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Abstract—Introducing spatial prior information in hyperspec-
tral imaging (HSI) analysis has led to an overall improvement
of the performance of many HSI methods applied for denoising,
classification, and unmixing. Extending such methodologies to
nonlinear settings is not always straightforward, specially for
unmixing problems where the consideration of spatial rela-
tionships between neighboring pixels might comprise intricate
interactions between their fractional abundances and nonlinear
contributions. In this paper, we consider a multiscale regular-
ization strategy for nonlinear spectral unmixing with kernels.
The proposed methodology splits the unmixing problem into
two sub-problems at two different spatial scales: a coarse scale
containing low-dimensional structures, and the original fine scale.
The coarse spatial domain is defined using superpixels that
result from a multiscale transformation. Spectral unmixing is
then formulated as the solution of quadratically constrained
optimization problems, which are solved efficiently by exploring
their strong duality and a reformulation of their dual cost
functions in the form of root-finding problems. Furthermore,
we employ a theory-based statistical framework to devise a
consistent strategy to estimate all required parameters, including
both the regularization parameters of the algorithm and the
number of superpixels of the transformation, resulting in a
truly blind (from the parameters setting perspective) unmixing
method. Experimental results attest the superior performance of
the proposed method when comparing with other, state-of-the-
art, related strategies.

Index Terms—Hyperspectral data, multiscale, spatial regular-
ization, nonlinear unmixing, kernel methods.
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I. INTRODUCTION

Modern remote sensing greatly relies on hyperspectral (HS)
image analysis to retrieve information about surface materials
in many applications such as agriculture, surveillance and
space exploration [1]. Specifically, reflectance measures can
provide detailed information about the spectral signature of
pure materials present on the surface of a target scene and
their proportion for each pixel. Applications often, but not
exclusively, associated with remote sensing trade poor spatial
resolution for high spectral resolution due to physical limita-
tions of imaging sensors and to the distance between the sensor
and the target scene. Therefore, the measured reflectance of
a given pixel is usually a mixture of the pure spectral signa-
tures of materials existing in the corresponding area. Spectral
unmixing (SU) consists of extracting the pure component
spectral signatures and their proportions (or abundances) for
each pixel. The literature presents many mixing models to
explain the observed reflectance as a mathematical function
of the pure spectral components. The simplest form of such
models is the linear mixing model (LMM) which confines
the observed reflectance vectors into a convex hull whose
extremities are the pure component spectral signatures, there-
fore, called endmembers. The LMM is effective in accurately
modelling mixtures occurring in scenes where the materials of
interest cover a large area with respect to the pixel size [2].
It however disregards more complex mixing phenomena such
as non-linearity [2], [3] and spectral variability [4]–[8], which
often results in estimation errors being propagated throughout
the unmixing process [9].

Nonlinear interactions between materials occur in many
scenes where there is complex radiation scattering among
several endmembers, such as in some vegetation areas [10].
In such situations, nonlinear mixing models must be con-
sidered [2], [11]. Several nonlinear SU strategies have been
proposed in the literature, which can be roughly divided
between model-based and model-free methods. Most model-
based nonlinear SU algorithms assume that the mixing process
that occurs in the scene is known a priori [2], [11]–[14].
However, real mixing mechanisms can be very complex and
prior knowledge about them is seldom available in practice.
This led to the consideration of more flexible model-free
nonlinear SU, which employ more flexible nonlinear mixing
models that are able to represent generic functions. Prominent
model-free strategies include the estimation of abundances as
posterior class probabilities of a nonlinear classifier [15], the
use of graph-based approximate geodesic distances [16], [17],
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and kernel-based algorithms [18]–[22]. Kernel-based methods
provide non-parametric representations of functional spaces
that are able to model arbitrary nonlinear mixtures [2], [11],
[18]–[21], [23]. This flexibility, allied to a good experimental
performance has led to the wide application of kernel methods.

Despite the good results obtained with kernel-based un-
mixing methods [21], most algorithms fail to explore the
high spatial regularity associated to many real world scenes.
This property can be leveraged to improve the conditioning
of the unmixing problem. Spatial regularization has already
been shown to improve the performance of linear [24], [25]
and sparse [26], [27] SU, as well as spectral-variability-aware
SU [5], [28]–[32], which is closely connected to nonlin-
ear SU [33]. However, spatial information has seldom been
enforced in nonlinear unmixing algorithms, partly due to the
challenges associated with more complex observation models.
For instance, a spatial clustering approach was used in [34]
to divide the image into different groups of pixels. SU was
then performed using the P-linear mixing model in a Bayesian
framework with a unique set of regularization parameters for
each group. In [35] a Total Variation (TV) regularization was
introduced in a regression-based kernel unmixing method [21],
and a variable splitting approach was then used to solve the
resulting optimization problem.

The TV regularization has been widely used in many HS
imaging tasks since it promotes smooth image reconstructions
while still allowing for sharp discontinuities [26]. However,
TV regularization is not the most effective approach to extract
spatial information from hyperspectral images. Regularization
strategies exploiting nonlocal redundancy in images were
recently considered for SU [36], [37], leading to a better abun-
dance estimation performance at the expense of an increase in
computational complexity. Other works exploited the manifold
structure in the hyperspectral data by using a graph-based
regularization to connect the abundances of pixels that are
similar with respect to some metrics [38], [39].

In [40], a multiscale spatial regularization approach was
proposed for sparse spectral unmixing. The multiscale ap-
proach led to improved results and smaller computational
complexity when compared to TV regularization. The unmix-
ing problem was split into two simpler problems in different
image domains defined using a multiscale transformation. This
transformation groups image pixels into contiguous regions
using (over)-segmentation strategies such as the superpixel
decomposition [40]. The multiscale regularization strategy was
later extended in [41] to consider SU accounting for spectral
variability. Despite the excellent results obtained with spatial
regularization strategies, their performance usually depends
on the careful selection of regularization parameters. This is
specially important in multiscale strategies, which require a
larger number of parameters. Determination of parameters for
spatial regularization methods remains a challenging problem,
and works applied to HSI are rare [27], [42].

In this paper, we propose a new multiscale spatial reg-
ularization approach for kernel-based nonlinear unmixing.
Building upon the ideas proposed in [40], we employ a
multiscale representation to divide the unmixing problem into
two simpler problems in different scales. Though based on

the same principle used in [40], devising kernel-based mixing
models in multiple scales is more challenging than in the linear
case. Moreover, we address the parameter adjustment problem
differently from what has been done in previous multiscale SU
formulations in [40], [41]. In this work we reformulate the
SU problem at multiple scales by statistically characterizing
not only the algorithm reconstruction error in both scales, but
also the inter-scale interaction between the abundances and
the nonlinear mixing contributions across the coarse and fine
image domains. This formulation leads to physically motivated
constraints which are leveraged to devise the Blind Multiscale
Unmixing Algorithm for Nonlinear Mixtures (BMUA-N), in
which all the parameters are determined automatically from
the observed data. Thus, the proposed strategy benefits from
an improved quality without the need for ad hoc parameter
adjustment such as in TV-based works.

We formulate the resulting unmixing problem as a sequence
of two optimization problems with quadratic equality con-
straints. These non-convex problems are solved by reformu-
lating the dual problems in the form of low-dimensional root
finding problems, which can be solved in very few iterations
using a multidimensional bisection algorithm. Moreover, we
are able to prove that, under mild conditions, strong dual-
ity holds for these optimization problems, which guarantees
the optimality of this approach. Simulations with synthetic
and real datasets illustrate the effectiveness of the proposed
methodology in producing piecewise smooth solutions while
preserving sharp discontinuities existing in the image. This
leads to more accurate unmixing results when compared to
TV-based strategies, with less computational complexity and
without the need for ad hoc parameter adjustment.

This manuscript is organized as follows. In Section II we
discuss the main concepts related to regression-based kernel
unmixing. In Section III we present the proposed kernel-
based multiscale unmixing strategy. The automatic parameter
setting methodology is presented in Section IV and the solu-
tion for the proposed optimization problems is discussed in
Section V. In Section VI we propose a method for designing
the multiscale transformation to yield spectral homogeneity.
Section VII discusses the computational complexity of the
proposed method. Experimental results are presented and
discussed in Section VIII. They are followed by concluding
remarks in Section IX.

II. KERNEL-BASED UNMIXING

A. Kernel-based mixture model

In this section we review the standard kernel-based mixture
model introduced in [21] and discuss the main theoretical
aspects of kernel machines. As in [21], we assume that each
L–band observed pixel yn ∈ RL in an HSI can be modeled
as a function of the endmember spectra as follows:

yn,` = ψan(m̃`) + en,` , ` = 1, . . . , L , (1)

where yn,` is the `-th entry of vector yn, m̃` ∈ R1×P is
the `-th row of the endmember matrix M ∈ RL×P with P
spectral signatures of pure materials in the scene. Function
ψan is an unknown nonlinear function defining the interactions
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between endmember spectra parameterized by their fractional
abundances an ∈ RP . en,` includes the observation noise
and modeling errors. The problem that arises is to find a
functional ψan that can accurately represent the different and
complex types of light-endmember interactions often occurring
in real scenes. Since the type of nonlinearity is rarely known
in practice, a popular solution is to search for kernel-based
smooth function representations whose parameters can be
learned directly from the data [2], [3].

In [21], [35] the authors considered a semi-parametric
kernel-based model consisting of a linear trend parameterized
by the abundance vector plus an additive nonlinear fluctuation.
The model, which allows the quantification of the abundance
vectors during the unmixing process, is given by

ψan(m̃`) = m̃`an + ψn(m̃`) , (2)

with ψn : RP → R being an arbitrary smooth function
belonging to a Reproducing Kernel Hilbert Space (RKHS)
denoted by H and defined over a nonempty compact set
M ⊂ RP . This assumption allows for the kernel machinery
(i.e., via the kernel trick) to obtain accurate solutions to the
unmixing problem.

The theory of positive definite kernels emerged from the
study of positive definite integral operators [43], and was fur-
ther generalized in the study of positive definite matrices [44].
It has been established that, to every positive definite function
κ(·, ·) :M×M→ R, defined over a non-empty compact set
M ⊂ RP , there corresponds one and only one class of real-
valued functions on M forming a Hilbert space H endowed
with a uniquely defined inner product 〈·, ·〉H, and admitting κ
as a reproducing kernel (r.k.) [45]. Space H is called a RKHS
if its evaluation functional δm̃ is a linear and continuous (or
equivalently bounded) functional for every m̃ ∈ M, thus,
admitting κ as its unique kernel. As a consequence of the
Riesz representation theorem [46, p. 188], κ(·, m̃) is the
representer of evaluation of any functional ψ ∈ H, such that
the reproducing property

ψ(m̃) = 〈ψ, κ(·, m̃)〉H (3)

holds, for all ψ ∈ H and all m̃ ∈ M. Furthermore, since
κ(·, m̃) ∈ H for all m̃, m̃

′ ∈M we also have

κ(m̃, m̃
′
) = 〈κ(·, m̃), κ(·, m̃′)〉H . (4)

The RKHS H is then formed by a class of functions generated
by all functions of the form ψ(·) =

∑
j αjκ(·, m̃j), with norm

defined by ‖ψ‖2H =
∑
i

∑
j αiαjκ(m̃i, m̃j).

In the context of machine learning, kernel methods are often
related with the concept of building a high dimensional feature
space H, and a mapping

Φ : M−→ H
m̃ 7−→ Φ(m̃) ,

(5)

with inner product defined as κ(m̃, m̃
′
) = 〈Φ(m̃),Φ(m̃

′
)〉H.

If κ is a r.k. ofH, thenH is a RKHS and also a feature space of
κ with Φ(m̃) = κ(·, m̃). In this case Φ is called the canonical
feature map [47, p. 120]. This leads to the so-called “kernel
trick” allowing one to compute inner products of data mapped

into higher, or even infinite, dimensional feature spaces by
evaluating a real function κ(m̃i, m̃j) in the input space.

Although the literature proposed a variety of kernel func-
tions elaborated during the past two decades of intense re-
search activity [48]–[50], in this work we restrain ourselves
to the polynomial kernel due to its intimate relation with
multiple scattering phenomena known to exist in the inter-
action between light and the materials in the scene. Thus, the
polynomial kernel is given by

κ(m̃i, m̃j) = (m̃
>
i m̃j + c)d , (6)

where d is the polynomial degree and c ≥ 0 is a real number.
Due to relevant findings reported in [51] concerning the order
of multiple reflection models and the good results obtained
in [35], in this paper we assume d = 2 and c = 1 in all
simulations.

B. LS-SVR-based unmixing

In [21] the authors proposed to solve the unmixing problem
accounting for the model in (1)–(2) by considering a multi-
kernel generalization of standard least-squares support vector
regression (LS-SVR) methods [52]. The resulting optimization
problem is given by

(ân, ψ̂n) = argmin
an, ψn

1

2

(
‖an‖2 + ‖ψn‖2H +

1

µ
‖ξn‖22

)
(7)

subject to an ≥ 0 , 1>an = 1 ,

ξn,` = yn,` − a>n m̃` − ψn(m̃`), ` = 1, . . . , L ,

where ân and ψ̂n are the estimated abundance vector and
nonlinear function for the n−th pixel.

Problem (7) is solved using standard dual formulation based
on the Lagrangian [21]. Although problem (7) presents an
effective way of modeling both the linear trend and the
nonlinear mixing occurring in a given pixel, it fails to impose
any smooth structure over the abundance estimation within
neighboring pixels.

Standard regularization approaches such as the TV have
considered an additional term to the cost function in prob-
lem (7) that penalizes spatial discontinuities in the abundance
maps [35]. However, as discussed in the introduction, this
strategy is not the most effective in exploring spatial in-
formation contained in the image. Besides, it introduces an
additional parameter that must be carefully tuned in order to
achieve good performance.

In the following, we present a multiscale formulation for the
nonlinear mixing model in (1)–(2) that enables us to better
exploit the spatial regularity in HSIs, leading to improved
results when compared to the TV-based strategy. Compared to
linear unmixing, the application of a multiscale formulation to
kernel-based nonlinear unmixing leads to specific challenges
that need to be addressed. This is specially true in the present
work, as quadratic equality constraints need to be reformulated
to allow for the automatic determination of the parameters, and
thus for a blind algorithm as detailed in Section IV.
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III. A MULTISCALE NONLINEAR MIXING MODEL

Traditional regularization approaches (e.g., Tikhonov or TV)
introduce spatial regularity by promoting similarity between
abundances at fixed spatial neighborhoods. Recently, more
flexible approaches emerged exploring irregular and data-
dependent image structures that can generally be described
under a graph or manifold regularization framework [38], [39],
[53]. In this case, a graph is first constructed to represent the
similarity between pairs of pixels in the HSI using distance
metrics that can be either defined explicitly [54] or derived
indirectly using image (over)-segmentation methods such as
superpixels, ultrametric contour maps (UCM), or binary par-
tition trees (BPT) [55]–[57]. Afterwards, abundances corre-
sponding to pixels that are similar according to the graph can
be constrained to have similar proportions in the SU problem,
which preserves the geometric structure found in the HSI [38],
[39], [58]. Despite providing a significant amount of flexibility,
graph regularization can still lead to computationally costly
SU problems. More importantly though, this approach does
not provide a clear insight about the multiscale abundance
interactions in a way that could motivate the design of the
algorithms, which makes the selection of the regularization
parameters difficult in practical scenarios.

Motivated by the results in [40], [41], we propose to intro-
duce spatial information into SU by representing this problem
separately in two spatial scales, which significantly reduces the
computational complexity of SU. Moreover, this also makes
the inter-scale interaction between the abundances explicit in
the resulting optimization problem, which is essential for the
theoretically principled parameter design strategy presented in
Section IV. Specifically, we divide the SU problem into two
consecutive steps. First, we represent the nonlinear mixing
process in an approximation (coarse) spatial scale (C) which
preserves relevant inter-pixel spatial contextual information.
Pixels in the coarse spatial scale can be unmixed independently
from each other. The recovered coarse abundance maps are
then mapped back to the original image domain (D) and used
as prior information to regularize the second unmixing process
applied to the original image to promote spatial dependency
between neighboring pixels.

A. Unmixing in the coarse scale

Denote the HSI and the abundance map for all pixels
by Y = [y1, . . . ,yN ] and A = [a1, . . . ,aN ], respectively.
We consider a dimensionality reduction transformation W ∈
RN×K , K < N , constructed based on relevant contextual
inter-pixel information present in the observed image Y , that
maps both the HSI and the abundance map to the approxima-
tion domain. The transformed matrices are given by

YC = YW , AC = AW , (8)

where YC = [yC1 , . . . ,yCK ] ∈ RL×K and AC =
[aC1 , . . . ,aCK ] ∈ RP×K are, respectively, the HSI and the
abundance matrix in the coarse approximation scale.

Various methods can be used to construct the transforma-
tion W . Specifically, W must group pixels that are spa-
tially adjacent and spectrally similar and must respect image

Figure 1. Cuprite image (left) and its superpixel decomposition (right).

borders by not grouping pixels corresponding to different
image structures or features. Following the same approach as
in [40], [41], we consider the superpixel decomposition of
the image Y for the transformation W . Besides satisfying
the criteria outlined above, multiscale decompositions based
on superpixel algorithms have shown excellent performance
in SU considering both sparsity [40] and variability of the
endmembers [41]. Superpixel algorithms group image pixels
into different spatially compact neighborhoods with similar
spectral information [55], decomposing the image into a set
of contiguous homogeneous regions whose size and regularity
are controlled by adjusting a set of parameters. Furthermore,
the superpixel decomposition can be computed very efficiently
by employing low-cost algorithms such as the SLIC [55].
The transformation W is thus constructed such that YW
computes the superpixel decomposition of the image Y , and
returns the averages of all pixels inside each superpixel region.
The effect of the transformation W on the Cuprite HSI
is illustrated in Figure 1. Note that, besides the superpixel
decomposition, other image (over)-segmentation strategies can
also be used to construct W , such as e.g., UCM or BPT [56],
[57], which can also provide hierarchical (multiscale) repre-
sentations of HSIs.

Considering the nonlinear observation model (1), the trans-
formed image in (8) leads to an equivalent mixing model in
the coarse spatial domain, which is given by

yCi,` =
1

|Ni|
∑
n∈Ni

(
m̃`an + ψn(m̃`) + en,`

)
= m̃`aCi + ψCi(m̃`) +

1

|Ni|
∑
n∈Ni

en,` , (9)

where yCi,` is the `-th entry of yCi , Ni is the set of indexes
of the pixels contained within the i-th superpixel, | · | denotes
the cardinality of a set, and aCi and ψCi , given by

aCi =
1

|Ni|
∑
n∈Ni

an , ψCi(m̃`) =
1

|Ni|
∑
n∈Ni

ψn(m̃`) ,

for i = 1, . . . ,K, denote the fractional abundances and
nonlinear contributions at the coarse spatial scale.

Following the observation model (9), the SU problem at
the coarse spatial scale can be formulated using the LS-
SVR framework presented in Section II-B, which leads to the
following optimization problem:

{âCi , ψ̂Ci} = argmin
{aCi ,ψCi ,ξCi}

1

2

K∑
i=1

(
‖ψCi‖2H + ‖aCi‖22

)
(10)

subject to aCi ≥ 0 , 1>aCi = 1 , i = 1, . . . ,K ,

ξCi = yCi −MaCi − ψCi(M), i = 1, . . . ,K ,
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1

K

K∑
i=1

‖ξCi‖
2
2 = C0 ,

where âCi and ψ̂Ci are the estimated abundance vector and
nonlinear function for the i−th superpixel and ψCi(M) =
[ψCi(m̃1), . . . , ψCi(m̃L)]

>. Parameter C0 is a positive con-
stant that constrains the reconstruction error of the algorithm,
and operates in an analogous manner to a regularization. Dif-
ferently from (7), in (10) we choose to limit the reconstruction
error using an equality constraint instead of directly adding
‖ξCi‖

2
2, i = 1, . . . ,K as a regularizer in the cost function.

The rationale is that, unlike the regularization parameter µ
in (7), the constant C0 has a clear physical interpretation. This
characteristic is exploited in the next section where we present
a proper methodology for automatically setting C0.

B. Unmixing in the image domain
The abundance maps estimated at the coarse spatial scale,

denoted by AC = [aC1 , . . . ,aCK ], can be used to regularize
the original unmixing problem. To this end, we convert the
abundance map from the coarse approximation domain C back
to the original image domain D as

ÂD = ÂCW
∗ . (11)

Matrix W ∗ ∈ RK×N is a conjugate transformation to W , and
takes the image from the coarse domain C back to the original
(uniform) image domain. This is performed by attributing the
value âCi to all pixels in ÂD that lie within the i-th superpixel.
Thus, ÂD can be viewed as a coarse version of Â in the
original image domain. After computing ÂD using (11), the
SU problem for all pixels is given by

{ân, ψ̂n} = argmin
{an,ψn,ξn}

1

2

N∑
n=1

‖ψn‖2H (12)

subject to an ≥ 0, 1>an = 1 , n = 1, . . . , N ,

ξn = yn −Man − ψn(M) , n = 1, . . . , N ,

1

N

N∑
n=1

‖ξn‖22 = C1 ,
1

N

N∑
n=1

‖an − âDn‖22 = C2 ,

where ân and ψ̂n are the estimated abundance vector and
nonlinear function for the n−th pixel in the original image
domain, ψn(M) = [ψn(m̃1), . . . , ψn(m̃L)]

>, and C1, C2 are
positive constants that constrain the reconstruction error and
the abundance variability across scales. Again, as in (10), we
use equality constraints instead of additive penalty terms in
the cost function due to the easier interpretation of C1 and C2

when compared to regularization parameters. This improved
interpretability is exploited in the next section to provide
a methodology for automatically adjusting these constants.
We note that the nonlinear equality constraints make the
optimization problems (10) and (12) non-convex. An efficient
algorithm will be proposed in Section V to address this issue.

IV. DETERMINING THE REGULARIZATION CONSTANTS

A significant challenge in regularized unmixing algorithms
consists in determining the regularization constants. The pro-
posed formulation requires the selection of C0, C1 and C2

in problems (10) and (12). Although most works assume
that such constants can be determined empirically, several
frameworks have been proposed to select regularization pa-
rameters in (ill-posed) inverse problems, such as the general-
ized cross validation [59], risk estimation for reconstruction
error minimization [60], [61] or the L-curve [62]. However,
determining these parameters blindly for a given problem is
usually difficult and computationally intensive. This motivates
the consideration of external a priori information whenever
possible, which allows the application of conceptually simpler
and more reliable solutions.

Classical approaches in this latter category are the Chi-
squared method [63]–[65] and the closely related discrepancy
principle [66]. The underlying idea behind these methods is
to evaluate the statistical properties of the data reconstruction
term in the cost function when the estimated solution is equal
to the desired (i.e., true) parameters. For an observation model
such as (1), evaluating the true parameters in the cost function
of (7) would result in the residuals ξn being equal to the
observation noise en – which, under a Gaussianity hypothesis,
makes the reconstruction error Chi-squared-distributed, giving
the technique its name. The regularization constant is then
selected so that the estimated solution yields a residual with the
same statistical properties of the observation noise, which are
assumed to be known [63]–[65]. This can be performed using
equality constrained optimization problems such as in (10)
and (12) [67], which immediately translates the choice of
constants C1, C2 and C3 as the problem of determining the
statistical properties of the corresponding equality terms.

In this section, we will extend this strategy to the present
SU problem by determining the statistical averages of the
reconstruction error in both scales and the inter-scale abun-
dance variation. Although in principle this requires knowledge
about the true abundance solutions we want to estimate
(which historically limited the applicability of the Chi-square
technique to more complex problems like (12)), we will be
able to provide a theoretically sound and yet simple strategy
for its reliable estimation.

More precisely, constant C0 in (10) reflects the average
noise power in the coarse image scale. Constants C1 and C2

in (12) reflect, respectively, the average noise power in the
detail scale and the average energy of the differences between
the fractional abundances and their estimates in the coarse
domain. Under the Chi-squared framework, these constants
are defined in terms of statistical means as

C0 = E

{
1

K

K∑
i=1

‖yCi −MaCi − ψCi(M)‖22
}

= E

{
1

K

K∑
i=1

‖eCi‖22
}
, (13)

C1 = E

{
1

N

N∑
n=1

‖yn −Man − ψn(M)‖22
}

= E

{
1

N

N∑
n=1

‖en‖22
}
, (14)
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C2 = E

{
1

N

N∑
n=1

‖an − aDn‖22
}
, (15)

where E{·} is the expected value operator with respect to the
true distribution of the parameters within the brackets, and en
and eCi are the errors related to the fine and coarse domains
of the n-th pixel and i-th superpixel, respectively. In this case,
the quadratic constraints in problems (10) and (12) can be seen
as approximations to the above expected values.

Constants C0 and C1 depend directly on the noise level and
modeling errors represented by en. We write

en = e0,n + eψ,n , (16)

where e0,n is a Gaussian noise term with zero mean and
covariance Σe, and eψ,n represents modeling errors. Before
proceeding, we make the following assumptions:
A1) The additive noise is spatially uncorrelated, i.e.,

E{e>0,ne0,m} = 0, ∀n 6= m.
A2) The noise and modeling errors e0,n and eψ,n are uncor-

related.
A3) The modeling errors eψ,n are assumed to be spatially

correlated and approximately constant within each su-
perpixel, that is:

eψ,n ≈ eψ,m , ∀m,n ∈ Ni, i = 1, . . . ,K . (17)

This hypothesis is motivated by the spatial smoothness
of both the abundances and the nonlinear contributions
in the mixing model [68], [69].

A4) The expected value of the modeling error’s norm is the
same for all pixels, and is represented as

E
{
‖eψ,n‖22

}
= σ2

e,ψ , n = 1, . . . , N . (18)

A5) The noise covariance matrix is the same for all image
pixels, i.e.,

E
{
e0,ie

>
0,i

}
= E

{
e0,je

>
0,j

}
, 1 ≤ i, j ≤ N

= Σe .
(19)

A6) The vectors an − aDn , M †(ψn(M) − ψCn(M)
)

and
M †(en− 1

|Nn|
∑
i∈Nn ei) are mutually uncorrelated and

zero-mean.
We denote the average size of each superpixel by S = N/K.

In the following, we will evaluate the expectations in (13)–
(15) in order to provide well-founded means to select the
constants C0, C1 and C2.

A. Determining the constant C1

Using hypothesis A1, A2, A4 and A5, constant C1 can be
computed as:

C1 = E

{
1

N

N∑
n=1

‖e0,n + eψ,n‖22
}

(A2)
=

1

N

N∑
n=1

(
E
{
‖e0,n‖22

}
+ E

{
‖eψ,n‖22

})
(A4,A5)
= tr{Σe}+ σ2

e,ψ . (20)

B. Determining the constant C0

Constant C0 can be derived in a similar way by assuming
A1–A4:

C0 = E

{
1

K

K∑
i=1

‖eCi‖22
}

= E

{
1

K

K∑
i=1

∥∥∥ 1

|Ni|
∑
n∈Ni

(
e0,n + eψ,n

)∥∥∥2
2

}

= E

{
1

K

K∑
i=1

1

|Ni|2
(∥∥∥ ∑

n∈Ni

e0,n

∥∥∥2
2
+
∥∥∥ ∑
n∈Ni

eψ,n

∥∥∥2
2

+ 2
∑
n∈Ni

∑
m∈Ni

〈e0,n, eψ,m〉
)}

(A2)
=

1

K

K∑
i=1

1

|Ni|2
∑
n∈Ni

E
{
‖e0,n‖22

}
+

1

K

K∑
i=1

1

|Ni|2
E

{∥∥∥ ∑
n∈Ni

eψ,n

∥∥∥2
2

}
. (21)

The modeling errors are not uncorrelated and zero mean in
each superpixel. By approximating K−1

∑K
i=1 |Ni|−1 ' S−1

and using hypothesis A3, C0 can be approximated as

C0 '
1

S
tr{Σe}+

1

K

K∑
i=1

1

|Ni|2
∑
n∈Ni

E
{
|Ni|

∥∥eψ,n∥∥22}
' 1

S
tr{Σe}+ σ2

e,ψ . (22)

Note that this shows that the modeling errors are more
significant relative to the noise at the coarse spatial scale. This
is because the contribution of the noise is reduced by a factor
of S whereas the modeling errors retain the same energy.

C. Determining the constant C2

The constant C2 is slightly more challenging to compute
than the previous ones. We denote the left pseudo-inverse of
M as M † ∈ RP×L, that is, M †M = IP . Then, we can
consider the following quantity:

E

{
1

N

N∑
n=1

‖M †(yn − yDn)‖
2

}

= E

{
1

N

N∑
n=1

∥∥∥M †(Man + en + ψn(M)

−MaDn − ψC∗n(M)− 1

|Nn|
∑
i∈Nn

ei
)∥∥∥2} . (23)

The expectation on the right hand side of (23) can be com-
puted by using assumption A6. This assumption is reasonable
since each of the terms in A6 comprises fluctuations between
the coarse and fine spatial scales, which can be expected to
be of zero mean. Thus, by noting that

E
{
‖M †(Man −MaDn)‖2

}
= E

{
‖an − aDn‖2

}
(24)
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and using A6, we can write (23) as

E

{
1

N

N∑
n=1

‖M †(yn − yDn)‖
2

}
= E

{
1

N

N∑
n=1

‖an − aDn‖2
}

+ E

{
1

N

N∑
n=1

‖M †(ψn(M)− ψCn(M)
)
‖2
}

+ E

{
1

N

N∑
n=1

‖M †(en − 1

|Nn|
∑
i∈Nn

ei)‖2
}
. (25)

In the following, we will expand the last term on the right
hand side of (25). Using A1–A4, the summand for for each
pixel can be written as

E
∥∥∥M †

(
en −

1

|Nn|
∑
i∈Nn

ei

)∥∥∥2
= E

∥∥∥M †
(
e0,n + eψ,n −

1

|Nn|
∑
i∈Nn

(
e0,i + eψ,i

))∥∥∥2
(A2)
= E

∥∥∥M †
(
e0,n −

1

|Nn|
∑
i∈Nn

e0,i

)∥∥∥2
+ E

∥∥∥M †
(
eψ,n −

1

|Nn|
∑
i∈Nn

eψ,i

)∥∥∥2 . (26)

Using hypothesis A3 and equation (17), the second term of
(26) can be approximated as

E
∥∥∥M †

(
eψ,n −

1

|Nn|
∑
i∈Nn

eψ,i

)∥∥∥2 ≈ 0 . (27)

This can be intuitively reasoned by accounting for the spatial
correlation of the modeling errors, where eψ,n in each pixel
is very similar to the average of the modeling errors in its
respective superpixel. This leads to

E
∥∥∥M †(en − 1

|Nn|
∑
i∈Nn

ei)
∥∥∥2

' E
∥∥∥M †

(
e0,n −

1

|Nn|
∑
i∈Nn

e0,i

)∥∥∥2
= E

∥∥∥M †e0,n
(
1− 1

|Nn|
)
−M † 1

|Nn|
∑

i∈Nn\{n}

e0,i

∥∥∥2
(A1)
= E

∥∥∥M †e0,n
(
1− 1

|Nn|
)∥∥∥2 + E

∥∥∥M † 1

|Nn|
∑

i∈Nn\{n}

e0,i

∥∥∥2
(A1)
= E

∥∥∥M †e0,n
(
1− 1

|Nn|
)∥∥∥2 + 1

|Nn|2
∑

i∈Nn\{n}

E ‖M †e0,i‖2

(A5)
= E ‖M †e0,n‖2

(
1− 1

|Nn|
)2

+
|Nn| − 1

|Nn|2
E ‖M †e0,n‖2

= E ‖M †e0,n‖2
|Nn| − 1

|Nn|
, (28)

where "\" denotes the set difference operator.
Since the noise statistics are spatially invariant, see A5,

E ‖M †e0,n‖2 = E
{
tr{M †ene

>
n (M

†)>}
}

= ‖M †Σ1/2
e ‖2F (29)

and, by approximating the superpixel sizes by their average
value (i.e. |Nn| ' S), we can approximate (26) as

E

{
1

N

N∑
n=1

‖M †(en − 1

|Nn|
∑
i∈Nn

ei)‖2
}

' ‖M †Σ1/2
e ‖2F

S − 1

S
. (30)

Finally, approximating the expectations with respect to an
and ψn by their instantaneous values and using the estimates
âDn and ψ̂Cn obtained as solutions to the optimization prob-
lem (10), equation (25) can be approximated as

1

N

N∑
n=1

‖an − âDn‖2 '
1

N

N∑
n=1

‖M †(yn − yDn)‖
2

− 1

N

N∑
n=1

‖M †(ψn(M)− ψ̂Cn(M)
)
‖2

− ‖M †Σ1/2
e ‖2F

S − 1

S
. (31)

D. The updated fine scale optimization problem

Using these results, we can substitute the second quadratic
equality constraint of problem (12) by (31), resulting in the
following problem

argmin
{an,ψn,ξn}

1

2

N∑
n=1

‖ψn‖2H (32)

subject to an ≥ 0 , 1>an = 1 , n = 1, . . . , N ,

ξn = yn −Man − ψn(M) , n = 1, . . . , N ,

1

N

N∑
n=1

‖ξn‖22 = C1 ,

1

N

N∑
n=1

‖an − âDn‖22 = CY − CE

− 1

N

N∑
n=1

‖M †(ψn(M)− ψ̂Cn(M)
)
‖2 ,

where constants CY and CE are defined as

CY =
1

N

N∑
n=1

‖M †(yn − yDn)‖
2 ,

CE = ‖M †Σ1/2
e ‖2F

S − 1

S
.

(33)

Defining

ξψ,n =M †(ψn(M)− ψ̂Cn(M)
)
, n = 1, . . . , N (34)

and multiplying the quadratic constraints by N/2, we can
represent problem (32) equivalently as

argmin
{an,ψn,ξn,ξψ,n}

1

2

N∑
n=1

‖ψn‖2H (35)

subject to an ≥ 0 , 1>an = 1 , n = 1, . . . , N ,

ξn = yn −Man − ψn(M) , n = 1, . . . , N ,
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1

2

N∑
n=1

‖ξn‖22 =
N

2
C1 ,

1

2

N∑
n=1

(
‖an − âDn‖22 + ‖ξψ,n‖2

)
=
N

2
(CY − CE) ,

ξψ,n =M †(ψn(M)− ψ̂Cn(M)
)
, n = 1, . . . , N .

Problem (35) can now be used instead of (12) to perform
unmixing in the original spatial scale.

V. SOLVING THE OPTIMIZATION PROBLEMS

The quadratic equality constraints in (10) and (35) make
the optimization problems non-convex. Furthermore, the func-
tional form of the variables ψCi and ψn makes them hard to be
optimized in their primal form. Thus, we resort to a Lagrangian
relaxation and solve the dual optimization problem, which
is concave and finite-dimensional [49], [70]. Although the
non-convexity of the constraints implies the possibility of
a non-zero duality gap, we will show in Section V-C that
strong duality holds under mild conditions for problems (10)
and (35). Thus, this approach incurs no loss of performance.

A. The coarse scale dual problem

The Lagrangian of (10) is given by

JC =
K∑
i=1

{
1

2
‖ψCi‖2H + ‖aCi‖22 +

µ0

2

(
‖ξCi‖

2
2 − C0

)
+ λCi(1

>aCi − 1)− γ>CiaCi

− β>Ci
(
ξCi − yCi +MaCi + ψCi(M)

)}
, (36)

where µ0, βCi , λCi and γCi ≥ 0 are the Lagrange multipliers.
The optimality conditions with respect to the primal variables
are given by

a∗Ci =M
>βCi + γCi − λCi1 ,

ψ∗Ci =

L∑
`=1

βCi,`κ(·, m̃`) ,

ξ∗Ci =
1

µ0
βCi .

(37)

By replacing these solutions into the Lagrangian in (36), we
can derive the dual optimization problem, which is given by

max
µ0

max
ωC

K∑
i=1

(
ω>CiBC(µ0)ωCi + cCiωCi −

µ0

2
C0

)
subject to γCi ≥ 0 , i = 1, . . . ,K ,

(38)

where ωC =
[
ω>1 , . . . ,ω

>
K

]>
, ωCi =

[
β>Ci ,γ

>
Ci , λCi

]>
is the

vector of dual variables, and BC and cCi are given by

BC(µ0) = −
1

2

 K + 1
µ0
I +MM> M −M1

M> I −1

−1>M> −1> P

 ,
(39)

cCi =
[
y>Ci 0 −1

]
. (40)

B. The fine scale dual problem

The Lagrangian of (35) is given by

JD =

N∑
n=1

{
1

2
‖ψn‖2H +

µ1

2

(
‖ξn‖22 − C1

)
+ λn(1

>an − 1)

+
µ2

2

(
‖an − âDn‖22 − CY + ‖ξψ,n‖2 + CE

)
+ µ>3,n

(
M †(ψn(M)− ψ̂Cn(M)

)
− ξψ,n

)
− β>n

(
ξn − yn +Man + ψn(M)

)
− γ>nan

}
, (41)

where µ1, µ2, µ3,n, βn, γn and λn are the Lagrange multi-
pliers. Differentiating the optimality conditions with respect to
the primal variables and equating the result to zero we obtain

a∗n = âDn +
1

µ2

(
M>βn + γn − λn1

)
,

ψ∗n =

L∑
`=1

βn,`κ(·, m̃`)−
L∑
`=1

[
[µ3,n]

>M †]
`
κ(·, m̃`) ,

ξ∗n =
1

µ1
βn ,

ξ∗ψ,n =
1

µ2
µ3,n ,

(42)

where [ · ]` denotes the `-th position of a vector.
Substituting the solution to the primal problem in the

Lagrangian, we obtain the following dual problem

max
µ1,µ2

max
ω

N∑
n=1

(
ω>nB(µ1, µ2)ωn + cnωn

)
− N

2

(
µ1C1 + µ2CY − µ2CE

)
(43)

subject to γn ≥ 0 , n = 1, . . . , N ,

where ω =
[
ω>1 , . . . ,ω

>
N

]>
is a vector containing the dual

variables, with entries given by ωn =
[
β>n , µ

>
3,n, γ

>
n , λ

>
n

]>
.

The terms B(µ1, µ2) and cn are defined in (44).
Although (38) and (43) being Lagrangian dual problems

implies that they are concave with respect to all variables [70],
they are still nonlinear and thus computationally intensive to
solve given their large dimension. However, the cost function
of (43) (resp. (38)) becomes quadratic when µ1 and µ2 (resp.
µ0) are fixed. This will allow us to propose an efficient
algorithm in Section V-D to solve these problems.

C. Strong duality of the optimization problems

Since optimization problems (10) and (35) are non-convex,
it does not immediately follows that the Lagrangian duality
gap is zero. This means that, unless shown otherwise, the
optimal solutions to the dual problems in (43) and (38) can
be different from those of (10) and (35). Fortunately, building
upon results from non-convex optimization in [71] we can
show that strong duality holds for this problem. This is
formalized in the following result:

Theorem 1. Suppose that the variables µ∗1 and µ∗2 (resp. µ∗0)
that solve problem (43) (resp. (38)) are strictly positive. Then,
strong duality holds for problem (12) (resp. (10)).
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B(µ1, µ2) = −
1

2


K + 1

µ1
I + 1

µ2
MM> −K

(
M †)> 1

µ2
M − 1

µ2
M1

−M †K 1
µ2
I +M †K

(
M †)> 0 0

1
µ2
M> 0 1

µ2
I − 1

µ2
1

− 1
µ2

1>M> 0 − 1
µ2

1> 1
µ2
P

 , ωn =


βn
µ3,n

γn
λn

 ,
cn =

[
−a>DnM

> + y>n −ψCn(M)>
(
M †)> −a>Dn 1>aDn − 1

]
.

(44)

Proof. The proof builds upon the results in [71, Theorem 6].
Due to space limitations, it is relegated to the supplemental
material, also available in [72].

This shows that the proposed Lagrangian relaxation strategy
can achieve the same solution to the original problems, which
was the case in all our experiments.

D. An efficient solution to the Lagrangian dual problem

In order to devise an efficient algorithm for solving prob-
lems (38) and (43), we first note that the purpose of the
maximization with respect to µ0, µ1 and µ2 is to ensure that
the quadratic equality constraints in the primal problems (10)
and (35) are satisfied. Thus, we will attempt to write the dual
problem in an equivalent form that will allow us to exploit
this property to obtain a simpler solution.

The optimality conditions for the coarse scale dual prob-
lem (38) with respect to µ0 are obtained by differentiating the
cost function and setting it equal to zero, which gives

g0(µ0;ω) = 0 , (45)

where function g0 is defined as

g0(µ0;ω) =
1

µ2
0

K∑
i=1

‖βCi‖
2
2 −K C0 . (46)

Similarly, for the fine scale dual problem (43) the optimality
conditions with respect to µ1 and µ2 will be given by{

g1(µ1, µ2;ω) = 0 ,

g2(µ1, µ2;ω) = 0 ,
(47)

where functions g1 and g2 are defined as

g1(µ1, µ2;ω) =
1

µ2
1

N∑
n=1

‖βn‖22 −N C1 ,

g2(µ1, µ2;ω) =
1

µ2
2

N∑
n=1

(
‖M>βn + γn − λn1‖22 + ‖µ3,n‖22

)
−N

(
CY − CE

)
. (48)

Let us define the following functions

ω̃C(µ0) = argmax
ωC :γCi≥0

K∑
i=1

(
ω>CiBC(µ0)ωCi + cCiωCi

)
(49)

for the coarse scale problem, and

ω̃(µ1, µ2) = argmax
ω :γn≥0

N∑
n=1

(
ω>nB(µ1, µ2)ωn + cnωn

)
(50)

for the fine scale problem. By substituting (49) in g0 and (50)
in g1 and g2, the optimal µ0, µ1 and µ2 can be found by
solving two systems of equations, one for the coarse scale
problem, given by

find µ0 such that g0(µ0; ω̃C) = 0 , (51)

and another for the fine scale problem, given by

find µ1, µ2 such that
{
g1(µ1, µ2; ω̃) = 0 ,
g2(µ1, µ2; ω̃) = 0 ,

(52)

where we omitted the dependency of functions ω̃C and ω̃
on µ0, µ1 and µ2 for notational simplicity. This consists in
maximizing the inner optimization problems in (38) and (43)
(with respect to ωC or ω) such that the quadratic constraints
of the primal problems are satisfied.

Although many techniques can be used to solve (51) (resp.
(52)), one must note that evaluating functions ω̃C(µ0) (resp.
ω̃(µ1, µ2)) is computationally expensive. Thus, to have an
efficient solution we resort to a bisection strategy, which is
a robust algorithm that converges to approximate solutions to
these problems with relatively few function evaluations.

Although the solution of (51) using the conventional bisec-
tion algorithm is straightforward, the multidimensional case
is less clear. Thus, we present it in the remaining of this
section. The multidimensional bisection algorithm relies on
the Poincaré-Miranda theorem, which states that if a set of
multivariate functions change sign in an interval for any of
its coordinates, then there is at least one root, common to all
such functions, within that interval [73], [74]. This condition
can be used to verify whether a given region in the function’s
domain contains a zero or not.

Thus, by defining a search space and dividing it in two parts
along one of the coordinates, we can test to see in which half
the root is contained. By performing this operation alternately
along each of the function coordinates, we can get arbitrarily
close to the root [73], [74]. This procedure is detailed in
Algorithm 1. In all our experiments, we ran Algorithm 1 for
ten iterations or until the relative variation of the parameters
became smaller than a tolerance factor ε = 0.1. The final
Blind Multiscale Unmixing Algorithm for Nonlinear spectral
unmixing (BMUA-N) is presented in Algorithm 2.

VI. DETERMINING THE NUMBER OF SUPERPIXELS

A parameter of fundamental importance in the design of
the proposed multiscale transform W is the number of super-
pixels K, or, equivalently, the average size of each superpixel
S = N/K. The purpose of the multiscale transform is to
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Algorithm 1: Bi-dimensional bisection algorithm
Input : Functions g1, g2 : R2 → R.
Output: The estimated root (ar, br).

1 Define an initial rectangle containing the root
R = {(a1, b1), (a2, b1), (a1, b2), (a2, b2)}, a1 < a2, b1 < b2 ;

2 while Stopping criteria is not satisfied do
3 Compute centers: (ac, bc) =

(
(a2 − a1)/2, (b2 − b1)/2

)
;

4 Divide the search space in two and check for the root:
R′ = {(a1, b1), (ac, b1), (a1, b2), (ac, b2)} ;

5 Evaluate g1 and g2 at the four vertices of R′;
6 if the sign of both g1 and g2 is not constant at all vertices

of R′ then
7 a2 = ac ;
8 else
9 a1 = ac

10 end
11 Partition rectangle across the other dimension

R′ = {(a1, b1), (a2, b1), (a1, bc), (a2, bc)} ;
12 Evaluate g1 and g2 at the four vertices of R′;
13 if the sign of both g1 and g2 is not constant at all vertices

of R′ then
14 b2 = bc ;
15 else
16 b1 = bc
17 end
18 end
19 (ar, br) =

(
(a2 − a1)/2, (a2 − a1)/2

)
;

20 return (ar, br);

Algorithm 2: BMUA-N
Input : Y , M , σ2

e,ψ , the number of superpixels K and
multiscale decomposition matrix W .

Output: The estimated abundance matrix Â.
1 Estimate the noise covariance matrix Σe from Y ;
2 Compute the constants C0, C1, CY and CE using

equations (22), (20), and (33) ;
3 Compute YC = Y W ;
4 Find ÂC by solving (10) using the procedures detailed in

Sections (V-A) and (V-D);
5 Compute ÂD using (11);
6 Find Â by solving (35) using the procedures detailed in

sections (V-B) and (V-D);
7 return Â;

group semantically/spectrally similar pixels, which are then
averaged (within each superpixel) to constitute the coarse scale
image, capturing spatial correlation and reducing the influence
of noise. From this definition, the desired average superpixel
size could be intuitively defined as the largest value of S such
that the superpixels are still spectrally homogeneous.

In order to evaluate the homogeneity of the superpixels, we
consider the distribution of the singular values of the sets of
pixels within each superpixel, which are ordered in the form
of matrices (matricized). Thus, the j-th matricized superpixel
Y j can be written as

Y j =
[
yI1 , . . . ,yI|Nj |

]
, {I1, . . . , I|Nj |} ⊆ Nj , (53)

for j = 1, . . . ,K. Denote the singular values of Y j by
ρj,1, ρj,2, . . . , ρj,|Nj |, ordered from the largest to the smallest
magnitude. The homogeneity of the j-th superpixel can then
be assessed using the ratio between the two largest singular

values of Y j , which intuitively evaluates how close Y j is to
being a rank-1 matrix. This measure has already been suc-
cessfully employed to detect heterogeneous superpixels in HS
segmentation [75]. We then define the average homogeneity
of all superpixels Hom(K) as a function of the number K of
superpixels as

Hom(K) =
1

K

K∑
j=1

|ρj,1|
|ρj,2|

, (54)

where we assume that ρj,2 exists and is nonzero. Thus, K can
be selected using the following simple criterion:

K = max j

subject to Hom(j) ≥ (1− ε)max
v

{
Hom(v)

}
,

Kmin ≤ j ≤ Kmax ,

(55)

where we restrict the number of superpixels to be within a
prescribed interval [Kmin,Kmax].

VII. COMPUTATIONAL COMPLEXITY ANALYSIS

The computational complexity of the proposed algorithm
depends mainly on the two bisection procedures in Algo-
rithm 2. Each iteration of the bisection method in the coarse
domain problem involves solving K quadratic problems (QPs)
in L+P +1 variables (one for each superpixel), whereas each
iteration of the bisection method in the original image scale
involves solving N QPs in L+2P +1 variables (one for each
pixel). Since the bisection method reduces the search domain
by half at each iteration, it converges linearly [74]. Neverthe-
less, this is sufficient to achieve a reasonable approximation
of the optimal parameters µ∗0, µ∗1 and µ∗2 in relatively few
iterations (≤ 10 in our experiments). To see how this compares
to other spatially regularized methods, consider for instance
the TV-based nonlinear SU algorithm in [35]. This algorithm
employs a variable splitting procedure that leads to an iterative
algorithm. At each iteration, N QPs in L+P+1 variables (one
for each pixel) and P linear systems in N variables (one for
each endmember) must be solved, which is comparable to our
method. This illustrates how the proposed separation of the
SU problem in two spatial scales maintains a computational
complexity that is competitive with other algorithms, even
when the estimation of the parameters is considered.

VIII. RESULTS

In this section, we evaluate the performance of the proposed
method using both synthetic and real datasets. The BMUA-N
is compared with the fully constrained least squares (FCLS),
with the unregularized K-Hype [21], with the TV-based K-
Hype (K-Hype-TV) [35], with the CDA-NL [76] and with the
NDU [23] algorithms. The performances were evaluated using
the Root Mean Squared Error (RMSE) between the estimated
abundance maps (RMSEA) and between the reconstructed im-
ages (RMSEY ). The RMSE between a true, generic matrix X
and its estimate X̂ is defined as

RMSEX =
√

1
NX
‖X −X̂‖2F , (56)

where NX denotes the number of elements in the matrix X .



PUBLISHED IN IEEE TRANSACTIONS ON IMAGE PROCESSING, DOI: 10.1109/TIP.2020.2978342 11

For the proposed method, the noise covariance matrix Σe
was estimated using the residual method described in [77],
[78], and the superpixel sizes were selected using the strategy
detailed in Section VI, with Kmin = N/8, Kmax = N/170
and ε = 0.1. The polynomial kernel described in (6) was used
with d = 2 for all kernel-based non-linear SU algorithms.

Table I
QUANTITATIVE RESULTS FOR DATA CUBES DC1 AND DC2.

DC1 data cube
BLMM PNMM

SNR Method RMSEA RMSEY RMSEA RMSEY

20dB

FCLS 0.2587 0.1143 0.1657 0.1038
K-Hype 0.0575 0.0816 0.0972 0.0769

K-Hype-TV 0.0371 0.0814 0.0800 0.0766
CDA-NL 0.0730 0.0821 0.1708 0.0789

NDU 0.0483 0.0736 0.1263 0.0802
BMUA-N 0.0326 0.0820 0.0730 0.0774

30dB

FCLS 0.2591 0.0836 0.1633 0.0731
K-Hype 0.0346 0.0258 0.0765 0.0242

K-Hype-TV 0.0323 0.0258 0.0757 0.0243
CDA-NL 0.0485 0.0265 0.1625 0.0290

NDU 0.0336 0.0256 0.1208 0.0323
BMUA-N 0.0325 0.0257 0.0734 0.0243

DC2 data cube
BLMM PNMM

SNR Method RMSEA RMSEY RMSEA RMSEY

20dB

FCLS 0.1718 0.1055 0.1554 0.1033
K-Hype 0.0723 0.0774 0.1165 0.0758

K-Hype-TV 0.0557 0.0771 0.1037 0.0758
CDA-NL 0.0648 0.0780 0.1871 0.0781

NDU 0.0518 0.0710 0.1363 0.0794
BMUA-N 0.0490 0.0771 0.1009 0.0759

30dB

FCLS 0.1714 0.0750 0.1553 0.0731
K-Hype 0.0503 0.0244 0.0994 0.0240

K-Hype-TV 0.0501 0.0244 0.0992 0.0240
CDA-NL 0.0491 0.0250 0.1803 0.0289

NDU 0.0422 0.0243 0.1318 0.0321
BMUA-N 0.0393 0.0245 0.0902 0.0241

A. Synthetic data sets

To compare the performance of the different algorithms
quantitatively, we created two synthetic datasets with spatially
correlated abundance maps, namely Data Cube 0 (DC0), with
70× 70 pixels, and Data Cube 1 (DC1), with 50× 50 pixels.
Both datasets were constructed using three spectral signatures
with 224 bands extracted from the USGS Spectral Library.
The synthetic abundance maps are displayed in the first row
of Figs. 2 and 3. The reflectance values were generated using
two nonlinear mixture models, namely, the bilinear mixing
model (BLMM), defined as

yn =Man +

P−1∑
i=1

P∑
j=i+1

an,ian,jmi ◦mj + en , (57)

with ◦ being the Hadamard product, and the post-nonlinear
mixing model (PNMM), defined as

yn = (Man)
0.7 + en , (58)

Figure 2. Abundance maps estimated by all algorithms for the data cube DC1.

Figure 3. Abundance maps estimated by all algorithms for the data cube DC2.

where a fixed exponential value of 0.7 has been applied to the
LMM result. Finally, white Gaussian noise with signal to noise
ratios (SNR) of both 20 and 30dB was added to all datasets.

The parameters for each algorithm were either fixed or
selected based on a grid search performed for each dataset,
with search ranges defined based on those ranges discussed
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Table II
AVERAGE EXECUTION TIME (IN SECONDS) OF THE ALGORITHMS.

DC1 DC2 Cuprite Urban Jasper Ridge

FCLS 0.59 0.30 11.66 0.34 1.37
K-Hype 4.54 2.40 43.29 1.42 75.17

K-Hype-TV 43.27 22.51 405.81 17.72 74.08
CDA-NL 29.26 15.57 3295.99 27.90 137.63

NDU 263.30 141.04 2260.45 74.32 483.34
BMUA-N 144.60 79.03 1380.21 45.21 240.12

Figure 4. Subscene of the Urban (left) and Jasper Ridge (right) HIs.

by the authors in the original publications. For the BMUA-N,
we fixed the modeling errors as a small value relative to the
average pixel energy, given by σ2

e,ψ = 10−8 1
N

∑N
n=1 ‖yn‖22.

For the K-Hype algorithm, we selected the parameter among
the values µ ∈ {0.001, 0.002, 0.005, 0.01, 0.02, 0.1, 1}. For
the K-Hype-TV, the parameters were selected among the
following values: µ ∈ {0.001, 0.002, 0.005, 0.01, 0.02, 0.1, 1},
η ∈ {0, 0.01, 0.1, 0.25, 0.5, 0.75, 1}. For the NDU algorithm,
the parameters were selected among the values λ, µ ∈
{0.0005, 0.005, 0.05, 0.5, 5, 50, 500, 5000}.

1) Discussion: The quantitative results of all algorithms are
shown in Table I. The proposed BMUA-N method outper-
formed the competing algorithms for almost all cases, except
for one where its result was very close to that of the TV-based
solution. This is despite the fact that the parameters of K-Hype,
K-Hype-TV and NDU were selected through a grid search
procedure. The abundance maps provided by the nonlinear SU
methods for both datacubes are displayed in Figures 2 and 3
for illustrative purposes for the case of the BLMM with an
SNR of 20dB. The FCLS results were not displayed for the
sake of space since they were significantly worse than those of
the other algorithms. It can be seen that the BMUA-N results
better approximates the ground truth, and even though the K-
Hype-TV solution is smoother for DC2 its mean results are
farther from the true values. Moreover, although the NDU
achieves relatively good abundance reconstructions for the
BLMM, the results are noisy and not as good for the PNMM.
The reconstruction errors of the nonlinear SU algorithms, also
shown in Table I, were similar and significantly lower than
those of the FCLS. The execution times of the BMUA-N
algorithm, shown in Table II, are about 3.5 times higher than
those of K-Hype-TV and half those of the NDU. Thus, the
complexity of the BMUA-N is still on the same order of the
other state of the art algorithms even though no significant
parameter tuning is necessary.

Figure 5. Estimated abundance maps for four endmembers of the Cuprite
image.

Figure 6. Estimated abundance maps for the Urban HI subscene.

Table III
RECONSTRUCTION ERRORS (RMSEY ) FOR THE REAL DATASETS.

FCLS K-Hype K-Hype-TV CDA-NL NDU BMUA-N

Cuprite 0.0107 0.0082 0.0082 0.0095 0.0080 0.0090
Urban 0.0228 0.0434 0.0060 0.0063 0.0159 0.0062

Jasper Ridge 0.0225 0.0562 0.0164 0.0168 0.0167 0.0170

B. Experiments with real data

For the simulations with real data we consider the Cuprite,
the Urban and the Jasper Ridge datasets, which were captured
by the AVIRIS instrument and originally had 224 bands.
Water absorption and low SNR bands were removed before
processing, resulting in 188 bands for the Cuprite image, 162
bands for the Urban image and 198 bands for the Jasper
Ridge image. Previous works indicate that 14 endmembers
are present at the Cuprite mining field [29], [41], [79], while
the Jasper Ridge HI is known to have four predominant
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Figure 7. Estimated abundance maps for the Jasper Ridge HI.

endmemers [29]. For the Urban HI, we consider a smaller
subscene (shown in Figure 4) containing three endmembers to
allow for an easier evaluation.

The reconstructed abundance maps of the nonlinear SU
algorithms for the three datasets are presented in Figures 5, 6
and 7. For the Cuprite dataset, four endmembers were se-
lected whose distribution could be clearly distinguished in
the scene [79]. The reconstructed abundance maps of the
nonlinear SU algorithms are presented in Figure 5, where
it can be seen that, except for the case of the CDA-NL,
the results for all algorithms are generally compatible and
agree with previous studies of this scene [29], [41], [79].
Nevertheless, a careful analysis reveals that the BMUA-N
results, displayed in the bottom row of the figure, show
smoother abundance reconstructions without compromising
image details and discontinuities. For the Urban HI, the
last row of Figure 6 shows that the abundances estimated
by the BMUA-N generally contain stronger components for
the road, tree and grass endmembers at the regions where
these materials appear more prominently, leading to a better
separation between the different endmember classes according
to Figure 4. The abundance maps estimated by all algorithms
for the Jasper Ridge HI, shown in Figure 7, generally agree
with the distribution of the corresponding materials observed
in Figure 4. A careful analysis of the BMUA-N results shows
that it has stronger vegetation and water components when
compared to K-Hype and K-Hype-TV. Moreover, although
the abundances estimated by CDA-NL and NDU contain
slightly clearer results for the road endmember, they also show
considerably more confusion between ground and water.

The reconstruction errors for all datasets are shown in
Table III. Except for K-Hype, the nonlinear SU algorithms
generally achieved much smaller reconstruction errors when
compared to the FCLS. Although the results of BMUA-N
were slightly higher than the TV-based solution, as can also
be observed in the synthetic experiments, small variations

in the reconstruction error do not necessarily correlate with
better abundance reconstructions. The execution times of the
proposed method were again around 3.5 times higher than
that of the TV-based solution but only about half of those
of the NDU, which indicates that it scales favorably with
larger image sizes.

IX. CONCLUSIONS

In this paper, a blind multiscale unmixing strategy was
proposed for nonlinear kernel-based mixing models. Based
on the concept of a multiscale regularization strategy recently
introduced in [40], we were able to efficiently capture image
spatial information by splitting the nonlinear mixing process
between two image scales, one containing the coarse, low-
dimensional image structures and another representing the
original image domain. Furthermore, we employed a theory-
based statistical framework to devise a consistent strategy to
automatically select the regularization parameters of the pro-
posed algorithm and of the multiscale transformation. This re-
sulted in a truly blind (from the parameter setting perspective)
multiscale regularization framework. The unmixing problem
was formulated using quadratically constrained optimization
problems, for which efficient solutions were obtained by
exploring their strong duality and a reformulation of their dual
representations as root-finding problems. Simulation results
with both synthetic and real data indicate that the proposed
strategy leads to a consistent performance improvement when
compared to the classical Total Variation regularization, even
though no parameter adjustment is necessary.
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APPENDIX A
SUPPLEMENTAL MATERIAL: PROOF OF THEOREM 1

For the sake of brevity, we provide a demonstration for
Theorem 1 only for the problem (35). The demonstration for
problem (10) follows the same ideas and is thus straightfor-
ward. The first part of the proof consists in using the same
ideas as in the representer theorem (presented in Section II) to
obtain a finite dimensional representation of (35) in its primal
form. Note that, since H is formed by a class of functions
defined as linear combinations of κ(·, m̃), m̃ ∈ M, we can
write any candidate ψn ∈ H, n = 1, . . . , N for solving (35)
equivalently as

ψn =

L∑
`=1

βn,`κ(·, m̃`) + ψ⊥n , (59)

where ψ⊥n is orthogonal to κ(·, m̃`), ` = 1, . . . , L, i.e.,
〈κ(·, m̃`), ψ

⊥
n 〉H = 0, and βn,` are the linear combination

coefficients. This allows us to write each position of the vector
ψn(M) as[

ψn(M)
]
j
= ψn(m̃j)

= 〈ψn, κ(·, m̃j)〉H

=
〈 L∑
`=1

βn,`κ(·, m̃`) + ψ⊥n , κ(·, m̃j)
〉
H

=

L∑
`=1

βn,`〈κ(·, m̃`), κ(·, m̃j)〉H , (60)

for j = 1, . . . , L. Thus,

ψn(M) =Kβn . (61)

Note that ψ̂Cn(M) in (35) is a constant vector since it was
estimated in the previous problem. The objective function can
be similarly written as

argmin
{an,ψn}

1

2

N∑
n=1

‖ψn‖2H

= argmin
{an,ψn}

1

2

N∑
n=1

β>nKβn +
1

2

N∑
n=1

‖ψ⊥n ‖2H . (62)

Since the constraints do not depend on ψ⊥n , the second term
of (62) is irrelevant to the problem, and will be equal to zero
for any solution to the optimization problem. Thus, we can
rewrite (35) as a finite dimensional optimization problem

argmin
{an,βn}

1

2

N∑
n=1

β>nKβn (63)

subject to an ≥ 0 , 1>an = 1 , n = 1, . . . , N

ξn = yn −Man −Kβn , n = 1, . . . , N

1

2

N∑
n=1

‖ξn‖22 =
N

2
C1 ,

1

2

N∑
n=1

(
‖an − âDn‖22 + ‖ξψ,n‖2

)
=
N

2
(CY − CE) ,

ξψ,n =M †(Kβn − ψ̂Cn(M)
)
, n = 1, . . . , N .

This derivation was just to show that we can write the primal
version of the optimization problem in finite dimension. The
finite dimensional Lagrangian is given by

J̃D =

N∑
n=1

{
1

2
β>nKβn +

µ1

2

(
‖ξn‖22 − C1

)
+ λn(1

>an − 1)

+
µ2

2

(
‖an − âDn‖22 − CY + ‖ξψ,n‖2 + CE

)
+ µ>3,n

(
M †(Kβn − ψ̂Cn(M)

)
− ξψ,n

)
− β>n

(
ξn − yn +Man +Kβn

)
− γ>nan

}
. (64)

Now, we can write (63) equivalently by splitting each
quadratic equality constraints in two quadratic inequality ones,
one being convex and the other non-convex. This results in the
following problem:

min
x∈A

f(x) (65)

subject to g1(x) ≤ 0 , g2(x) ≤ 0 ,

g3(x) ≤ 0 , g4(x) ≤ 0 ,

hn,p(x) ≤ 0 , n = 1, . . . , N , p = 1, . . . , P ,

where x = [x>1 , . . . ,x
>
N ]>, with xn = [a>n ,β

>
n , ξ

>
n , ξ

>
ψ,n]

>,
A is an affine manifold that encapsulates the equality con-
straints, functions f(x), gi(x) and hi,j(x), for all i and j are
quadratic and defined as

f(x) ≡ 1

2

N∑
n=1

β>nKβn , (66)

g1(x) ≡
1

2

N∑
n=1

‖ξn‖22 −
N

2
C1 , (67)

g2(x) ≡
1

2

N∑
n=1

(
‖an − âDn‖22 + ‖ξψ,n‖2

)
− N

2
(CY − CE) , (68)

g3(x) = − g1(x) , (69)
g4(x) = − g2(x) , (70)

hn,p(x) ≡ − an,p . (71)

Note that the constraints involving g3(x) and g4(x) are
nonconvex, while the remaining ones are all convex. Note
also that this problem does not satisfy the Slater condition,
what imposes difficulties in the analysis and precludes the
consideration of works that rely on this hypothesis (e.g., [80],
[81]). The Lagrangian of this problem is

L1(x,u, ζ) = f(x) +
∑
n,p

u(n−1)P+n+4 hn,p(x)

+

4∑
j=1

uj gj(x) + LA (x, ζ) , (72)

where u = [u1, . . . , uNP+4]
>, with uj ∈ R+ and ζ ∈

R(L+P+1)N
+ are the Lagrange multipliers, and LA (x, ζ) are

the terms in the Lagrangian associated with the linear equality
constraints.
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Since the constraints involving g1(x) and g3(x), and g2(x)
and g4(x) are linearly dependent, we have

u1 g1(x) + u3 g3(x) = (u1 − u3)g1(x) , (73)
u2 g2(x) + u4 g4(x) = (u2 − u4)g2(x) . (74)

Thus, we can define new variables v1 = (u1 − u3) ∈ R and
v2 = (u2 − u4) ∈ R and rewrite (72) as

L2(x, ũ, ζ, v1, v2) = f(x) +
∑
n,p

u(n−1)P+n+4 + v1 g1(x)

+ v1 g2(x) + LA (x, ζ) , (75)

where ũ = [u5, . . . , uNP+4]
>. Since we can always find

nonnegative uj , j = 1, . . . , 4 satisfying v1 = (u1 − u3) and
v2 = (u2 − u4), the optimization of the Lagrangian in (75)
is equivalent to the optimization of the original one in (64)
(subject to the corresponding nonnegativity constraints). Thus,
this means that strong duality of problem (65) implies that
problem (63) has strong duality too.

In order to study strong duality of (65), we resort to the
following theorem, originally stated in [71].

Theorem 2. [71, Theorem 6] In (65), let

L(x,u) = f(x) +

4∑
j=1

uj gj(x) +
∑
n,p

u(n−1)P+n+4 hn,p(x)

and assume that the concave function l(u) : u 7→
infx∈A L(x,u) attains its maximum at a point u∗ ∈ RNP+4

+

such that L(x,u∗) is strictly convex on the set A . More
precisely,

∃u∗ ∈ argmax
u∈RNP+4

+

{
inf
x∈A

L(x,u)
}
: Hess

[
L(x,u∗)

]
� 0 ,

where Hess(·) is the Hessian operator. Then, strong
duality holds.

In order to apply this to our problem, we note that since
hn,p(x) are linear functions, it is sufficient that u1 − u3 > 0
and u2 − u4 > 0 for L(x,u) to be strictly convex. Moreover,
under the change of variables µ1 = (u1 − u3) ∈ R and µ2 =
(u2−u4) ∈ R, maximization of l(u) in Theorem (2) becomes
equivalent to the dual problem (43) (due to the equivalence we
showed between (41) and (75)). Since we assumed that the
optimal solutions µ∗1 and µ∗2 to (43) are strictly positive, this
means that u∗1 − u∗3 > 0 and u∗2 − u∗4 > 0 and thus L(x,u∗)
is strictly convex. Therefore, strong duality holds.

APPENDIX B
SUPPLEMENTAL MATERIAL: ALTERNATIVE IMAGE

RECONSTRUCTION ERROR METRICS

In addition to the RMSE, we considered three other qual-
ity measures typically employed with hyperspectral images
to evaluate reconstructions of real data sets: the spectral
angle mapper (SAM), the spectral information divergence
(SID) [S1], and a spectral-spatial similarity measure that con-
siders the spatial neighborhood of each pixel, named IPD [S2].
The results for the real datasets are shown in Table IV.
These results do not lead to a significantly different qualitative
conclusion regarding the best solution.

Table IV
DIFFERENT METRICS FOR THE IMAGE RECONSTRUCTION ON REAL DATA.

BEST RESULTS ARE BOLD RED, SECOND BEST ARE BOLD BLUE.

Cuprite
RMSE SAM SID IDP

FCLS 0.0107 0.0285 0.00051 0.1347
K-Hype 0.0082 0.0227 0.00029 0.1085

K-Hype-TV 0.0082 0.0228 0.00029 0.1090
CDA-NL 0.0095 0.0259 0.00031 0.1284

NDU 0.0080 0.0220 0.00031 0.1035
BMUA-N 0.0090 0.0245 0.00035 0.1184

Jasper Ridge
RMSE SAM SID IDP

FCLS 0.0225 0.0681 0.00261 0.2677
K-Hype 0.0562 0.0603 0.00254 0.5859

K-Hype-TV 0.0164 0.0604 0.00240 0.2011
CDA-NL 0.0168 0.0643 0.00228 0.2040

NDU 0.0167 0.0551 0.00163 0.2038
BMUA-N 0.0170 0.0624 0.00235 0.2071

Urban
RMSE SAM SID IDP

FCLS 0.0228 0.0564 0.00081 0.2098
K-Hype 0.0434 0.0346 0.00030 0.3670

K-Hype-TV 0.0060 0.0339 0.00029 0.0718
CDA-NL 0.0063 0.0331 0.00028 0.0744

NDU 0.0159 0.0447 0.00051 0.1540
BMUA-N 0.0062 0.0343 0.00030 0.0739

[S1] C.-I. Chang, “Spectral information divergence for hyper-
spectral image analysis,” in Proc. of the IEEE Interna-
tional Geoscience and Remote Sensing Symposium, 1999,
pp. 509–511.

[S2] H. Pu, Z. Chen, B. Wang, and G.-M. Jiang, “A novel
spatial–spectral similarity measure for dimensionality
reduction and classification of hyperspectral imagery,”
IEEE Transactions on Geoscience and Remote Sensing,
vol. 52, no. 11, pp. 7008–7022, 2014.
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