exists a path α from transition tu to transition t2, with
timing τα = 1. Then φ = τα + 1 = 2. We have also, (Ak · B)i = [e, ε], for
k = 0 to 1, where (Aτα · B)j = 1, where the condition of the Theorem 2 is
satisfied. We have also each loop of the considered TEG containing at last one
observable transition. According to the Theorem 2, there exists a realizable
control law which satisfies the marking constraint. For this example, we have
A2

3r = [ε e ε ε ε 1 ε]. When take into account the equation (10), the
control law is written as follows:
u(t) = (1− 1) · [e · x1(t− 1− 1)⊕ 1 · x3(t− 2− 1) = 1 · x1(t− 2)⊕ 1 · x3(t− 3)
Using the propriety of the Min-Plus algebra, this controller can be simplified
to:
u(t) = 1 · x1(t− 2)
This feedback control is represented by a marked and a timed monitor place
in Fig.4 (place represented by a double circle)

Fig. 4 The controlled TEG of the example

5 Conclusion

This paper presents a new approach to design a controller which satisfies mark-
ing constraints for partially observable timed event graphs (TEGs). In these
studies, the behavior of TEGs is described by linear Min-Plus equations and
the different marking marking constraints are translated by inequalities in
Min-Plus algebra. We have established a sucient condition for the existence of
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control laws which guarantee the respect of these tokens capacity constraints
in some paths in TEGs. To develop this control strategy, we have taken into
account the hypothesis where for each loop of the TEG considered, there ex-
ists always a path connecting the unobservable transition to the observable
transition. For this, we have calculated realizable feedback controls expressed
in function of observable counters with the aim of ensuring that marking con-
straints are met. We first considered the case where the problem is to limit
the number of tokens in one place of TEG. The approach is then extended to
the case where the control law imposes a upper bound of tokens in a sequence
of places. The results in this paper include the single control and the multi-
variable control. For future work, it is important to relax the hypothesis of the
cyclicity for TEG and it would be interesting to calculate the optimal control
under a given criterion. We believe that this contribution could be valuable
in various applications as well notably in flexible manufacturing workshops,
communication processes and transportation networks.
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