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Toulouse Cedex 9, France

Abstract

A generalized Scharfetter-Gummel method is proposed to construct the numerical flux
for one-dimensional drift-diffusion equations. Instead of taking a constant approxima-
tion of the flux as Scharfetter and Gummel did in [1], we consider a p-degree polyno-
mial with p ≥ 1. The high order moments of the approximating flux function serve
as intermediaries to bring numerical correction to the Scharfetter-Gummel flux, that
the other end turns out to be the solution derivatives. Therefore, local solution recon-
structions are required. The resulting schemes are high order and discretize at the same
time the convective and diffusive fluxes without having to employ separately different
methods to do so. The new schemes with p = 1 and p = 2 are employed to simu-
late atmospheric pressure discharge where they are applied to the continuity equations
for electrons and ions, and solved simultaneously with Poisson’s equation. Numerical
results indicate that our method are robust and highly accurate.

Keywords: Atmospheric pressure discharge, Drift-diffusion equation,
Scharfetter-Gummel, Finite volume method, High-order schemes, Reconstruction

1. Introduction

In this article, we introduce a new family of high-order Scharfetter-Gummel-based
schemes for one-dimensional linear drift-diffusion equations. The main objective is to
generalize the method put forward by Scharfetter and Gummel [1] to numerically ap-
proximate the density flux. The idea is to find a polynomial approximation of arbitrary
degree p of the flux such that it is locally and quasi exact for a certain exponential
function as we shall see. We take interest in discretizing the following equation,

∂tρ + ∂x j = 0, (t, x) ∈ (0,T ) ×Ω, (1)
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where the density flux is defined as,

j = uρ − D∂xρ, (2)

and ρ is, for example, the density of a certain substance or mixture; u, D are resp. the
drift velocity and the diffusion rate; ∂t, ∂x denote resp. the partial derivatives in time,
space; and T > 0 is the final time while Ω is an open bounded interval of R.

Supposing that D is nonzero on a segment (x0, x1) ⊂ Ω, we have, with ϕ(x) =

−
∫ x

x0
u(s)/D(s)ds, x ∈ (x0, x1),

j = −De−ϕ
(
ρeϕ

)
. (3)

It is well known that the Scharfetter-Gummel flux is derived by taking a constant
approximation J of j in (3), replacing u, D by their constant approximations ū, D̄ and
solving the two-point boundary problem that includes (2) and the boundary conditions
ρ(x0) = a, ρ(x1) = b for certain a, b ∈ R. The resulting J equals zero if we take ρ = e−ϕ̄

where ϕ̄(x) = −ūx/D̄. For this reason, the numerical flux J is locally (on (x0, x1)) and
quasi (since ϕ̄ is a local approximation of ϕ) exact for the function ρ = e−ϕ. The true
flux j is of course, from (3), exact for this function. The main key of this article is
to replace j in (3) with a p-degree polynomial J, instead of a constant, and follow a
recursive procedure to build a new scheme that is also locally and quasi exact for the
function e−ϕ. Thus the Scharfetter-Gummel scheme is a member of a new, more generic
family of numerical schemes. The construction of this family will be elaborated in the
next section.

The drift-diffusion equations are widely present in many numerical models for
semiconductors and gas discharge. For space discretization (not necessary in one-
dimension) there are a wide literature available in many classes of numerical methods,
such as finite difference, finite element, finite volume, discontinuous Galerkin or spec-
tral methods. We only mention a few that fall into the finite volume category. The most
classical method is suggested by Eymard et al. [2], who used the first-order upwind
scheme for the convective part and the central difference scheme for the diffusive part.
A more accurate alternative is the use of the MUSCL technique that bases on the cell-
wise linear reconstruction of the numerical solution and the afterward limiting of the
slopes, for the convective part. There is actually a very large research on high-accuracy
methods to approximate the convective flux. The aforementioned MUSCL technique
was put forth by Van Leer in his pioneer series of papers [3, 4, 5, 6, 7], with the use
of a slope limiter to ensure stability. Sweby [8], Harten [9] and others later studied
more on a specific class of limiters that emerged as the TVD (Total Variation Dimin-
ishing) schemes. Colella and Woodward [10] extended the reconstruction to quadratic
in their PPM algorithm. Later on, Harten et al. [11, 12] developed new schemes free
of Gibbs phenomenon and total variation stable. Their work paved the way for the still
on-going study of the ENO/WENO and related schemes (see [13] and the references
therein). Further developments on arbitrary order reconstruction can be found in, for
example [14] for least-squares reconstruction, or [15] for iterative reconstruction. Such
high-order schemes suffer spurious oscillations in the presence of discontinuities or
even gradient layers. In the authors’ knowledge there is nowadays no unified frame-
work for the limiting techniques in the same manner as MUSCL. Some attempts have
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been made, such as in [16]. Such techniques are dubbed a priori limitations, since the
corrections on the solution are made before advancing in time. Their counterparts are
the a posteriori limitation techniques, an example of which is the MOOD method [17],
that allows the advance in time with a high-order reconstruction of the solution and
then a recomputing on trouble cells with lower-order reconstruction. The development
of high-accuracy methods that include the diffusive flux are less emphasized though.
We refer to [18] for the discussion on this subject and the elaboration of the related
schemes.

Another family of numerical methods for the drift-diffusion equations is exponen-
tially fitted schemes. Allen and Southwell [19] and Il’in [20] introduced a finite differ-
ence scheme that solves exactly the stationary drift-diffusion equations with constant
coefficients, meaning that the discrete solution fits the (exponential) solution of the dif-
ferential equation on grid points. Scharfetter and Gummel [1] introduced in the same
year as Il’in a difference scheme which is based on the locally integration of the flux
(2). Although the approaches ended up at the same scheme, the philosophy is differ-
ent. Since the latter approach facilitates the construction of a finite volume scheme, we
prefer the name Scharfetter-Gummel (SG) to refer to the scheme. The SG scheme is
uniformly first-order convergent for general steady drift-diffusion-reaction equations,
meaning that its error constant does not depend on the gradient of the solution, a result
that was proved in [20] by a two-grid method and in [21] with a decomposition of the
solution in the boundary layer. Gartland [22] proposed in further a family of uniformly
convergent schemes of arbitrary order, the exponentially fitted HODIE schemes, which
are compact and utilized auxiliary evaluation points within the compact stencil. For
the literature of exponential fitted schemes, we refer to [21]. More recently, ten Thije
Boonkkamp and Anthonissen introduced an improvement of the SG scheme that is de-
rived from the solution of the stationary drift-diffusion equations including the source
term. The resulting flux is a combination of two parts: a homogeneous component
which is similar to the Scharfetter-Gummel flux in the case of constant coefficients,
and an inhomogeneous part which integrates the source term. Liu et al. [23] later
proved that this scheme is uniformly second-order convergent.

In particular for semiconductors, the use of SG scheme for charge continuity equa-
tions is somewhat favorable. During our bibliographical search for a high-order SG-
typed scheme, we encountered numerous variations of the SG scheme. Without try-
ing to be complete, we would like to cite some related works here. Markowich et
al. [24] exerted that if the prescribed doping profile has an exponentially decaying
internal layer, then so does the potential and the carrier densities, and the global er-
ror of the SG method depends only on the mesh size and the layer width. Furthermore,
Chatard [25] proved that the SG scheme preserves the thermal equilibrium steady state.
Bessemoulin-Chatard et al. [26] also demonstrated that the scheme is asymptotic pre-
serving in the quasi-neutral limit by a compactness argument. Eymard et al. [27] ex-
tended the scheme for nonlinear diffusion and nonlinear advection, but their approach
necessitates solving a nonlinear integral at each time step. Bessemoulin-Chatard [28]
modified the scheme for nonlinear drift-diffusion equations with power-law pressure
which does not require nonlinear solvers, and proved that the scheme also preserves
the thermal equilibrium state if the densities are not vanishing. Patriarca et al. [29]
later continued the approach of [27] and proposed solving the nonlinear integrals by
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quadrature rules and Newton’s method. Other than the SG scheme, other methods have
been suggested and studied for the discretization of the continuity equations. Chainais-
Hillairet et al. [30, 31, 32] used the first-order upwind scheme for the convective flux
and the central scheme for the diffusive flux which proves to be convergent as the mesh
is refined. Bessemoulin-Chatard and Filbet [33] modified the scheme by defining an
enthalpy function (available in the case of power-law pressure) such that the convective
and diffusive parts are discretized at the same time. The resulting scheme preserves the
thermal equilibrium, even with vanishing densities.

Other than semiconductors, drift-diffusion equations are also present in hydrody-
namic models of gas discharge. In the last decades experiments have shown that electric
discharges could alter air flows hence an alternative technique for flow control. Numer-
ical simulations have been conducted to study different plasma actuators, for instance
the dielectric barrier discharge [34, 35] and wire-to-wire corona discharge [36] actua-
tors. Other applications of atmospheric discharge are, for example, anti-icing [37]. In
this article, we mainly take interest in the thermal equilibrium hydrodynamics model
with mobility laws, which consists of drift-diffusion equations for every charged specie
in the plasma, coupled with a Poisson equation for the electrostatic field φ,

∂tρk − ∇ ·
(
Dkρk + ρkzkµk∇φ

)
= S k + S ph,

−ε0∇ · ∇φ =
∑

k

ρk,

where Dk, zk, µk are resp. the diffusion rate, the charge number and the mobility of
the specie k. The source term S k represents chemical changes in the plasma, stem-
ming from the inter-specie inelastic collisions (ionization, attachment, recombination,
excitation, etc.), that affect the charge population of k. Finally the source term S ph

represents the photoionization effect.
As observed in [34] and in our own simulations, the SG scheme provides inade-

quate simulation results on insufficiently refined grids since it degenerates to first order
in advection-dominant regimes. Therefore, high-order schemes such as the MUSCL
method are used instead in [35, 38, 36, 39]. High-order methods allow simulations to
be done on coarse grids (but sufficiently refined to capture the plasma dynamics) that
save precious computation time. The preliminary question in this article is: are there
high-order schemes that are derived in the same manner as the SG scheme? An interest
of SG is that, as we know, it integrates at the same time the convective and diffusive
parts. In our knowledge, so far there is no answers to this question. Some of the works
that we cited on the semiconductors aimed to adapt the SG scheme to different parti-
cle statistics, hence the modified schemes are still first-order in drift-dominant cases.
An exception is [40] where the proposed scheme is globally second-order. Another
improved SG scheme is proposed by Kulikovsky [41] in which he assumed that the
drift velocity is locally linear and used ghost points near the interface to evaluate the
flux, therefore he added a first-order correction to the SG flux. Kulikovsky applied
successfully his method to simulate the propagation of streamers in [42, 43].

In this article, we propose a framework to answer the preliminary question. The
interests of our work are twofold: the new high-order schemes improve the accuracy
of the numerical results, hence allow to decrease the computation charge; on the other
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hand, the SG-based schemes discretize both the convective and diffusive fluxes, thus
they set up a simple way to approximate the flux density. The structure of this article
is set as follows: Section 2 describes the construction of the new family of high-order
SG-based schemes, which are baptized Scharfetter-Gummel schemes with Correction
of Current (SGCC); in Section 3 we study some of their numerical properties; academic
tests are proposed in Section 4 to study the convergence order of SGCC compared to
some other schemes; in Section 5 we describe more complex test cases in atmospheric
gas discharge, e.g. a wire-to-wire corona discharge and a positive streamer propaga-
tion; the numerical results of these two simulations are presented in Section 6.

2. Design of the Scharfetter-Gummel schemes with Correction of Current

2.1. A brief recall of the Scharfetter-Gummel scheme
In 1969, Scharfetter and Gummel [1] proposed an approach to approximate the

current density in (1). Assume that we have a mesh 0 = x1/2 < x3/2 < · · · < xI−1/2 <

xI+1/2 = 1 with xi (1 ≤ i ≤ I) the center of Ωi
∆
= (xi−1/2, xi+1/2), ∆xi

∆
= xi+1/2 − xi−1/2

and ∆xi+1/2
∆
= xi+1 − xi. The Scharfetter-Gummel (SG) method consists of solving, for

each 0 ≤ i ≤ I, the ordinary differential equation in x variable

−Di+1/2∂xρ(x) + ui+1/2ρ(x) = jS G
i+1/2, x ∈ (x j, x j+1), (4)

ρ(x j) = ρ j, ρ(x j+1) = ρ j+1, (5)

which is issued from (2) where u, D, j are supposed to be locally constant on [x j, x j+1],
resp. equal to ui+1/2, Di+1/2, jS G

i+1/2. Solving (4)-(5), we obtain the semi-discrete flux

jS G
i+1/2

∆
=

Di+1/2

∆xi+1/2

(
B(αi+1/2)ρi − B(−αi+1/2)ρi+1

)
, for 0 ≤ i ≤ I,

where

αi+1/2
∆
= −

ui+1/2∆xi+1/2

Di+1/2
, B(α) ∆

=
α

eα − 1
,

are resp. the numerical Péclet number and the Bernoulli function. The calculation
of jS G

1/2 and jS G
I+1/2 requires the values of ρ0 and ρI+1 which are located outside of the

computation domain. These values should be prescribed in accordance with boundary
conditions.

Δxi-1

xi-1

xi-1/2 xi+1/2

xi

Δxi+1/2 Δx*

xi+1 x0 x1

x*ΩiΩi-1 Ωi+1

Figure 1: (colored) Spatial grid. In black: notations with global indices. In blue: notations with local indices.

In the finite-volume framework, the semi-discrete (with respect to the variable x)
Scharfetter-Gummel scheme for (1)-(2) reads

dρ̄i(t)
dt

+
j̄S G
i+1/2 − j̄S G

i−1/2

∆xi
= 0, 0 ≤ i ≤ I.
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where ρ̄i(t) is the average of ρ(t, x) on the volume Ωi,

ρ̄i(t)
∆
=

1
∆xi

∫
Ωi

ρ(t, x)dx, (6)

and the numerical flux

j̄S G
i+1/2

∆
=

Di+1/2

∆xi+1/2

(
B(αi+1/2)ρ̄i − B(−αi+1/2)ρ̄i+1

)
, 0 ≤ i ≤ I.

2.2. A generalization of the Scharfetter-Gummel method
In this paper, we propose a generalization of the approach presented in the previous

subsection. In (4), we consider instead a polynomial approximation Ji+1/2(x) of the
true flux j on the right-hand side. A p-order polynomial, centered at xi+1/2 has the form
Ji+1/2(x) = J(0) + J(1)(x − xi+1/2) + · · · + 1

p! J(p)(x − xi+1/2)p with J(q) ∈ R, 0 ≤ q ≤ p.
Note that the numerical flux equals to the evaluation of Ji+1/2 at xi+1/2, thus equals to
J(0). The other J(q) are introduced to correct J(0) as we shall see. The local ODE that
was introduced in the previous subsection now becomes

−Di+1/2∂xρ(x) + ui+1/2ρ(x) = Ji+1/2(x), x ∈ (xi, xi+1) (7)

For the sake of simplicity, in the following when there is no ambiguity, we replace
the subscripts i, i+1/2 and i+1 by resp. 0, ∗ and 1 (see Figure 1). Now deriving (7) q times
(0 ≤ q ≤ p) yields

−D∗∂
q+1
x ρ(x) + u∗∂

q
xρ(x) =

p∑
m=q

1
(m − q)!

J(m)(x − x∗)m−q, x ∈ (x0, x1). (8)

We define the notations ∂q
xρb

∆
= ∂

q
xρ(xb) (b = 0, 1). For each q we solve the ODE

(8) on (x0, x1) and by some algebraic manipulations we have

J(q) =
D∗
∆x∗

(
B(α∗)∂

q
xρ0 − B(−α∗)∂

q
xρ1

)
−

p∑
m=q+1

1
(m − q)!

J(m)(∆x∗
)m−q

ψ
(m−q)
∗ , (9)

where

ψ(m)
∗ =

∫ κ

−χ
ξmeα∗ξdξ∫ κ

−χ
eα∗ξdξ

= eα∗χB(α∗)
∫ κ

−χ

ξmeα∗ξdξ, (10)

or else ψ(m)
∗

∆
=
κmeα∗ − (−χ)m

eα∗ − 1
−

m
α∗
ψ(m−1)
∗ with ψ(0)

∗ = 1, (11)

α∗
∆
= −

u∗∆x∗
D∗

, κ
∆
=

∆x1

2∆x∗
, χ

∆
=

∆x0

2∆x∗
.

With p + 1 equations of the form (9), a general expression of the flux J(0) can be
worked out by recursion. Before a such result is achievable, the equations in (9) should
be written in a more compact form in order to be serviceable to the formulation of
J(0). This point is addressed by the subsequent lemma which is easily demonstrated by
induction.
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Lemma 1. J(q) can be written in an alternative expression

J(q) =
D∗
∆x∗

(
B(α∗)Q

(q)
0 − B(−α∗)Q

(q)
1

)
,

where Q(q)
b (b = 0, 1) satisfy the following recurrence relation

Q(p)
b = ∂

p
xρb, (12)

Q(q)
b = ∂

q
xρb −

p∑
m=q+1

(
∆x∗

)m−q
ψ

(m−q)
∗

(m − q)!
Q(m)

b , 0 ≤ q < p. (13)

Furthermore, as Q(q)
b depend only on the Q(k)

b ’s with k > q, and by virtue of (12)-
(13), they depend only on the spatial derivatives of ρ

Q(q)
b =

p∑
k=q

Θ(k, q)∂k
xρb, 0 ≤ q ≤ p, (14)

where the auxiliary terms Θ(k, q) (k ≥ q) satisfy: For q ≤ p,

Θ(q, q) = 1, (15)

Θ(k, q) = −

k∑
m=q+1

(
∆x∗

)m−q
ψ

(m−q)
∗

(m − q)!
Θ(k,m), k > q, (16)

Θ(k, q) = Θ(p, p − k + q), q ≤ k ≤ p. (17)

The final point of Lemma 1 asserts that only Θ(p, p−q), q ≤ p need to be computed.
For that cause the following lemma is useful.

Lemma 2. Let Im(q) denote the set of strictly positive m-tuples (x1, x2, . . . , xm) whose
sum of elements equals q

Im(q) ∆
=

{
X = (x1, x2, . . . , xm) such that xn ∈ N∗ ∀1 ≤ n ≤ m, x1 + · · · + xm = q

}
.

Then

Θ(p, p) = 1, (18)

Θ(p, p − q) =
(
∆x∗

)q
q∑

k=1

(−1)k
∑

X∈Ik(q)

∏
xn∈X

ψ(xn)
∗

xn!

 , 1 ≤ q < p. (19)

Proof. (18) is trivial (from Lemma 1). For q = 1, 2, from (16)

Θ(p, p − 1) = −

p∑
m=p

(
∆x∗

)m−p+1
ψ

(m−p+1)
∗

(m − p + 1)!
Θ(p,m) = −∆x∗ψ

(1)
∗

Θ(p, p − 2) = −

p∑
m=p−1

(
∆x∗

)m−p+2
ψ

(m−p+2)
∗

(m − p + 2)!
Θ(p,m) = −∆x∗ψ

(1)
∗ Θ(p, p − 1) −

(
∆x∗

)2
ψ(2)
∗

2

=
(
∆x∗

)2(−1)2ψ(1)
∗ ψ

(1)
∗ +

(
∆x∗

)2(−1)
ψ(2)
∗

2
.
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Therefore (19) is true for q = 1, 2. Suppose that it is also true for 0, 1, . . . , q − 1,
then from (16)

Θ(p, p − q) = −

p∑
m=p−q+1

(
∆x∗

)m−p+q
ψ

(m−p+q)
∗

(m − p + q)!
Θ(p,m) = −

q−1∑
m=0

(
∆x∗

)q−m
ψ

(q−m)
∗

(q − m)!
Θ(p, p − m)

= −

q−1∑
m=1

(
∆x∗

)q−m
ψ

(q−m)
∗

(q − m)!
(
∆x∗

)m
m∑

k=1

(−1)k
∑

X∈Ik(m)

∏
xn∈X

ψ(xn)
∗

xn!

 − (
∆x∗

)q
ψ

(q)
∗

q!

=
(
∆x∗

)q
q−1∑
k=1

(−1)k+1 ψ
(q−m)
∗

(q − m)!

q−1∑
m=k

∑
X∈Ik(m)

∏
xn∈X

ψ(xn)
∗

xn!

 − (
∆x∗

)q
ψ

(q)
∗

q!
.

(20)
Now we remark that there are two equivalent manners to find all the tuples Y ∈

Ik+1(q).

1. Direct method. All strictly positive (k + 1)-tuples Y = (x1, x2, . . . , xk, xk+1) such
that x1 + · · · + xk+1 = q, are directly listed.

2. Recurrent method. Start by finding all strictly positive k-tuples X = (x1, x2, . . . , xk)
such that x1 + · · · + xk = m, k ≤ m ≤ q − 1. Then complete Y by appending
xk+1 = q−m to the end of X. The lower bound of m is due to x1, . . . , xk ≥ 1 thus
x1 + · · · + xk ≥ k, the upper bound is due to xk+1 ≥ 1.

The equivalence of the two tuple-finding methods yields

∑
Y∈Ik+1(q)

∏
xn∈Y

ψ(xn)
∗

xn!

 =

q−1∑
m=k

ψ
(q−m)
∗

(q − m)!

∑
X∈Ik(m)

∏
xn∈X

ψ(xn)
∗

xn!

 .
Thus from (20),

Θ(p, p − q) =
(
∆x∗

)q
q−1∑
k=1

(−1)k+1
∑

Y∈Ik+1(q)

∏
xn∈Y

ψ(xn)
∗

xn!

 − (
∆x∗

)q
ψ

(q)
∗

q!

=
(
∆x∗

)q
q∑

k=2

(−1)k
∑

X∈Ik(q)

∏
xn∈X

ψ(xn)
∗

xn!

 +
(
∆x∗

)q(−1)
∑

X∈I1(q)

∏
xn∈X

ψ(xn)
∗

xn!


=

(
∆x∗

)q
q∑

k=1

(−1)k
∑

X∈Ik(q)

∏
xn∈X

ψ(xn)
∗

xn!

 .
Finally the number of terms in (19) can always be checked in prior with the equality

Card
(
Ik(q)

)
=

(
q−1
k−1

)
.

Ultimately, an expression of the semi-discrete flux jSGCCp

i+1/2
∆
= J(0), in function of

the derivatives of ρ, is drawn from (14)-(18)-(19). The scheme name SGCC is an
abbreviation of Scharfetter-Gummel scheme with Correction of Current, the subscript p

stands for the reconstruction polynomial order of the flux. The result of this subsection
is summarized in Definition 1.
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Definition 1. The semi-discrete flux of the SGCCp scheme reads

jSGCCp

i+1/2
∆
=

Di+1/2

∆xi+1/2

(
B

(
αi+1/2

)
Q(0)

i − B
(
−αi+1/2

)
Q(0)

i+1

)
,

where

Q(0)
i = ρi +

p∑
q=1

(
∆xi+1/2

)qW (q)
i+1/2∂

q
xρi, W (q)

i+1/2
∆
=

Θi+1/2(p, p − q)(
∆xi+1/2

)q =

q∑
k=1

(−1)k
∑

X∈Ik(q)

∏
xn∈X

ψ(xn)
i+1/2

xn!

 ,

with the ψ functions defined in (10)/ (11).

2.3. The limiting cases α = ∞ and α = 0

It is instructive to inquire the limits of the flux jSGCCp
∗ when α → ∞ and α → 0.

On a uniform mesh, it is well known that the classical Scharfetter-Gummel scheme
automatically switches between the second-order central scheme when the diffusion is
dominant (α << 1, recall that α = −u∗∆x∗/D∗), and the first-order upwind scheme in
advection-dominant regime (α >> 1). Since the SGCCp flux is constructed in the same
principle, it is natural to think that it inherits this automatic switching property.

Let us cite at first a useful lemma which is straightforward from (10)-(11)-(20).

Lemma 3. The Bernoulli function, the ψ(q)
∗ functions and the W (q)

∗ are smooth with
respect to α. Furthermore the ψ(q)

∗ functions and the W (q)
∗ functions are bounded. We

have, for q ≥ 1,

lim
α→0
B(α) = 1, lim

α→+∞
B(α) = 0, B(α) ∼ −α (α→ −∞),

lim
α→0

ψ
(q)
∗ (α) =

κq+1 − (−χ)q+1

q + 1
, lim

α→+∞
ψ

(q)
∗ (α) = κq, lim

α→−∞
ψ

(q)
∗ (α) = (−χ)q,

lim
α→+∞

W (q)
∗ (α) =

(−κ)q

q!
, lim

α→−∞
W (q)
∗ (α) =

χq

q!
,

k∑
q=0

κk−q+1 − (−χ)k−q+1

(k − q + 1)!
U(q)
∗ = 0 (k ≤ 1),

with

κ
∆
=

∆x1

2∆x∗
, χ

∆
=

∆x0

2∆x∗
, U(q)

∗

∆
= lim

α→0
W (q)
∗ (α).

Proof. The equalities on the two first lines are straightforward from the definition of
the Bernoulli function and from (10)-(11). The equalities on the last two lines are
obtained by induction using the second equality in (20).

With the tools in Lemma 3, we can derive the limits of SGCCp.
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Proposition 1. In the convective limit α→ −∞, we have

lim
α→−∞

jSGCCp
∗ = ρ0 +

p∑
q=1

1
q!

(
∆x0

2

)q

∂
q
xρ0.

If α→ +∞ bears the opposite sign, then

lim
α→+∞

jSGCCp
∗ = ρ1 +

p∑
q=1

1
q!

(
−

∆x1

2

)q

∂
q
xρ1.

On the contrary, in the diffusive limit α → 0, and assuming that ρ is sufficiently
smooth on (x0, x1), then

lim
α→0

jSGCCp
∗ = D∗∂xρ∗ + O

(
hp+1), with h ∆

= max ∆xi.

Proof. Using Lemma 3 and Taylor’s expansion of ρ at x∗ up to the (p + 1)th derivative,
we have

lim
α→0

jSGCCp
∗ =

D∗
∆x∗

p∑
q=0

(
∆x∗

)qU(q)
∗

(
∂

q
xρ1 − ∂

q
xρ0

)

=
D∗
∆x∗

p∑
q=0

(
∆x∗

)qU(q)
∗

p−q+1∑
k=1

1
k!

(
∆x∗

)k
∂

q+k
x ρ∗

(
κk − (−χ)k

)
+ O

(
hp+1)

=
D∗
∆x∗

p∑
k=0

(
∆x∗

)k+1
∂k+1

x ρ∗

k∑
q=0

κk−q+1 − (−χ)k−q+1

(k − q + 1)!
U(q)
∗ + O

(
hp+1)

= D∗∂xρ∗ + O
(
hp+1),

with U(0)
∗ = 1 and the fact that κ + χ = 1.

From this point of view, the semi-discrete SGCCp flux reduces to the semi-discrete
high-order upwind flux using a p-order polynomial reconstruction of ρ when the ad-
vection is dominant. On the other hand when the diffusion is dominant, the SGCCp

flux behaves as a (p + 1)-order approximation of the gradient of ρ (scaled the diffusion
rate D∗) at the interface x∗.

2.4. The finite volume SGCCp scheme
In the finite volume framework, we use the cell averages ρ̄i (6) instead of the exact

values ρi
∆
= ρ(xi). In the flux equation (1), the slopes ∂q

xρi
∆
= ∂

q
xρ(xi) (1 ≤ q ≤ p)

are replaced by their discrete counterparts ∆(q)ρ̄i which are reconstructed from the ρ̄i’s
(see for example [15]), whereas the quantity ρi is substituted by a discrete one denoted
∆(0)ρ̄i. If we introduce the polynomial reconstruction of ρ on the cell Ωi as

ρ̃i(x) ∆
= ∆(0)ρ̄i +

p∑
q=1

1
q!

∆(q)ρ̄i(x − xi)q, x ∈ Ωi,
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then the value of ∆(0)ρ̄i stems from the local density conservation,

1
∆xi

∫
Ωi

ρ̃i(x)dx =
1

∆xi

∫
Ωi

ρ(x)dx ∆
= ρ̄i.

Thus

∆(0)ρ̄i = ρ̄i −

p∑
q=1

∆(q)ρ̄iz
(q)
i with z(q)

i
∆
=

1
∆xi

∫
Ωi

1
q!

(x − xi)qdx.

Finally, the finite volume SGCCp reads

dρ̄i(t)
dt

+
j̄SGCCp

i+1/2 − j̄SGCCp

i−1/2

∆xi
= 0, 0 ≤ i ≤ I,

with

j̄SGCCp

i+1/2
∆
=

Di+1/2

∆xi+1/2

(
B

(
αi+1/2

)
Q̄(0)

i − B
(
−αi+1/2

)
Q̄(0)

i+1

)
,

Q̄(0)
i = ∆(0)ρ̄i +

p∑
q=1

(
∆xi+1/2

)qW (q)
i+1/2∆(q)ρ̄i.

Remark 1. The stencil of the SGCCp flux is the same as classical MUSCL approach
with high-order reconstruction. Its complexity is augmented due to exponential terms
such as B(α) and W (q). Therefore computation time is slightly longer (see Section 6.2,
Table 5).

3. Numerical analysis

For simplicity, we assume that u and D are constant throughout this section.

3.1. Flux consistency of the SGCCp schemes
Lemma 4. Let f be a regular function, f ∈ Cp+1(x0, x1), satisfying∫ x1

x0

∂
q
x f (x)g(x)dx = 0, q ≤ p, (21)

with g a positive integrable function on (x0, x1). Then there exists a constant C > 0
independent of ∆x∗

∆
= x1 − x0 such that for all x ∈ (x0, x1),

| f (x)| ≤ C
(
∆x∗

)p+1
.

Proof. Using Taylor’s theorem and the smoothness of f , for each 0 ≤ q ≤ p and
x ∈ (x0, x1) we have

∂
q
x f (x) =

p∑
m=q

∂m
x f (x∗)

(m − q)!
(x − x∗)m−q + Rq

p(x), (22)
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with the rest

Rq
p(x) ∆

=

∫ x

x∗

∂
p+1
x f (t)

(p − q)!
(x − t)p−qdt

thus, assuming that x > x∗ without loss of generality,

∣∣∣Rq
p(x)

∣∣∣ ≤ M
∫ x

x∗

(x − t)p−q

(p − q)!
dt ≤

M
(p − q + 1)!

(
∆x∗

2

)p−q+1

, with M ∆
= sup

t∈(x0,x1)

(∣∣∣∣∂p+1
x f (t)

∣∣∣∣) .
Then from (21), (22) and the positivity of g we have, for 0 ≤ q ≤ p − 1,

∣∣∣∂q
x f (x∗)

∣∣∣ ≤ p∑
m=q+1

∣∣∣∂m
x f (x∗)

∣∣∣
(m − q)!

(
∆x∗

2

)m−q

+
M

(p − q + 1)!

(
∆x∗

2

)p−q+1

,

and
∣∣∣∂p

x f (x∗)
∣∣∣ ≤ M∆x∗/2. We verify easily that

∣∣∣∣∂p−1
x f (x∗)

∣∣∣∣ ≤ 3M/2
(
∆x∗/2

)2. Therefore

by prescribing that
∣∣∣∂m

x f (x∗)
∣∣∣ < Mcm

(
∆x∗/2

)p+1−m for all m greater than a certain q and
cm are constants (for example cp = 1), and let cp+1 = 1 we have

∣∣∣∂q
x f (x∗)

∣∣∣ ≤ M
(
∆x∗

2

)p−q+1 p+1∑
m=q+1

cm

(m − q)!
.

It is straightforward to see that {cm}m=0,...,p+1 is a decreasing series and 1 + 1/2! +

· · · + 1/k! < e − 1 for all natural number k. These yield

∣∣∣∂q
x f (x∗)

∣∣∣ ≤ M(e − 1)cq+1

(
∆x∗

2

)p−q+1

.

Thus we assume that cq = (e−1)cq+1 and by induction we have cq = (e−1)p−qcp =

(e − 1)p−q. Finally for all q ≤ p we have

∣∣∣∂q
x f (x∗)

∣∣∣ ≤ M(e − 1)p−q
(
∆x∗

2

)p−q+1

Therefore, from (22), for all x ∈ (x0, x1),

∣∣∣∂q
x f (x)

∣∣∣ ≤ M
(
∆x∗

2

)p−q+1
 p∑

m=q

(e − 1)p−m

(m − q)!
+

1
(p − q + 1)!

 < M(e − 1)p−q+1
(
∆x∗

2

)p−q+1

.

In particular for q = p we have | f (x)| ≤ C
(
∆x∗

)p+1 with C = M(e−1)p+1/2p+1.

Let us now underline a property that is inherited by the pth-order reconstruction
polynomial Ji+1/2 through its construction process. In (8) it is required that ∂q

xJi+1/2 =

−De−ϕ
(
eϕ∂q

xρ
)′ on (xi, xi+1), with ϕ′ = −u/D. Passing the variables that are not under

derivation to the left-hand side and integrating over (xi, xi+1) yields∫ x1

x0

∂
q
xJi+1/2(x)

eϕ(x)

D
dx =

[
eϕ∂q

xρ
]x0

x1
.
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This equation is also satisfied by the derivatives of the true flux j, therefore Lemma
4 is applicable with f = j− Ji+1/2 and g = eφ. As jSGCCp

i+1/2 = Ji+1/2
(
xi+1/2

)
, the following

proposition is straightforward.

Proposition 2. The SGCCp scheme is consistent in the sense that∣∣∣∣ jSGCCp

i+1/2 − j
(
xi+1/2

)∣∣∣∣ < Chp+1, for all 1 ≤ i ≤ I,

where h ∆
= max

i
∆xi, C = M(e − 1)p+1/2p+1, M = sup

t∈(xi,xi+1)

(∣∣∣∣∂p+1
x j(t)

∣∣∣∣).
3.2. L∞-stability and TVD property of the SGCC1-TVD schemes

In Section 2.4, we remarked that discrete approximates of the gradients are required
to construct the discrete flux. In this section, we investigate some properties of the
SGCC1 flux combined with the TVD slopes [9, 44, 8]. The resulting schemes are
named SGCC1-TVD.

Let us present a (very brief) sketch of the TVD slope limiters. The space step ∆x
and the time step ∆t are assumed to be constant in the following. Without loss of
generality, consider that u > 0. On the cell Ωi the solution is reconstructed with a slope

σn
i =

ρn
i+1 − ρ

n
i

∆x
Φ(θn

i ) with θn
i =

ρn
i − ρ

n
i−1

ρn
i+1 − ρ

n
i
.

The so-called slope-limiter function Φ is introduced to damp any possible over/under-
shootings of the reconstruction. But not every choice of Φ could suppress oscillations,
for instance Φ ≡ 1 (Lax-Wendroff scheme). For this to work, the slope limiter is
required to lie in Sweby’s region [8],

Φ = 0 for θ < 0,
θ ≤ Φ ≤ 2θ ∩ Φ ≤ 1 for 0 ≤ θ < 1,

Φ ≤ θ ∩ 1 ≤ Φ ≤ 2 for θ ≥ 1.
(23)

These requirements are met so that the schemes are second-order in space (for
smooth solutions) and TVD. The latter one is a consequence of Harten’s theorem [9].
Let us cite an extension of this theorem.

Theorem 1. Suppose that a numerical scheme is written in the form

ρn+1
i = ρn

i + an
i (ρn

i+1 − ρ
n
i ) − bn

i−1(ρn
i − ρ

n
i−1). (24)

Then if an
i ≥ 0, bn

i ≥ 0 and

• if an
i + bn

i ≤ 1, the scheme is TVD,

• if an
i + bn

i−1 ≤ 1, the scheme is L∞-stable.
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In case of our SGCC1-TVD scheme, the TVD slope σn
i (23) is used in place of

∆(1)ρ̄n
i . The numerical scheme is written in the form (24) with

an
i = B

(
1 + W (1) Φn

i+1

θn
i+1

)
, bn

i−1 = A
(
1 −W (1)Φn

i−1

)
+ (A + B)W (1) Φn

i

θn
i
,

A =
∆t(

∆x
)2 DB(α), B =

∆t(
∆x

)2 DB(−α),

α = −
u∆x
D

, W (1) = −
1
2

eα + 1
eα − 1

+
1
α

= −
1
2

coth
(
α

2

)
+

1
α
.

Proposition 3. In the light of Theorem 1, the SGCC1-TVD scheme are TVD and L∞-
stable if the following CFL-like condition is fulfilled,

∆t ≤
∆x
2u

tanh
(

u∆x
2D

)
.

Proof. 1. Let us first notice that A, B > 0 and 0 ≤ W (1) ≤ 1/2 since α < 0. With Φn
i

satisfying (23), it is straightforward that an
i ≥ 0 and bn

i−1 ≥ 0.
2. The inequality an

i + bn
i ≤ 1 is equivalent to

1 −
A

A + B
W (1)Φn

i +
A + 2B
A + B

W (1) Φn
i+1

θn
i+1
≤

1
A + B

.

But we have

0 ≤
A

A + B
W (1)Φn

i ≤ 1, 0 ≤
A + 2B
A + B

W (1) Φn
i+1

θn
i+1
≤ 2

A + 2B
A + B

W (1),

It can be shown that A+2B
A+B W (1) is decreasing and bounded by 1/2 and 0 for α < 0,

so ∣∣∣∣∣∣ A
A + B

W (1)Φn
i −

A + 2B
A + B

W (1) Φn
i+1

θn
i+1

∣∣∣∣∣∣ ≤ 1,

then

1 −
A

A + B
W (1)Φn

i +
A + 2B
A + B

W (1) Φn
i+1

θn
i+1
≤ 2.

Thus the scheme is TVD if A + B ≤ 1/2 which is equivalent to the stated CFL
condition since B(α) + B(−α) = α coth(α/2).

3. The L∞-stability of the scheme is proven in the same way since an
i + bn

i−1 ≤ 1 is
equivalent to

1 −
A

A + B
W (1)Φn

i−1 +
B

A + B
W (1) Φn

i+1

θn
i+1

+ W (1) Φn
i

θn
i
≤

1
A + B

,

and

0 ≤
A

A + B
W (1)Φn

i−1 ≤ 1, 0 ≤
B

A + B
W (1) Φn

i+1

θn
i+1

+ W (1) Φn
i

θn
i
≤ 2

A + 2B
A + B

W (1) ≤ 1.
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Remark 2. In the case of variable u, D, let un
i , Dn

i denote the values of u, D at time
level tn on cell center xi. In practical implementation we use the following estimation
for the advancing time step ∆tn,

∆tn = c min
i

{
∆xi

un
i

tanh
(

un
i ∆xi

2Dn
i

)}
, (25)

where c ∈ (0, 1/2] is an adjustable parameter.

4. Convergence tests

We begin numerical test with two one-dimensional examples to test the spatial
accuracy of the new SGCC1 and SGCC2 schemes. The superbee limiter is incorporated
in the former one while the generalized moment limiter [16] (GML) is used in the
latter. Throughout this part, we consider uniform meshes and the third-order SSP-
Runge-Kutta scheme [45] is used for time discretization. The CFL condition satisfies
(25) with c = 0.4. The first example is the ideal transport-diffusion of a Gaussian
hat with a constant diffusion rate and drift velocity. The other taken from [41] is the
transport-diffusion of a hyperbolic tangent profile.

Example 1 (moving Gaussian hat). We consider (0,T ) × Ω = (0, 0.25) × (0, 1), a drift
velocity u = 1 and a diffusion rate D taking three different values: 10−2, 10−4 and 10−6.
The boundary conditions are homogeneous Neumann. The initial profile is

ρ0(x) = exp
(
−

(x − x0)2

2σ

)
,

with x0 = 0.25 and σ = 10−4. Since the profile is numerically zero and flat near the
edges and the diffusion is weak, we consider that the exact solution is

ρex(t, x) =

(
σ

2Dt + σ

) 1
2

exp
(
−

(x − x0 − ut)2

4Dt + 2σ

)
.

For a grid of size ∆x, the total discretization error in L1-norm is defined as e∆x
∆
=

‖ρ∆x(T )−ρex(T )‖L1(Ω). An estimation of the convergence order is then given by log2(e∆x/e∆x/2).
The numerical results are grouped in Tables 1-2-3. We can observe that when the diffu-
sion is large (D = 10−2), the classical SG, SGCC1, MUSCL schemes are second-order.
Meanwhile the SGCC2 scheme is fourth-order, which is predictable from the Taylor’s
expansion in the proof of Proposition 1 for the diffusive limit. Indeed, as the grid is
uniform, the coefficient of the (p+1)th derivative would vanish if p is even. The conver-
gence orders deteriorate with the diffusion rate. The SG scheme is at most first-order
since the convection is dominant. On the contrary the SGCC1 and MUSCL schemes
maintain more or less a high convergence order. Overall SGCC1 displays more accu-
racy than MUSCL. It is worth noted that the embedded TVD limiters are first-order at
extrema, so while the grid is sparse it is comprehensible that these schemes are first-
order. The same argument can be applied for the SGCC2 scheme which, by the GML
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method, uses sequentially the minmod limiter on the reconstructed slopes. But overall,
the SGCC2 scheme is third-order in convection-dominant regimes.

I
SG SGCC1 SGCC2 MUSCL

L1-error order L1-error order L1-error order L1-error order
100 3.26 × 10−2 1.62 × 10−2 1.71 × 10−2 1.63 × 10−2

200 2.79 × 10−2 0.23 4.96 × 10−3 1.72 6.85 × 10−3 1.32 4.95 × 10−3 1.72
400 2.22 × 10−2 0.33 3 × 10−3 0.72 1.92 × 10−3 1.84 3 × 10−3 0.72
800 1.64 × 10−2 0.43 1.35 × 10−3 1.15 2.88 × 10−4 2.73 1.35 × 10−3 1.15

1600 1.11 × 10−2 0.56 6.98 × 10−4 0.96 3.59 × 10−5 3.00 7.01 × 10−4 0.95
3200 6.9 × 10−3 0.69 2.49 × 10−4 1.49 4.55 × 10−6 2.98 2.51 × 10−4 1.49

Table 1: Example 1, D = 10−6. Convergence order in L1-norm. Errors in function of number of grid cells I.

I
SG SGCC1 SGCC2 MUSCL

L1-error order L1-error order L1-error order L1-error order
100 2.95 × 10−2 1.24 × 10−2 1.34 × 10−2 1.25 × 10−2

200 2.43 × 10−2 0.28 2.99 × 10−3 2.05 4.4 × 10−3 1.6 3.06 × 10−3 2.03
400 1.82 × 10−2 0.42 1.7 × 10−3 0.82 9.35 × 10−4 2.23 1.77 × 10−3 0.79
800 1.2 × 10−2 0.6 8.36 × 10−4 1.02 1.21 × 10−4 2.95 1.01 × 10−3 0.81

1600 6.49 × 10−3 0.89 2.03 × 10−4 2.04 1.38 × 10−5 3.13 3.22 × 10−4 1.64
3200 2.56 × 10−3 1.34 4.28 × 10−5 2.24 1.33 × 10−6 3.38 8.83 × 10−5 1.86

Table 2: Example 1, D = 10−4. Convergence order in L1-norm.

I
SG SGCC1 SGCC2 MUSCL

L1-error order L1-error order L1-error order L1-error order
100 9.73 × 10−4 2.25 × 10−4 1.7 × 10−5 4.89 × 10−4

200 2.54 × 10−4 1.94 5.63 × 10−5 2 1.04 × 10−6 4.03 1.71 × 10−4 1.52
400 6.42 × 10−5 1.98 1.4 × 10−5 2.01 6.31 × 10−8 4.04 4.58 × 10−5 1.9
800 1.61 × 10−5 2 3.49 × 10−6 2 3.9 × 10−9 4.02 1.16 × 10−5 1.98

1600 4.02 × 10−6 2 8.71 × 10−7 2 2.43 × 10−10 4 2.93 × 10−6 1.99
3200 1.01 × 10−6 2 2.78 × 10−7 2 1.56 × 10−11 3.96 7.33 × 10−7 2

Table 3: Example 1, D = 10−2. Convergence order in L1-norm.

Example 2 (moving canyon). We take (0,T ) × Ω = (0, 4 × 10−5) × (0, 1), u = −Ax,
D = 1 and

ρ0(x) = n1 +
n2

2

(
1 + tanh

( x − x0

σ

))
,
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with A = 104, n1 = 102, n2 = 1012, x0 = 0.7 and σ = 0.02. If we neglect the
diffusion term, the solution to the resulting convection equation, which could serve as
a benchmark, is

ρ(t, x) = ρ0

(
xeAt

)
eAt.

In Figure 2 we illustrate the numerical solutions at final time T of the SG-based
schemes on a grid of 200 equal cells. Solutions of MUSCL are utterly close to SGCC1
so they are not displayed. Two choices of TVD limiters are embedded in SGCC1. The
superbee limiter produced a stairy solution since it is very compressing. On the other
hand, the minmod limiter is more relaxing, thus it generated a smooth solution. The
SG scheme is too diffusive as its slide is far more chubby than the others. Finally,
the SGCC2 scheme also gave a wavy but smoother solution since we used a gener-
alized minmod limiter to limit the slopes. Overall, this solution is the closest to the
benchmark.

(a) Panorama. (b) Zoom.

Figure 2: (colored) Example 2. Numerical and pseudo-exact solutions at T = 4 × 10−5 of different schemes
with I = 200. y-axis in log scale.

5. Gas discharge simulations

In this sections, the robustness and the reliability of our new schemes SGCC1 and
SGCC2 in simulations of atmospheric gas discharge are tested. Two configurations
are considered here: a wire-to-wire corona discharge on the time scale of milliseconds
and a positive streamer propagation between two planar electrodes that happens in
nanoseconds. Simulations with the SG and MUSCL schemes are also presented to
compare the accuracy.

5.1. Plasma discharge in one dimension: a corona discharge

A corona discharge is a type of glow discharge in air that occurs in presence of a
highly non-uniform electric field. In this subsection, we study the effect of our new
SG-based schemes on a wire-to-wire corona discharge. The configuration is proposed
in [36]: the corona actuator consists of two cylindrical wires put parallel and separated
by a distance d = 40mm. The radii of the anode and the cathode are resp. r1 = 0.35mm
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and r2 = 1mm. A tension VG = 40kV is applied between two wires, see Figure 3. An
analytical formula of the resulting electrostatic potential φL,

∇ · ∇φL = 0,
φ(anode) = VG, φ(cathode) = 0,

is given in [36]. In the same paper, a quasi-2D numerical model was proposed in [36]
in which the plasma is assumed to extend over a dome-like zone of thickness S (x)
between the electrodes. Instead of working in (x, y) plane, we now solve the equations
on the axis that bridges the wire centers (y = 0), with the volume element dv = S (x)dx.

r1
r2

d

I VG

Γ0

S(x)

x

anode
cathode

plasma

Figure 3: Sketch of a wire-to-wire configuration.

In this numerical model, the photoionization is not considered. Neither is the ion
diffusion, since their temperature is the same as air hence thermal fluctuation is negli-
gible. On the other hand, electrons are supposed to be at thermal equilibrium, meaning
that their internal energy depends only on the field, hence so do the transport, diffusion
and reaction coefficients. By affecting a change of variable with q ∆

= S ρ, the quasi-2D
corona reads as follows,

∂tqe − µeEqe + De
∂xS
S

qe − De∂xqe = ωe,

∂tq+ + µ+Eq+ = ω+,

∂tq− − µ−Eq− = ω−,

−ε0∂x(S ∂xφc) = qe + q+ + q−,

E = −∂x(φL + φc), (26)

with φc the electric potential in the presence of the plasma space charge between the
electrodes (therefore φc(anode) = φc(cathode) = 0) and the source terms given by

ωe = (α − η)qe −
ke,+

eS
qeq+, ω+ = −αqe +

ke,+

eS
qeq+ +

k+,−

eS
q+q−, ω− = ηqe −

k+,−

eS
q+q−,

where α, η (s−1) are resp. the ionization and attachment frequencies, e is the elementary
charge (≈ 1.602 × 10−19C), ke,+, k+,− (m−3s−1) are resp. the electron-ion and ion-
ion recombination coefficients. In our simulations, µ+ = µ− = 3.5 × 10−4m2V−1s−1,
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ke,+ = k+,− = 2 × 10−13m−3s−1. The coefficients α and η are calculated using the
BOLSIG+ code [46] and tabulated.

The computation domain is the line denoted Γ0 in Figure 3. This line is discretized
into cells such that the left interface of the first cell and the right interface of the last
cells coincide resp. with the anode and cathode surfaces. A mesh refinement technique
is employed to capture the intense dynamics near the electrodes and relax the grid size
in the calmer inter-electrode region: at first we construct a uniform grid, we compute
the plasma thickness S at grid centers, then we construct a new grid with the same
number of cells where its size is proportional to S .

Since photoionization is not considered, a homogeneous background charge ρb is
maintained for all species. In the follow-up simulations we take ρb = ±e × 109Cm−3

with the sign depending on charge sign. This is also the initial conditions used in the
simulations.

Dirichlet boundary conditions are used for all species: ρk(anode) = ρk(cathode) =

ρb with k = e,+,−. An additional source of electrons comes from the cathode where the
arriving ions bombard the wire surface resulting in a secondary emission of electrons.
This emission is characterized by a coefficient γ that depends on various parameters
such as the electrode material, the surface roughness, the gas composition, etc. In this
work we take γ = 10−4. The secondary emission changes the electronic current density
as follows

je(cathode) = −γ j+(cathode), with je = −µeEqe + De
∂xS
S

qe − De∂xqe, j+ = µ+Eq+.

The total current density (in Cm−2s−1) is the sum of the conductive and displace-
ment current density [36],

jt
∆
= je + j+ + j− + ε0∂tE.

Without trying to be complete, the current I in the external circuit can be computed
using an approach proposed by Sato [47]. The following formula for I is taken directly
from [36], with a minor change since the anode electric potential is unchanged in our
simulations: I = L

∫
Γ0

jt∂x f dv, where L is the length of the wires. In our simulations,
L = 16cm.

Since ions weigh much heavier than electrons, their drifting time is also much
longer. As we use explicit time integration, the CFL condition on each specie is very
unequal. Furthermore, as we shall see, the electric field in this type of discharge is
not affected tremendously by the space charge, hence the field relaxation characteristic
time is also not restrictive. Therefore a sub-cycling strategy [35] is employed to boost
the simulation time: the transport of ions and the electric field are frozen on a large time
step while computing the electron transport and the chemical reactions for which the
time steps is tremendously smaller due to the intense dynamics of electrons. Strang’s
operator splitting is used for solve separately the transport and the chemical reactions.
The second-order SSP-Runge-Kutta/Heun’s method is used for time integration. The
CFL condition satisfies (25) with c = 0.49. The P1-Lagrange finite element method is
used to solve the field equation (26). The classical upwind MUSCL scheme is used to
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applied to the ion transport equations. Finally, the MUSCL, SG, SGCC1 and SGCC2
are employed to solve the electron drift-diffusion equation.

Overall the numerical model is second-order, but the idea is to compare the influ-
ence of different schemes on the electrons. We employ the notation ISG (for example)
to imply a result obtained by the scheme SG on the (locally refined) I-cell grid.

5.2. Plasma discharge in two dimensions: a streamer propagation

The second test of gas discharge in atmospheric pressure is taken directly from
[48]. This is a simulation of a positive streamer propagation. We refer to [49, 50] on
the physics of this type of discharge. The numerical model considered here only takes
into account the electron and positive ion densities and the transport of ions is neglected
providing the short time scale of streamer propagation, reads as follows,

∂tρe − µE · ∇ρe − D∇ · ∇ρe = (α − η)µ|E|ρe,

∂tρi = −(α − η)µ|E|ρe,

−ε0∇ · ∇φ = ρi + ρe,

E = −∇φ.

In dry air, containing 80%N2 and 20%O2 at pressure P = 750Torr and room tem-
perature T = 273K, the electron mobility µ, the electron diffusion rate D, the ionization
coefficient α and the reattachment coefficient η are given analytically [48] as

µ = 2.3987|E|−0.26 (m2V−1s−1), D = 4.3628 × 10−3|E|0.22 (m2s−1), η = 340.75 (m−1),
(27)

α = (1.1944 × 106 + 4.3666 × 1026/|E|3)e2.73×107/|E| (m−1). (28)

The set of equations are numerically solved in the axisymmetric coordinates (r, z).
The streamer propagates along a gap between a planar cathode placed at z = 0 and
an anode placed at zmax = 1.25cm. On the radial side the domain stretches between
r = 0 and rmax = 1.25cm. A potential φ0 = 18.75kV is applied at the anode, giving rise
to an axial and homogeneous electric field of EL = −15kVcm−1 which is well below
the breakdown field. Homogeneous Neumann boundary condition is applied for the
potential at r = rmax and for the electron density at all boundaries except r = 0. To
initiate the formation of a streamer, a Gaussian seed of positive ions is injected into the
domain (see Figure 4),

ρ+(t = 0, r, z) = ρ0 exp
(
−

r2 + (z − z0)2

σ2

)
,

with ρ0 = e × 5 × 1018Cm−3 (e is the elementary charge), σ = 0.4mm and z0 = 1cm. In
these streamer simulations, we do not consider the electrons source by photoionization.
To compensate the creation of charges through this process, homogeneous background
density levels of ρb = ±e × 1013Cm−3 for the first test case and ρb = ±e × 109Cm−3 for
the second case are used, both for the electrons and the ions. Finally, the simulations
stop at T = 16ns.
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Figure 4: (colored) Initial electric field generated by a Gaussian ions cloud centered at z = 1cm and equipo-
tential lines. The planar anode is situated at the upper border at z = 1.25cm, the cathode lies at the lower
border at z = 0. The left border at r = 0 is the symmetry axis, meanwhile homogeneous Neumann condition
is applied for the potential at the right border at r = 1.25cm.

Mesh-wise, rectangular cells are used throughout the simulations so that directional
splitting is straightforward. We use the Strang splitting [51] to maintain high accuracy.
The third order SSP-Runge-Kutta method [45] is used for time discretization. The CFL
condition satisfies (25) with c = 0.4. In the z-direction, the space step is constant and
the number of cells are a power of 2, so that the Poisson’s equation on the potential
is tensorized by applying Fourier’s transform in z. In r, the one dimensional elliptic
equation corresponding to each frequency is numerically solved with a finite volume
scheme. Finally, the finite volume method is employed to discretize the electrons trans-
port equation. Several schemes are used to construct the numerical fluxes, namely the
SG scheme, the MUSCL scheme, the SGCC1 scheme and the SGCC2 scheme. The su-
perbee limiter is used in the MUSCL and SGCC1 schemes; meanwhile the generalized
moment limiter [16] is used in the SGCC2 scheme.

Numerical results are presented in Subsection 6.2 to compare the influence of differ-
ent numerical schemes on the electrons transport. For each scheme, three simulations
are carried out with decreasing mesh sizes. The first mesh consists of 262 cells on the
r direction and 4096 cells on the z direction. Since the space step on the z direction
is constant, we have ∆z ≈ 3µm. On the r direction, similar space step ∆rmin ≈ ∆z is
imposed from r = 0 to r = 600µm and space steps are gradually larger beyond. Similar
discretization strategy is used for other meshes. The second mesh consists of 400 cells
on the r direction and 8192 cells on the z direction, ∆rmin ≈ ∆z ≈ 1.5µm. The third
mesh has 600 × 16384 cells, ∆rmin ≈ ∆z ≈ 0.8µm. We employ the notation SGa (for
example) to imply a result obtained by the scheme SG on the mesh of minimal space
step a.
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6. Simulation results

6.1. Simulation 1: plasma discharge in one dimension - a corona discharge

At t = 0, a potential VG = 40kV is applied on the anode, abruptly causing break-
downs around the electrodes. In Figure 5 we display the evolution of the field strength
and specie densities within the first 210µs of the discharge, obtained by 400SGCC2.
The anode lies at x = 0 and the cathode at x = 40mm. At t = 0 the field strength at
the anode over 10MVm−1 and at the cathode is 4MVm−1 which surpasses the critical
ignition value 3.75MVm−1, thus we expect ionization at both electrodes but mainly at
the anode. Within the first 10µs, multiple highly energized avalanches occur ahead the
latter, producing a high-density cloud of ions with n+ = n− = 2 × 1017m−3 (Figure 5c,
d). Meanwhile, the electrons are all absorbed by the anode. The field drops critically
because of the screening effect. This process thus affects the current intensity in the
external circuit. Indeed, at t = 1µs we observe a current surge of about 200µA (Figure
6a) due to steep variation of the field and electron absorption. At t = 10µs that the cur-
rent drops significantly to about 25µA since the displacement and electron conducting
currents vanish. After t = 10µs we enter the ion collection phase where the ions drift
towards the opposite-sign electrode. As the positive cloud departs the screening effect
around the anode fades away and the field strength gradually increases. From t = 60µs
on, the field is only slightly distorted in the middle region due to ion drifting and ion-
ization stably takes place at the anode, forming a positive corona. The newly creating
positive ions follow closely the previous departing ions cloud to the cathode (Figure
5c) where a sink separates the two populations that slightly decreases the current at
t = 250µs (Figure 6a). On the other hand, since the ionization is no longer disrupted,
the anode is perpetually surrounded by an electron cloud that becomes more and more
populated (Figure 5b), thus increases the external current. The weak ionization and
secondary emission also form a permanent electron cloud just ahead the cathode. A
cloud of negative ions appears at the beginning due to high concentration of electrons
and attachment, then drifting towards the anode while attachment still occurs and in-
creases the ion level in front of the ion wave (Figure 5d). From about t = 500µs the ion
levels in the middle region are quasi constant and continue to increase until reaching a
steady state.

22



0 5 10 15 20 25 30 35 40
x(mm)

10 1

100

101

E(
M

Vm
1 )

0 s
10 s
60 s
110 s
160 s
210 s

(a) Field strength |E| (MVm−1).

0 5 10 15 20 25 30 35 40
x(mm)

109

1010

1011

1012

1013

n e
2(

m
3 )

(b) Electron density ne = −ρe/e (m−3).

0 5 10 15 20 25 30 35 40
x(mm)

1010

1012

1014

1016

n +
(m

3 )

(c) Positive ion density n+ = ρ+/e (m−3).

0 5 10 15 20 25 30 35 40
x(mm)

1010

1011

1012

1013

1014

1015

1016

1017

n
(m

3 )

(d) Negative ion density n− = −ρ−/e (m−3).

Figure 5: (colored) Simulation 1. Evolution of field strength and specie densities. Results of 400SGCC2.

In Figure 6 we compare the currents obtained by four schemes: MUSCL, SG,
SGCC1 and SGCC2. We mainly present the results on 400 and 800-cell grids, since
the computation time on more refined grids is absurd. Therefore, we only present the
result of 3200MUSCL up to T = 290µs as reference. In Figure 6a we compare the
currents on long time scale (T = 4ms) where a steady state is reached. We observe a
tendency that the current decreases as the mesh is refined. Accordingly, the SG scheme
overestimates the current intensity comparing to the reference curve (in black) and the
standard MUSCL scheme. Even 800SG gives a less accurate result than 400MUSCL.
The SGCC1 scheme is close to MUSCL, meaning that they have roughly the same ac-
curacy. Interestingly, SGCC2 gives visually the same current on both grids which also
agrees with the reference curve before T = 290µs, thus the scheme is highly accurate.
Figure 6b displays a zoom from 110µs to 290µs on the currents. Although MUSCL
and SGCC1 provide fair results, on the 400-cell grid the maximal discrepancy is 10µA,
roughly 15% of the reference current. 400SGCC2 is on the other hand exceptionally
close to 3200MUSCL, even better than 800MUSCL and 800SGCC1.
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Figure 6: (colored) Simulation 1. Comparison of external current I with different schemes and grids, on long
time (left) and short time (right).

6.2. Plasma discharge in two dimensions - a streamer propagation

6.2.1. Simulation 2: high background density
In this section, the streamer propagation is simulated with a pre-ionized electrons

and ions background of ρb = ±e × 1013Cm−3. The four considered numerical schemes
are SG, MUSCL, SGCC1 and SGCC2 with different meshes described in Section 5.2.
In Figure 7, aerial view of the evolution of the field strength |E|, computed with the
SGCC3.0

2 scheme, is illustrated. We can clearly observe that the Gaussian seed en-
hances the electric field and transforms into a positive streamer within about 4ns that
propagates in the direction of the cathode with a round leading front of high field in-
tensity. The field strength in this narrow region can exceed 14MVm−1 which is well
beyond the breakdown field 2.5MVm−1 (when α (28) begins to take over η (27)). It is
the ionization avalanches that take place in this thin layer that play a decisive role of
the streamer advancement [50]. On the way to the cathode, the streamer leaves behind
a dark-colored weak field trace. This is the quasi-neutral region consisting of almost
equal amount of free electrons and ions that forms a plasma conducting channel [50].
Figure 8b shows a cross view of the axial field Ez in dotted lines and the total space
charge ρtot = ρ+ + ρe in solid lines on the axis r = 0. Again a gradient layer of Ez

can be observed in advancement along with a small but highly concentrated positive
space charge front. In a cathode-directed streamer, this positive front acts as a bea-
con attracting pre-ionized electrons from outside the conducting channel. The arriving
electrons ionize the gas in front of the gradient layer, then move inwards the channel,
neutralizing the existing gradient layer but leaving behind newborn ions. Since the pre-
ionized electrons are produced by energized photons emitted by the beacon [50], it is
absolutely crucial to apply a background charge density in the absence of the photo-
ionization source term as in the previous corona discharge simulations. In Figure 8a,
the evolution of electron density ne = −ρe/e is given. Within 4ns, the density increases
exponentially until it reaches 1.4 × 1020m−3. This phase corresponds to the streamer
formation. Beyond 4ns, the electron level maintains between 1 − 1.2 × 1020m−3 in the
quasi-neutral zone, this is the stable advancement phase of the streamer.
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Figure 7: (colored) Simulation 2. Evolution of the electric field strength |E| (MVm−1) of a downward prop-
agation of the streamer. Results are obtained by SGCC3.0

2 . Although the domain stretches to r = 1.25cm,
visualization is only shown up to r = 2mm.

It is interesting to note that when the propagation is stable, the peak space charge
ρmax diminishes in time albeit the layer width Rρ increases. Rρ is measured as the
distance between two point z1, z2 where ρtot(z1) = ρtot(z2) = 1%ρmax. Moreover, the
maximal field strength Emax in the layer is almost independent of time. This indicates
that charge concentration in the layer should be more or less conserved in time. In
a paper of Kulikovsky [42], a such property was put forth and verified by simulations
with almost identical conditions as here. Kulikovsky postulated that from a electrostatic
point of view, the electrical field at the layer is equivalent to that at the surface of a ball
of radius Rρ filled with uniformly distributed charge ρmax. Under this assumption he
deduced a relation between the peak field strength and front charge,

Emax ≈ −
ρmaxRρ

3ε0
− EL. (29)
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Figure 8: (colored) Simulation 2. Evolution of the axial field and the space charge (right) and the electrons
density (left) on the axis r = 0. Results obtained by SGCC3.0

2 .

In Table 4 we listed the aforementioned variables with values taken from our sim-
ulations with the SGCC1.5

1 , SGCC3.0
2 and SGCC1.5

2 schemes. We do not list those of the
SGCC3.0

1 scheme since oscillations of charge density are observed in this simulation
(see Figure 8a) which make it difficult to extract the values of Rρ. Same phenomenon
is observed with the MUSCL3.0 scheme. Since the simulation did carry on until the end,
we suspect that the nature of these oscillations is not linked to the numerical schemes
but to the coarse grid that failed to capture correctly the streamer dynamics. The re-
sults show that ρmaxRρ and Emax are effectively quasi-constant, albeit there is a 20%
discrepancy regarding to (29).

4ns 8ns 12ns 16ns
Rρ (µm) 63/61/61 75/73/72 95/89/93 122/116/124

ρmax (Cm−3) 7.7/7.5/8.2 6.2/6.1/6.5 4.8/4.9/4.9 3.9/4.0/4.0
Rρ × ρmax/3/ε0 (kVcm−1) 181/173/187 174/169/174 172/163/172 179/175/184

Emax (kVcm−1) 163/161/167 156/154/158 151/150/153 156/155/159

Table 4: Simulation 2. Evolution of the charge front width Rρ, the maximal front charge density ρmax and
the maximal field strength Emax. Results obtained by SGCC1.5

1 /SGCC3.0
2 /SGCC1.5

2 .

So far we have shown the capability of the new SGCC1 and SGCC2 schemes in
reproducing streamer propagation. The numerical results show consistency with the
theory and other streamer simulations [48, 42, 52, 42, 43, 49]. Front charge conserva-
tion is also observed in accordance to [42]. We now compare the SG-based schemes
with other existing schemes. Figure 9 show resp. the amplified streamer length in time
and the peak field strength versus streamer length. The streamer length is defined as
L(t) = 1.25cm − zmax(t), where zmax(t) is the location on the axis r = 0 where the
electric field strength is maximal at time t. The streamer length is subtracted by νt
with ν = 0.05 to amplify the difference between the curves. The peak field strength
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Emax at time t is measured at zmax(t) and r = 0. Four numerical schemes are consid-
ered: SG (blue), SGCC1 (green), SGCC2 (red), MUSCL (magenta) with three meshes:
262 × 4096 (square), 400 × 8192 (triangle), 600 × 16384 (cross). Table 5 show sim-
ulation time and computer model used for each test case. Existing simulation results
extracted from [48] from two groups: CWI [39] and FR [38] are added as references.
The CWI group used the 5-point central difference scheme to solve Poisson’s equation,
whereas the FR group used the Fourier-finite-volume method similar to us. Both group
used the MUSCL scheme to discretize the electron continuity equation, albeit the CWI
used Koren’s limiter and the FR used the superbee limiter for stability. The results
from these two groups are obtained on a grid with ∆rmin ≈ ∆z ≈ 0.8µm.

∆z, ∆rmin SG SGCC1 SGCC2 MUSCL Computer
3µm 2.1H 2.9H 3.3H 2.7H Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz

1.5µm 40H 44H 111H 41H Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz
0.8µm 187H 334H 768H 327H Intel(R) Xeon(R) CPU E5-4650 0 @ 2.70GHz

Table 5: Simulation 2. Simulation times in hours. By default the simulations stop at T = 16ns; exceptions
are SG3.0 (13ns), SG1.5 (15ns).

At first glance we can remark that the SG scheme gave total inadequate estima-
tions. It overestimated both the streamer length and the peak field strength. Since the
streamer enhances too fast, it reaches the cathode within only 13 − 15ns, comparing
to 16ns in simulations with other schemes. Even on the finest mesh, the blue curves
deviate from the references with the largest marge 30% and 50% of the references.
Similar overestimating behavior of the SG scheme was also observed in [52]. This
is a huge drawback of the first-order SG method. The MUSCL and SGCC1 schemes
in the other hand provided much more trustworthy results. On the coarsest mesh, the
largest discrepancy is both 20% of the references, while on the finest mesh it is only
10% and 2%. SGCC1 however show slightly more deviation than MUSCL on the
coarse grid, a fairly disappointing news. Since the streamer propagation is a (very)
time-dependent problem, the advantage of SGCC1 over MUSCL is somewhat blurred.
It is noted that on the grid 3µm, both MUSCL and SGCC1 produced peak field strength
that is not constant: there is a sink at L = 0.9cm; we also mentioned that the results
of both schemes are polluted with small oscillations. Therefore, it is recommended to
use better-resolution grid to obtain high-quality results. In general, both second-order
schemes displayed good accuracy and mesh convergence. Finally, the SGCC2 scheme
show firmest results among the four methods. On the coarsest grid the red curves are
already close to the references; in terms of peak field strength it highlights the front
charge conservation in the streamer stable state, whilst others do not. It is also noted
that the reference curves seem to not cluster at the same place as other curves on the
finest grid (except for SG). In summary, in this test case all four numerical schemes
display robustness and mesh convergence; among them the SGCC2 scheme, being it-
self third-order, display highest accuracy. The results also show that the new SG-based
schemes are capable of reproducing correctly and accurately a streamer propagation, a
highly dynamic phenomenon of gas discharge.
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Figure 9: (colored) Simulation 2. Comparison of different numerical schemes: amplified streamer length L−
vt (cm) versus time with v = 0.05cm.s−1 (left) and peak field strength Emax (kVcm−1) versus streamer length
(right). Note that at ∆rmin = 1.5µm the results of MUSCL and SGCC1 begin to superimpose. Reference
curves in black and yellow.

6.2.2. Simulation 3: low background density
For these simulations, we use a background charge density of ρb = ±e × 109Cm−3.

Similar grids and numerical schemes are used. The final time is T = 23ns. In Figure
10b, we observe that the level of electron density is almost as twice as in Simula-
tion 2. Comparing to Simulation 2, Simulation 3 is more challenging due to steeper
streamer front and the streamer takes longer time to complete the gap. With ∆z = 3µm
only SGCC2 succeeds to reach the end of simulation. SG crashes at 3ns and SGCC1,
MUSCL both crash at 10ns (see Figure 11c,d) due to the appearance of unstable os-
cillations. In Figure 10, we remark that these oscillations even persist for SGCC1 (and
MUSCL but not illustrated) with grid size ∆z = 1.5µm, by the fact that the electron
density forms a series of peaks along the streamer body and the field strength is lat-
erally distorted. On the same grid, the results of SGCC2 are smooth. On coarse grid,
SGCC3

2 behaves like SGCC1.5
1 (not illustrated here) and manages to stay stable.
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(a) Field strength |E| (MVm−1). (b) Electron density ne = −ρe/e (m−3).

Figure 10: (colored) Simulation 3. Comparison of results at T = 20ns with SGCC1.5
1 and SGCC1.5

2 schemes.

The peak field strength (on the symmetry axis) and the streamer length are pre-
sented in Figure 11. As Simulation 2, the SG scheme is always too diffusive that it
provides inadequate results. On ∆z = 1.5µm grid it crashes at T = 10ns, while on
∆z = 0.8µm it overestimates the streamer velocity (Figure 11c) and the peak field
strength (Figure 11d) that the streamer already touches the cathode at T = 20ns. On
Figure 11a SGCC3

2 is comparable to SGCC1.5
1 and MUSCL1.5; SGCC1.5

2 is roughly the
same as SGCC0.8

1 and MUSCL0.8; only SGCC0.8
2 is comparable to the CWI reference

curve. The FR reference curve seems to be less accurate since it underestimates the
streamer velocity. On Figure 11b we observe that the aforementioned oscillations pol-
lute the results of SGCC3

2, SGCC1.5
1 and MUSCL1.5, all these three curves are more or

less the same; SGCC1.5
2 , SGCC0.8

1 and MUSCL0.8 form a cluster with the FR reference
curve; only SGCC0.8

2 manages to reach the accuracy of CWI. We also observe a chute
of peak field from 230kVcm−1 at the end of streamer formation to 190kVcm−1 on a
length of 70mm, which contradicts the stable quasi-constant field observed in Simula-
tion 2. Indeed, the streamer decays more easily in this situation since the pre-ionized
electron level is lower, hence limits to capability of charge production by ionization
avalanches to maintain the streamer front. Overall, for the same quality of results, the
SGCC2 scheme allows the use of grids twice as coarse as SGCC1 and MUSCL.
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Figure 11: (colored) Simulation 3. Amplified streamer length L − vt (cm) versus time with v = 0.03cm.s−1

(left) and peak field strength Emax (kVcm−1) versus streamer length (right). Reference curves in black and
yellow.

7. Conclusion and perspectives

This section concludes the introduction of the Scharfetter-Gummel schemes with
Correction of Current. The SGCC method offers a consistent tool to discretize the
second-order operator ∂x−∂

2
xx without having to discretize the convective and diffusive

parts separately. The key idea is to find a p-degree polynomial approximation of the
density flux such that it is locally and quasi exact for an exponential function. The con-
struction of the schemes can be finally viewed as a correcting process of the classical
Scharfetter-Gummel scheme, with the corrections from the spatial derivatives of the
solution. Thus to close the numerical flux, approximations of the solution derivatives
must be chosen carefully.

For p = 1, analysis has shown that the integration of classical TVD limiters into
the SGCC method results in stable schemes in the sense that the numerical solution
respects the discrete maximum and TVD properties. For p = 2, we have applied
the generalized moment limiting method to approximate the solution derivatives. Al-
though, to our knowledge, no theoretical results have demonstrated that this method is
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stable, numerical results have shown that the scheme is highly accurate and sufficiently
robust to simulate plasma discharge in air on structured meshes. The results of SGCC2
on coarse grids are of the same quality as second-order schemes on more refined grids.
This is a practical interest of this scheme since it eases computational burdens.

In the future, we aim to extend and apply the SGCC method on unstructured grids
and we hope to combine the SGCC framework with stable solution reconstruction rou-
tines to achieve higher accuracy.
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