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Abstract—IEEE Std 802.15.4-2015 Time Slotted Channel
Hopping (TSCH) is the de facto Medium Access Control (MAC)
mechanism for industrial applications. It renders communications
more resilient to interference by spreading them over the time
(time slotted) and the frequency (channel hopping) domains.
The 6TiSCH architecture bases itself on this new MAC layer to
enable high reliability communication in Wireless Sensor Networks
(WSNs). In particular, it manages the construction of a distributed
communication schedule that continuously adapts to changes in the
network. In this paper, we first provide a thorough description of
the 6TiSCH architecture, the 6TiSCH Operation Sublayer (6top),
and the Minimal Scheduling Function (MSF). We then study its
behavior and reactivity from low to high traffic rates by employing
the python-based 6TiSCH simulator. Our performance evaluation
results demonstrate that the convergence pattern of MSF is the
root cause of the majority of packet losses observed in the network.
We also show that MSF is subject to over-provisioning of the
network resources, especially in the case of varying traffic load.

Index Terms—Internet of Things, IoT, Industrial IoT, IIoT,
IEEE Std 802.15.4-2015, TSCH, 6TiSCH, 6top, 6P, MSF

I. INTRODUCTION

Industry 4.0 is currently the focus of major development
efforts aiming at making manufacturing processes more flexible,
more autonomous and more economical to operate. One way in
which this is being pursued is by deploying Internet of Things
(IoT) technologies for the purpose of connecting management,
reporting, sensing, and control interfaces. The IoT encompasses
technologies which support the large-scale deployment of and
communication between small, inexpensive, but often severely
constrained devices. Indeed, although such devices allow great
flexibility, easy mobility, and interoperability, the hardware
used is by necessity limited in CPU performance, memory
storage, radio communication range and energy consumption.

To compensate for these shortcomings and to allow industrial
use of these devices, a set of technologies have been developed
for the Industrial Internet of Things (IIoT). This context poses
requirements of very high reliability, low latency, and low
jitter on data transmission. Additionally, it mandates that these
requirements need to be met while maintaining high energy
efficiency and low CPU and memory overhead.

Recently, wireless technologies have been used with good
results in terms of reliability and latency [1]. However, because
of strict constraints on available network resources and required
energy efficiency, assumptions are made about the characteristics
of the served traffic in such networks, such as constant rate.
However, replacing legacy, wire-based infrastructure requires
the ability to quickly adapt to changing traffic.

To this end, the IETF has introduced a still work-in-progress
functionality known as the 6TiSCH Minimal Scheduling
Function, which allows the negotiation and reservation of
network resources in a scheduled / deterministic access wireless
network in an on-demand manner. In this paper, we describe this
functionality in detail and assess its performance. We proceed by
studying the behavior and reactivity of 6TiSCH MSF on simple
topologies with varying traffic load. From these observations we
illustrate shortcomings that it’s use brings to the IIoT use case.

The rest of this paper is organized as follows. Section II
presents a description of the 6TiSCH architecture. Then we
describe in Section III the Minimal Scheduling Function.
In Section IV we present an evaluation of 6TiSCH MSF
performance on simple topologies with constant and varying
traffic load. Finally, in Section V, we draw concluding remarks
and suggest further work.

II. 6TISCH

Industrial environments are prone to interference which limits
the ability of a single-channel solution to provide reliable commu-
nication. Inspired by the existing WirelessHART and ISA100.11a
standards [2], the IEEE Std 802.15.4-2015 [3] standard proposes a
Medium Access Control (MAC) mechanism to improve the qual-
ity of communications for a wide range of applications, including
industrial ones. This protocol combines channel-hopping with
Time Division Multiple Access (TDMA) to achieve both high
reliability against interference and very low energy consumption.

A. Time Slotted Channel Hopping (TSCH)

Under TSCH, transmissions are organized within a recurring
slotframe, as presented in Fig. 1. In this slotframe, each individual
transmission is scheduled as a pair of timeslot (horizontally in
the time domain) and channel offset (vertically in the frequency
domain). This atomic unit of transmission is called a cell.
According to the standard, a slotframe contains 101 timeslots,
each 10 ms long, and as many channel offsets as available physical
radio channels, i.e., 16 in the 2.4GHz band. Each cell can be
reserved for a specific node to receive and/or to transmit a packet.
The cell can also be dedicated to a unicast link, or shared among
multiple nodes, typically for control packets. In the latter case,
the nodes use a contention-based method to access the channel.

The channel offset does not directly map to the radio
frequency. Instead, the actual frequency is determined using
a hash function of the Absolute Sequence Number (ASN),
an integer value that represents the time of the deployment,
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Figure 1. Recurring slotframe of size 4 with 3 radio channels. The same
cells are scheduled in each slotframe and represented as (timeslot,
channelOffset).

and the channel offset. It should be noted that in Fig. 1 the
hash function maps the same scheduled cell, for instance (0,0),
to a different physical radio channel on each occurrence of the
slotframe. These two concepts, scheduling and channel-hopping,
are at the core of TSCH. By spreading the communications
over multiple channels, TSCH limits the impact of interference
occurring on specific frequency bands, while the synchronous
schedule-based approach avoids most collisions as most
transmissions take place in contention-free cells.

Nodes wishing to join the network must synchronize
themselves with the slotframe. Thus a special control frame
at the MAC layer, known as the Enhanced Beacon (EB),
is periodically sent over the air to announce the slotframe
characteristics and beginning. This message, usually sent in the
(0, 0) cell, contains, among other things, the size of the slotframe,
the number of channels available and the current ASN value.

The IEEE Std 802.15.4-2015 TSCH standard does not define
the strategies to construct and maintain the schedule of cells
within the slotframes. Instead, the management of this schedule is
left to an external entity. These solutions can be either centralized,
where a node is selected as a coordinator for the entire network,
or distributed, where each node makes its decisions locally in
collaboration with its neighbors. While the latter is more suited to
larger unstable networks, the lack of a global network view makes
it harder for these to ensure an efficient multi-hop communication.

Many distributed scheduling solutions have already been
proposed in the literature [4]–[8]. For instance, Orchestra [4]
uses hashes of the neighbors’ MAC addresses to construct
rendez-vous points in which to schedule transmissions.

Another solution, the Minimal Scheduling Function (MSF) [9],
currently worked on by the IPv6 over the TSCH mode of IEEE
802.15.4e (6TiSCH) [10] Working Group (WG), provides a
reactive algorithm which can quickly adapt to traffic variations
and collisions, displacing conflicting cells or allocating new
cells when needed. We present this scheduling function in more
detail in Section III. The goal of this paper is to evaluate the
performance of this under-standardization scheduling function.

B. 6TiSCH Architecture

The 6TiSCH WG envisions an IPv6-based wireless sensor
network architecture [11] based on TSCH that aims for
high-reliability packet delivery. To this end, it defines a network
stack (Fig. 2) where IPv6 connectivity is achieved using
well-known protocols such as the 6LoWPAN [12] shim layer

Sched. func. (MSF)

6top (6P)

IEEE 802.15.4 TSCH

6LoWPAN HC

IPv6

UDP ICMPv6

CoAP 6LoWPAN ND RPL

Figure 2. Network stack in the 6TiSCH architecture.

Figure 3. An example of a 2-step 6top ADD transaction. The request is
made from node A to node B. Node A requests two cells among three proposed
candidates. Node B responds with two selected cells among the candidates.

with header compression (HC) and fragmentation, along with
RPL [13] for routing and CoAP [14] as the application layer.

RPL organizes routing by constructing a Destination Oriented
Directed Acyclic Graph (DODAG) that allows each node
to reach the network root – usually the border router – through
a preferred parent. The selection of preferred parents is based
on the advertisement of DODAG Information Object (DIO)
messages. Moreover, preferred parents act as clock sources to
maintain the synchronization of the underlying TSCH timeslots.

In addition to these protocols, 6TiSCH also defines scheduling
functions which implement distributed slotframe scheduling
strategies and the 6TiSCH operation sublayer (6top) [15]
which supports the negotiation of cells between neighboring
nodes. Finally, it describes the minimal configuration required
for nodes to join a 6TiSCH network [16].

C. 6TiSCH Operation Sublayer

The 6top layer is right above the link layer. The protocol
part of this sublayer, called 6P [15], defines the messages and
transaction mechanisms to add, delete, or relocate cells within
the slotframe. Additionally, it also provides commands to count,
list, or clear all the cells reserved for communication between
two nodes as well as a signaling mechanism for proper operation
of the scheduling functions. The decision of when to add or
delete cells is left to a 6TiSCH Scheduling Function (SF).

Each 6top transaction consists of either 2 or 3 steps. In a
2-step transaction, the source node selects the candidate cells.
In a 3-step transaction instead, it is the destination node which
selects the candidate cells. The 6TiSCH MSF scheduling function
presented in Section III only uses the 2-step transactions.
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Fig. 3 illustrates an example of a 2-step ADD transaction.
In this case, node A requests to node B the addition of two
new cells to its own schedule. To this end, the scheduling
function on node A proposes a list of three candidate cells
and locks those in its schedule until a 6P response is received.
When the request is successfully delivered to node B, indicated
by the reception of a MAC-layer ACK by node A, node A
also starts a timeout to abort the transaction if no response
is received for its request. The scheduling function on node
B selects two cells among the proposed candidates and locks
those in its schedule until the response has been successfully
received. Typically, 6P ADD transactions in 6TiSCH MSF
request the negotiation of 1 cell among 5 candidates.

III. MINIMAL SCHEDULING FUNCTION

The 6P protocol only provides the necessary transactions
to manipulate cells in each node’s schedule. It is up to the
scheduling functions to decide when to add or delete cells
from those schedules. To this end, the 6TiSCH WG proposes
a reactive and distributed scheduling solution known as the
Minimal Scheduling Function (MSF) [9]. This scheduling
function defines the bootstrapping process for a node to join the
network and a subsequent mechanism for each node to adapt
to traffic changes, routing changes, and schedule collisions.

A. Types of Cells
MSF relies on 3 different types of cells for its operations:

the minimal cell, autonomous cells and negotiated cells. In
case multiple cells are scheduled at the same slot and channel
offset, the minimal cell has the highest priority, followed by
autonomous cells.

The minimal cell is a single mandatory shared cell used
to bootstrap the network [16] and ensure minimal connectivity.
It is used to exchange the Enhanced Beacons advertising the
network and its configuration, as well as routing information
through the RPL DIO control packets. The minimal cell is
usually located at timeslot 0 and channel offset 0.

MSF also makes use of a set of autonomous cells that act as
default rendez-vous points to bootstrap unicast communications.
Every node has a permanent Rx autonomous cell whose
location in the slotframe is derived from a hash of its 64-bit
Extended Unique Identifier (EUI64). On the other hand, Tx
autonomous cells are allocated on-demand when no other
unicast cell is available to send messages to a specific neighbor.
In particular, they are used to transmit the initial messages
to exchange keying material and negotiate via 6P the first cell
to the preferred parent node. Sending through a Tx autonomous
cell requires a contention-based method to access the channel,
since the cell is shared by multiple neighbors.

Finally, MSF allocates negotiated cells that will be used
by a node for communication and announcing itself to potential
newcomers. Such cells are negotiated by a node with its neighbors
through 6P transactions, according to the current traffic load.

B. Network Bootstrapping
A node expecting to join a 6TiSCH network must go through

a series of steps before being able to transmit messages within

the network. First, it must discover and synchronize with
the network. Then, it must learn keying material and setup
routing to its preferred parent. Finally, it must negotiate cells.
This process can be divided into 6 steps detailed below.

1) Channel selection: Initially, the node expecting to join
the network should choose a random radio channel to listen
for an EB message advertising the network, which is sent
from one of its neighbors. If the node does not hear any
EB after some time, this may indicate that this specific
radio channel is subject to interference. Thus the node
should select another random radio channel and start again.

2) Additional EBs: Once the first EB has been received,
the node should listen for additional EBs to discover its
neighbors and to select its preferred neighbor as a Join
Proxy (JP) to continue the join process. Once this JP has
been selected, the minimal cell is configured on the joining
node to enable communications.

3) Join Process: The node must now register to the network
and learn the keying material. It does so by “talking” with
a Join Registrar/Coordinator (JRC).

4) Acquiring a RPL rank: After the node has joined the
network, it can receive the control messages, in particular
RPL DIOs. Once at least one DIO is received the node can
compute its own rank and select a preferred parent, as per [13].

5) 6P ADD to preferred parent: Once the preferred parent has
been selected, the node uses 6P to request from the parent
one negotiated cell among 5 proposed candidates. This
negotiated cell can be used only for unicast transmission
to the preferred parent. This initial 6P request occurs over
autonomous cells which are removed after transmission.
Subsequent 6P requests will occur on any of the negotiated
cells to the preferred parent.

6) Send EBs and DIOs: The node now starts sending DIOs
and EBs through the minimal cell, allowing new devices
to discover and join the network. To reduce contention
in the minimal cell, the node should reduce the number of
EBs and DIOs sent according to the number of neighbors.

C. Addition / Deletion Rules

MSF dynamically adapts the number of negotiated cells of
each node. This happens in the three following cases. First, the
available link-layer resources are adapted to the current traffic
load. Second, a new preferred parent is selected, as part of RPL
operations and cells must be re-negotiated. Finally, certain cells
experiencing excessive schedule collisions need to be relocated.

1) Adapting to Traffic Changes: A node adapts its number
of negotiated cells when it detects a significant increase or
decrease in traffic. To this end, it estimates the traffic load over
a recent window of time expressed as a number of cells. This
is done by maintaining a pair of counters (NumCellsUsed and
NumCellsPassed) per neighbor and per traffic direction. In the
following discussion we only consider traffic going upstream,
through the preferred parent. NumCellsPassed counts the elapsed
number of negotiated cells to the preferred parent whether or
not they resulted in a transmission, while NumCellsUsed counts
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the subset of those cells that were used for a transmission,
whether or not that transmission was successful.

A node updates and adapts its schedule after a certain
number of cells, MAX NUMCELLS, has passed, that is, when
NumCellsPassed > MAX NUMCELLS. At the time of decision,
its estimate of the current traffic load is NumCellsUsed

MAX NUMCELLS which is
used with hysteresis to decide if cells must be requested or deleted.
To this end, if NumCellsUsed > LIM NUMCELLSUSED HIGH,
then the node uses 6P to add a single negotiated cell. Otherwise, if
NumCellsUsed < LIM NUMCELLSUSED LOW , then the node
uses 6P to remove a single negotiated cell. In any case, the node
afterwards resets both counters (NumCellsPassed, NumCellsUsed)
to 0. We illustrate this behavior in Fig. 4. The values used
for MAX NUMCELLS, LIM NUMCELLSUSED HIGH and
LIM NUMCELLSUSED LOW are respectively, 100, 75 and
25, as recommended in [9].

2) Switching Preferred Parent: As part of the default
operation of RPL, a node can switch its preferred parent when
the link quality changes. When this occurs, the node should
adjust its schedule accordingly. First, the node uses 6P to add
the same amount of negotiated cells to its new preferred parent,
as it had to the old preferred parent. Then, it issues a 6P clear
to its old preferred parent to remove all previously negotiated
cells. This operation is repeated for negotiated TX and RX cells.

3) Handling Schedule Collisions: Since the schedule is
constructed in a distributed fashion, there is a possibility for
two pairs of nearby neighbor nodes to schedule over the same
cell (timeSlot, channelOffset). This could result in
a collision if both pairs of nodes try to exchange packets
at the same time.

A node detects such collisions with the use of two counters
per each negotiated TX cell. NumTx counts the number of times a
node tried to transmit a packet while NumTxAck counts the num-
ber of times such transmission is successful, that is, the number
of transmissions for which an acknowledgment was received.

We define as the Cell Delivery Ratio (CDR) the ratio
NumTxAck

NumTx for cells where NumTx > 0. The value of both
counters is divided by 2 when NumTx reaches 256. Thus,
the counters can increment continuously without changing
the value of the CDR.

The principle is that a cell subject to collisions would exhibit
a CDR significantly lower than the other cells. Thus, to detect
collisions, a node regularly issues the following sequence of
actions: to ensure that the CDR value is statistically significant,

0

root

1 2 3 4
100% 100%

no interference

Figure 5. Linear topology with a link quality of 100% between adjacent
nodes and no interference between non-adjacent ones.

Table I
DEFAULT PARAMETERS USED IN THE SIMULATIONS.

Parameter Value

Timeslot duration 10 ms
Slotframe length 101 slots
EB/DIO probability 0.33
Packets size 90 Bytes
Retransmission disabled

the node waits until both counters were divided by 2 at least
once before proceeding forward. When that has been done, it
computes the CDR for each cell to its preferred parent and retains
the maximum of those values. Then it relocates each cell whose
CDR difference to the maximum is larger than a given threshold
of RELOCATE PDRTHRES with a default value of 50%.

IV. EVALUATION

Two of the main features advanced by 6TiSCH MSF are the
ability to adapt the network resources to the current traffic load of
the network and to relocate these resources in case of collisions.
In this section, we use the 6TiSCH simulator to provide an
evaluation of MSF on two aspects. First we evaluate it with
regular and constant traffic, then with varying traffic to assess
the adaptation ability of MSF. We perform these evaluations
on the simple linear topology presented in Section IV-A which
allows us to investigate 6TiSCH MSF at a fundamental level.

A. Simulation Setup

To perform this evaluation, we use the 6TiSCH simulator [17].
This discrete-event simulator, written in Python, implements a
careful abstraction of the 6TiSCH network stack. In particular it
can accurately monitor the behavior of the Scheduling Function,
the routing protocol, the impact of MAC layer drops for 6P
transactions, and the response of the application. Note that
this simulator does not reproduce a realistic PHY layer.

For most of our experiments we use a simple linear topology,
illustrated in Figure 5, defined as a series of n nodes arranged
linearly with a fixed link quality of 100% between each pair
of adjacent nodes and 0% otherwise. The simulator implements
the RPL objective function MRHOF. However this does not
impact parent selection as the nodes can only hear from their
two immediate neighbors.

All our simulations use the default parameters presented
in Table I. If a parameter changes for a particular experiment,
it is stated explicitly in the text. The values provided are
commonly found or recommended for 6TiSCH networks.
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Figure 6. End-to-end PDR and latency for the application packets carried by
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the middle horizontal line the median. In the PDR figure, the intermediate
box lines represent the 25th and 75th percentiles.

The EB/DIO parameter is the probability for a node to send
an EB or DIO packet in the shared minimal cell. We also
disabled retransmission at the TSCH level to force the use of
available MAC layer resources instead of delaying packet losses
as a retry into the TX queue. This allows us to observe the
ability of MSF to send traffic on its own. Note that 6P requests
are still retried by 6P itself as part of a 6top transaction.

Each simulation is repeated a large number of times for
a fixed duration after all nodes have joined the network. To
speed up the join process, we only start the more demanding
application traffic after all nodes have joined the network. This
is considered as t=0 s in our results. Finally, we also stop the
application traffic 5 minutes before the end of the simulation to
ensure that any packet in transit has time to reach its destination.

B. Constant Traffic

We evaluate the performance of MSF on a linear topology of
5 nodes as presented in Fig. 5. Each node from 1 to 4 generates
a regular traffic with rate R ranging from 0.1 up to 10 pack-
ets/slotframe. Although the latter might seem excessive, we use it
to simulate the load of a very large network. The simulation runs
50 times and for a duration of 30 minutes after all the nodes have
joined the network. We focus on node 2 as it is the most sus-
ceptible to suffer from schedule collisions with the other nodes.

Fig. 6 shows the evolution of PDR and latency for node 2
as a function of traffic load. We observe that the PDR starts to
drop with packet rates higher than 0.5 pkts/sf. On node 2, this
corresponds to 1 pkt/sf of forwarded traffic from node 3 and 4 and
0.5 pkt/sf of locally generated traffic. The resulting 1.5 pkts/sf
traffic overruns the single cell allocated to the parent and, thus,
triggers the MSF traffic adaptation mechanism. When the queues
become full and as long as the amount of required cells is not
allocated, packets will be silently dropped, hence decreasing PDR.

Counter-intuitively, the latency for node 2 decreases with
higher packet rates, except for outlier cases. This decrease in
latency at higher traffic rates can be explained by the uniform
distribution of more cells in the schedule. In that case, any
packet has more opportunity to find a nearby cell to be sent on
instead of waiting for the occurrence of a later slotframe. Also
since the TX queue fills up as long as not enough resources
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Figure 8. Evolution of allocated cells with time on node 2 with a generated
traffic load of 5 pkts/sf/node. Allocation/deallocation periods are shaded in gray.

are allocated for the traffic load, some packets can take a
lot of time waiting in the queue to reach their destination.

Furthermore, we show the evolution of MSF traffic adaptation
mechanism over time for a low traffic rate (Fig. 7) and a high
traffic rate (Fig. 8). The MSF TX line shows the estimation of the
negotiated cells usage over the last MAX NUMCELLS window.
Above 75%, MSF tries to add more cells, and below 25% to
delete cells instead. The top part of the figure shows the decision
by MSF to allocate new cells (up arrow) or to de-allocate
existing cells (down arrow). The network starts with only one
cell allocated which is not enough to send a traffic rate above
1 pkt/sf. We can see that as soon as the application starts sending
packets, the transmission queue (TxQ) of node 2 immediately
fills up to 100%. MSF TX quickly goes above 75% and MSF
starts adding new cells to cope with the increased cells usage.
This triggers an allocation period, shaded in grey, that lasts until
the cell usage decreases below 75%. This only happens once the
resources are sufficient for the TX queue to not use all available
cells. The same process happens in reverse when the application
is stopped. The queue empties itself, and no cells are used for
transmission. As a result, the cell usage goes below 25%, which
triggers a deallocation period until no more cells can be deleted.

The vast majority of the losses happening in a 6TiSCH MSF
network occur during these cell allocation period. When the TX
queue is full, all new packets are dropped by node 2. It is only
when resources are sufficient that the average empty rate of the
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the number of losses observed for 50 runs and all packet rates.

queue equals its fill rate and packets are not dropped anymore.
Thus, the length of those allocation periods directly impacts the
PDR of the network. Fig. 9 illustrates this behavior with a corre-
lation between the time to the penultimate 6P ADD transaction
(X axis) and the number of packets losses on the network (Y axis).
It shows that the number of observed losses increases with the
time of the latest 6P ADD transactions, that is the time after which
MSF has allocated the necessary resources for the current traffic
load. Since MSF stops adding new cells as soon as MSF TX
drops below 75%, variability in MSF TX can trigger an additional
6P ADD transaction long after the resources needed to avoid
immediate packets losses have been allocated. For this reason, we
measure the time to the penultimate instead of the last transaction.

We observe the rate of adaptation during these periods
is not linear and increases with the number of allocated cells.
Decisions to adapt are taken everytime NumCellsPassed ≥
MAX NUMCELLS. As new cells are added, the time to reach
MAX NUMCELLS decreases, resulting in faster allocations.
We also observe significant variation in the queue depth after
MSF has converged. We hypothesize this is related to how
uniformly cells are allocated within the slotframe. Clustered
cells in the schedule increase the average distance between
the cells, giving more opportunity for the queue to grow while
waiting for a transmission cell.

We observed in Figs. 7 and 8 that the number of allocated
cells was higher than required. In Fig. 10, we show for each
traffic rate and 50 runs of the same configuration, the number of
cells allocated by MSF on node 2, together with the theoretical
number of cells required (line steps). The theoretical number
of cells on node 2 is obtained as Nth=d5×Re, where R is
the per-node traffic rate. The factor 5 comes from the fact that
node 2 receives data packets from node 3 and 4 and forwards
them upstream along with its own packets. Let’s consider the
case of R=5 pkts/sf. The theoretical number of cells required
is 25 while the median (resp. maximum) number of allocated
cells in our experiments is 36 (resp. 38). Note that over-
provisioning was expected because of the cell usage threshold
( LIM NUMCELLSUSED HIGH

MAX NUMCELLS =75%) value used for deciding for the
addition of new cells. The amount of observed over-provisioning
can be estimated as Nobs.=

MAX NUMCELLS
LIM NUMCELLSUSED HIGH×Ntheo.. For

R=5, that gives Nobs.≈33, which is close to the observed results.

C. Changing Traffic

This section focuses on MSF ability to quickly allocate or deal-
locate resources when the traffic load changes. To do so, we use

0.1 0.2 0.5 1 2 5 10
Per-node packet rate (pkts/sf)

0
20
40
60
80

100

Al
lo

ca
te

d 
ce

lls

Figure 10. Number of cells allocated on node 2, as a function of per-node
packet rate.
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Figure 11. Evolution of allocated cells along time with a traffic load
varying in the 0 – 30 pkt/sf range with rate change steps of 10 pkt/sf each.
Allocation/deallocation periods are shaded in gray.

a simpler setup with only two nodes: the root and one leaf node
sending traffic at a packet rate that periodically changes. Every
500 seconds, the sending application cycles through the following
rates: 10, 20, 30, 20, 10 and finally back to 0 pkts/sf. We measure
the time required from the moment the packet rate changed
to the moment we reach a stable schedule in the slotframe.

Fig. 11 shows the evolution of several parameters along time
for a single run of this simulation. Similar to Figs. 7 and 8, the
figure is split into three parts. The middle one shows the evolution
of the transmit queue (TxQ) and the MSF estimation of the
traffic load (MSF TX). The bottom part shows the evolution of
the number of allocated cells along with the theoretical minimum
number of cells. The top part shows when MSF decides to allocate
new cells (up arrow) or to de-allocate existing cells (down arrow).

The sending application starts at t = 0. The traffic rate
suddenly goes from 0 to 10 pkt/sf and as a consequence,
TxQ jumps to 100% occupancy as there are insufficient cells.
MSF kicks in and slowly allocates new cells through 6P ADD
requests. We can notice that the rate at which new cells are
allocated rapidly increases as it takes less and less time for
MAX NUMCELLS to pass. At t=316 s, MSF has converged to
a stable state; the slotframe now contains enough cells to carry
the traffic load. At t=500 s, the traffic rate jumps from 10 to
20 pkts/sf, leading to another round of cell allocations that ends at
t=565 s. Although this jump in traffic rate is equal in intensity
to the first one, the time to adapt was much shorter. At t=1000 s,
the last increase in traffic rate takes place, jumping from 20 to
30 pkts/sf. It requires an even shorter convergence time (50 s).

After t=1500 s, the traffic decreases from 30 to 20 pkts/sf.
However MSF withholds the decision to de-allocate cells as
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Figure 12. Duration for MSF to reach a stable state and allocate all necessary
cells after a change in traffic rate.

MSF TX does not drop below the 25% limit. This results in a
higher over-provisioning level compared to what was observed
with a constant traffic load in Section IV-B. At t=2000 s,
the traffic decreases again from 20 to 10 pkts/sf. This time,
MSF triggers de-allocations but only for a handful of cells until
it reaches the lower limit of 25%. After t=2500 s, the traffic
drops back to 0 pkt/sf resulting in a MSF TX of ≈0%. Hence,
MSF de-allocates all but one cell for a duration of 279 s.

Fig. 12 shows the time required to allocate or de-allocate
cells after each change of traffic rate for 100 runs of the same
configuration. Those durations show little variability and match
the single run presented in Fig. 11. With jumps in traffic
rate of equal intensity, the duration to reach a stable state varies
a lot depending on the amount of cells already present in the
slotframe, with longer durations for lower the slotframe usage.

V. CONCLUSIONS

The deployment of Industrial IoT networks requires that
they can quickly adapt to traffic changes in interference-prone
environments. The MSF provides a distributed scheduling
function on top of IEEE Std 802.15.4-2015 TSCH to adapt
MAC layer resources to the requirements of the network along
with the relocation of those resources in case of collisions.
We employed the 6TiSCH simulator to evaluate the ability
of MSF to allocate the network resources. We observed that
without retransmissions, packet losses can appear as soon
as the traffic adaptation mechanism becomes necessary. This
is to be expected considering the reactive nature of MSF.

The duration to allocate those necessary resources has a direct
impact on the amount of losses seen during traffic load changes.
We have seen that the rate at which those resources are allocated
can change considerably and depends on the number of cells
already allocated in the slotframe. We also observed that MSF
is subject to over-provisioning of the network resources and
frequently allocates or keeps more cells than are required to send
the current traffic load. This is even more pronounced in the case
of a varying traffic load where MSF would reluctantly give up
cells that it previously allocated. As future work, we plan to study
MSF modifications to accelerate the convergence and reduce
losses when traffic changes occur and reduce the amount of
over-provisioning, especially in the case of varying traffic load.
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