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An Iterative and Collaborative
End-to-End Methodology Applied to
Digital Mental Health

Laura Joy Boulos *, Alexandre Mendes %, Alexandra Delmas #* and
Ilkram Chraibi Kaadoud *

! Saint-Joseph University, Beirut, Lebanon? Groupe onepoint, Paris, France

Arti cial intelligence (Al) algorithms together with adveces in data storage have recently
made it possible to better characterize, predict, preventand treat a range of psychiatric
illnesses. Amid the rapidly growing number of biological déces and the exponential
accumulation of data in the mental health sector, the upconmg years are facing a need
to homogenize research and development processes in acadeia as well as in the
private sector and to centralize data into federalizing pteorms. This has become even
more important in light of the current global pandemic. Hergwe propose an end-to-end

methodology that optimizes and homogenizes digital reseah processes. Each step
of the process is elaborated from project conception to knovedge extraction, with a
focus on data analysis. The methodology is based on iterativprocesses, thus allowing
an adaptation to the rate at which digital technologies evek. The methodology also
advocates for interdisciplinary (from mathematics to psywlogy) and intersectoral (from
academia to the industry) collaborations to merge the gap hsveen fundamental and
applied research. We also pinpoint the ethical challengeswl technical and human biases
(from data recorded to the end user) associated with digitahental health. In conclusion,
our work provides guidelines for upcoming digital mental hath studies, which will

accompany the translation of fundamental mental health resarch to digital technologies.

Keywords: digital mental health, an end-to-end methodology,
knowledge discovery data base (KDD), interdisciplinar int

human factors, cognitive biases, machine learning,
ersectoral collaborations, ethics

INTRODUCTION

Digital Health De nition

Digital health can be de ned as the concept of healthcare mgehe Internet (). It ranges from
telehealth and telecare systemd} {0 patient portals and personal health records 4), mobile
applications §), and other online platforms and devices. However, and as ogptseigitized
versions of traditional health approaches, digital healtteinentions (DHIs) ) utilize arti cial
intelligence (Al) algorithms and other machine learning (M&ystems to monitor and predict
symptoms of patients in an adaptive feedback lo@p [mprovements in ML over recent years
have demonstrated potential within a variety of diseasesmedical elds including neurological
and mental health disorders8) both at an individual-patient level and applied to larger
populations for scalable understanding, management, arshieintion of mental health conditions
in di erent cohorts and various setting’). In addition, and because to our knowledge, e ective
coverage does not exceed 50% in any country and is much lowkewi- and middle-income
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countries, DHIs also address social problems in the healthca While digitized versions of classical clinical approaches
system such as poor access, uncoordinated care, and imglyasi propose digital conversational agents such as chatbots that
heavy costs9). Digital mental health interventions could thus provide coaching and cognitive behavioral therapies in a
give much needed attention to underresearched and undatece  conceptually similar value than a human healthcare provider (
populations (L0). 21), Al-based algorithms and data-driven digital health iaiives
further aim at implementing more adaptive algorithms and
exible, personalized treatmentsa Al and ML (8, 21). Such is

i . ) . the case 0DOpen Bookan assistive technology tool for adaptive,
The keywords *digital mental healtlr” in PubMeds search aagi personalized text simpli cation for people with autism spectrum

(accgssed April 2020) show that 2019. has the largest ““T"bercﬂ order @2). It is also the case dEntourage a novel digital
published articles compared to any prior year. The trend is aISf?nervention that improves social connection for people with

ris?ng for the k(_aywords_“mental _health_mo.bile apps_," IoroVidingsocial anxiety symptoms26), or Doppe] a device that helps
Zylielnﬁe tlTr?t m(';erlgst mhbpthl (I)d pubhcat.lon.qf artlAcIesoap people manage their daily stress by modulating physiological
d!g!tal health ?n h(”)l echnical a \/ta?(;]es lltshrlsmg. Etm and emotional states through a heartbeat-like rhythm tacti
'g'.da eaith tec noﬁ?'is |ntm_enz the'a a:je ogcgr;m?; sensation #4). Other digital mental health interventions for
rapid pace in research laboratories both in academic in treatment purposes include virtual reality-based exposuréjin

gpoll n trz mdustry d(L;?]. The ram?lyl growmgl tr}umbf:iiac:f treatment of anxiety disorders for instanc&y] as well as the use
tf:o og|catl | EV'CltehS ant € exptofner_lrlat_acctllilml; ation © éa of robotic technology [to improve social interactions in peepl
e mental health sector aim at facilitating the four purposés | ... dementia for instanceX@)].

healthcare: diagnosis, monitoring, treatment, and preiemgl).

Digital Mental Health Technology Advances

_ . For Prevention
For Diagnosis By opening new modes of real-time assessment [through
Important digital health interventions for characterizati  |ongitudinal data collection or through the presence of seaso
or diagnosis include algorithms for illness detection andn smartphones for instance, to track sleep, movement, speech.
classi cation (L1). One digital tool that is further revolutionizing (27, 28)], digital mental health interventions enable catchingwe

mental healthcare is conversational ALZ. Although the episodes of a given disorder at a very early stage. It is efipecia
clinician—Al collaborations have yet to be specied and thethe case for suicide preventiorsd.

cognitive biases considered (d2esigning digital health systems
with human factors approagha blended approach (in an Al- The Need to Homogenize R&D Processes

delivered human-supervised model)X 13) is alluring. In contrast, there is only scarce clinically signi cant oomees
of digitalized solutions. Although both advances in fundantal
For Monitoring research and technical innovations are occurring rapidly,

The use of data generated by personal electronic devicasinslation from one to the other has been slowgi)( This can

to monitor mental health parameters may result in usefulbe explained by the lack of better-designed clinical triald an
biobehavioral markers that could in turn optimize diagngsis the loss of interest at the patient level in digital health prots
treatment, and prevention and a global clinical improvementover time, both of which lead to poor long-term data and scarce
(14). This has led to the conception of all sorts of wearable @&vic information on whether new behavior facilitated by a digita
and connected objects such as smart watches to collect wlatatiealth tool is long-lasting30).

healthy and pathological populations in a scalable unobteisiv.  Another major problem at the time is the disparity of research
way (L5, 16), smart textiles to collect and monitor physiological and development processes across elds and sectors. One way
outcome measure such as in athletés)( or smart homes to of accelerating the potential bene ts of digital mental hial
monitor biophysiological measures of older peogl&)( This has interventions and optimizing the transformation of fundartel

also led to the development of various mobile applications @ihk  discoveries into innovative digital technologies applieddatine

or not to a wearable device) that monitor given behaviors oklinical practice would be to propose a methodology that could be
cognitions in speci ¢ populations. This is the caseedfloodsa  used across disciplines and sectors in the eld of mentaltheal
mood tracking app conceived for patients with bipolar disosler This would include homogenizing research and development
to follow their uctuations. This is also the case BROMIS a  processes in academia as well as in the private sector; improving
mobile application to self-report di erent cognitive, emotiahh  technical methods that standardize, aggregate, and egehan

and mood measures ). data; centralizing data into federalizing platforms foogsion
scalability; and establishing data repositories, commora dat
For Treatment standards, and collaboration$4, 31).

Beyond diagnosis and monitoring allowed mainly by data

interpretation, some digital mental health interventiomsiude The Global Pandemic Context

assisting and treatment option)( This is particularly timely as In March 2020, the WHO declared the novel coronavirus disease
the Food & Drug Administration (FDA) has just approved its rst of 2019 also known as COVID-19 as a global pandemic. Today,
prescription video game in mental health for kids with ADHD: a year later, the WHO counts 185,038,214 con rmed cases
EndeavorRx20). of COVID-19 globally, including 3,250,648 deaths. Amidsthi
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rapidly evolving sanitary crisis, digital innovation is bgiused importance of human factors in the digitalization of health.
to respond to the urgent needs of the pandemic. Actions in thé\n important goal of the methodology is thus to allow robust
eld have been involving multiple stakeholders, from fran#  collaborations between experts from di erent elds and sesto
healthcare to public health and governmental entities. Tieye  (practicing clinicians, Al researchers in academic insiins,
also raised new challenges regarding the link between atade and R&D researchers in private industries) to pinpoint then
and the industry, the di erent velocities at which the two s#s  advance foundational and translational research relevant
evolve, the ethical questions of data collection, and theoua  digital mental health and to create ultimately digital tedhat
geographical and socioeconomic inequalities due to lindtet  satisfy various stakeholders (usability, clinical benedpnomic
in capacity or resources?). benet, security, and safety). All in all, our methodologysha
Apart from the direct risks of COVID-19 on health and the short-term ambition to propose guidelines for upcoming
the healthcare system, the uncertainty of the context arel thdigital mental health studies and the ultimate ambition to
high death rate due to the virus also exacerbate the riskansform the gap between fundamental and applied research
of mental health problems and worsen existing psychiatriénto a federalizing platform.
symptoms, further impairing the daily functioning and cogboit
of patients 83).
While these illnesses do not all represent an immediate thredCONCEPTUALIZATION AND PROJECT
to life, they will have long-lasting serious e ects on indivals | EARNING
and large populations. Emerging mental health issues should
thus be addressed promptly. In addition, the multiple logisticProject Idea and Concept
changes imposed on us by the pandemic pose a unique challengealuating the Feasibility of an Idea
in mental health service delivery. For example, the restrict All research begins with a question. Not all questions astatae
in freedom of movement and face-to-face therapies increas#isough, and the scienti c method only includes questiongtth
psychological distres$#). The limited knowledge on the virus can be empirically tested (observable/detectable/meb®)ra
and the overwhelming news that surround it also increaséetpx (38). Similarly, not all questions lead to the development of
and fear in the public 3, 34). In addition, long quarantine solutions. As a matter of fact, only few research projectsatiy
durations are generating frustration, boredom, stigmal simess, reach practical solutions. However, in the digital healthtse
as well as nancial loss that also aects mental health. Thisesearch tends to have (or atleast ought to have) a very pragma
is without mentioning highly vulnerable populations such asconcrete, and measurable outcon3€)( The selection of ideas is
healthcare providers3@), university students35), children 36),  therefore one of the most complex steps of the research process
and naturally anxious individuals3() who are more prone to in the digital health sector since, in addition to verifyingnether
developing mental illnesses such as posttraumatic stresgldis  theiridea can be transformed into a project, researcherd alae
or anxiety and mood disorders during this pandemic crisisisTh evaluate whether the project can lead to practical often teethn
is also without mentioning the already. solutions, and when. As the world of technologies moveq a3t
In this context and with the advent of Al, a digital bythetime thatanidealeadsto a solution, the solution migke
methodology that optimizes and homogenizes research presessome or all its value. It is thus crucial to assess whethedigeis
in an intersectoral and transdisciplinary approach makes moréeasible and realistic early in the process.
sense than ever, specically in the eld of mental health. As a result of the COVID-19 pandemic context for instance,
Implementing such approaches could help detect and monitothere has been an increase in the usage of telehealth medicin
mental health symptoms and their correlation to COVID-19and alternative digital mental health options such as mobile
parameters (whether individuals are aected by the virus ompplications and web-based platfornas)(. Although the need is
know people a ected by it, how political decisions impact moodreal and measurable, research projects must be cost-e eatide,
and anxiety of general populations, etc.). Early detection andepending on the investment needed, they ought to be useful not
close monitoring would in turn allow adequate in-time treant  only within a short-term period (i.e., to treat current psyatiic
in the short term and prediction as well as prevention in theillnesses) but also in a longer time frame, to treat for instan

longer term. the expected rise in symptoms of trauma among the general
) population @0).
Introduction to Our Work In addition, according to Gartnerl), digital health research

Here, we propose an end-to-end methodology that highlights kefollows a hype cycle divided into ve stages illustrated in
priorities for optimal translational digital mental healtesearch. Figure 1:
Each step of the process is elaborated from brainstorming tg . . .
. . . . . the innovation trigger,
product creation, with a focus on data analysis. Based oatitex . .
: ; . 2. apeak of in ated expectations,
processes, the methodology aims at being cross-sectotial, 4 PR
) . . . ) . atrough of disillusionment,
the intersection between academia and the private industry, -
o 4. a slope of enlightenment, and
By formalizing the methodology around a mental health usg L
. L o . aplateau of productivity.
case, the methodology also aims at being interdisciplinary,
encompassing di erent elds (from computational neuroscienc An ideal digital health research project predicts the faidutieat
to psychology and well-being) all while stressing on thewill occur at the third stage and the plateau that will be reache
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2- Peak of Inflated
Expectations

5- Plateau of
Productivity

Expectations

1-Innovation 3-Trough of
Trigger Disillusionment
Time

FIGURE 1 | The ve stages of the hype cycle of digital health research2] the innovation trigger, §) a peak of in ated expectations, ¢) a trough of disillusionment, %)
a slope of enlightenment, and §) a plateau of productivity. Adapted from Gartner41).

at the fth stage in order to prepare for them and increaseusually begins by writing down the broad and general goals of
the chances of overcoming them. For instance, treatingnvasl  the study. As the process continues, the goals become more
through mobile applications might 1 day be the old-fashionedctlearly de ned and the research issues are narrowed to an
way of approaching such disorders. This is one major challengextent that depends on the adopted approach. For instance,
as there are no generic methods describing a digital headifept  the general goal of a mental health mobile application could
from research inception to solution developmeif}.( be to improve mental health conditions; this is the case of
Evaluating an initial idea further faces more classicathe 1,009 psychosocial wellness mobile apps that were found
challenges such as nding the good mix between focused énougn a study looking to di erentiate scienti cally evidencegps
to be interesting yet broad enough to build on existing kneside  from the success stories due to a media buz?.(A more
(42). A digital health research project should balance morgalpable goal could be to promote behavioral change; this is
than any other research project between ambitious but nothe case ohotOK a suicide prevention application that alerts
overambitious as the competitive landscape is both wide antthe support system of a patient when negative thoughts are too
niche. Going back to our COVID-19 example, this would mearclose to an acting out. This is also the caseTwefenty-Four
developing digital health technologies that are precise ghou Hours A Day an addiction app that o ers 366 meditations (one
to treat speci cally traumas in a pandemic context, but broadper day) to help abstinent patients focus on sobriety. The goal
enough to be adaptable when traumas would not be the maiought, however, to be further narrowed as the design of the

mental health issue anymore, in a near enough future. application might consider eliciting not only more engagernen
on the mobile app overall, but perhaps e ective engagement
De ning the Goal and the Approach de ned by specic patterns 44). Twenty-Four Hours A Day

What is it that we want to put in light? De ning the goals and could, for example, be used e ectively during a year at the end
objectives of a digital health research project is esseatigt of which users could lose interest, potentially resulting in a
keeps the project focused ). The process of goal de nition relapse. Narrowing the number of users could allow a deeper
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engagement of actual users; more is not always better itatligi - It is acceptable to modify research data to make them
health @5). look perfect.

Given the multistakeholder nature of healthcare and their There is only one way of interpreting results.
varying incentives, the best approach to impactful and usef%. . . d mi . ; h
digital health research may di er depending on the project. The Iscussing cp_ncept!ons an mlsc_:oncepnons_ of research can
main challenge is to nd the right balance that maximizesidal rgd.uce CanmV.e biases (sédentifying cqgnltlve biases in
. : - ; digital health to improve health outcorhasad improve research
impact all while utilizing e cient resources and at a rate tha . . L
corresponds to the needs of the market in a globally very dyOamoutcomes all while favoring a holistic approach to resea#clx (
and rapidly changing digital health landscape. This brings us How would you describe research to your grandmother?
back to creating a requirement set broad enough to encapsulateWhat is the di erence between academic (moving knowledge
concepts important to all products, but not too inclusive thagt further, contributing to the development of the discipline,
requirements are not relevant anymoresj. explaining, arguing, conceptualizing, theorizing, develgpi

This also allows us to emphasize on the importance of staying insights, being rigorous and methodical, situated within
exible and ready to change strategies depending on the numbe a theoretical or conceptual tradition) and industrial
and the rate at which new technical solutions are deployed research (fact- nding, collecting and reporting, producing
with time. Headspacdor instance had started as an events and developing)?
company organizing mindfulness trainings and workshops; as How to combine di erent views and di erent approaches and
they stayed open to opportunities, they later developed their methods of research into an R&D model that serves research
mobile application that is currently being used in several and innovation in the digital health sector?
clinical trials @6). In the case of this app, adopting a ready-to-
change pivot strategy allowed them to seize an opportunity an
scale drastically.

One way to stay exible is to inject some agility in the resarc
processes. Agility uses iterations (also called sprintsyd¢ate
short loops of work (1-4 weeks) that start with planning and ) ]
end with retrospection, favoring more frequent deliverallesh ~ Extending the Literature to a Market Research
as quick posters or abstract publications, proof of concepts dreviewing the literature is an inevitable step of a researofept
minimum viable products)47). If the concept of agility springs (for further details, seeAppendix 1). Nonetheless, it cannot
from the software development eld, it has been more broadlyfactor in major advances in health technology if relyingyonh
applied in di erent elds and sectors recently, such as in mobilePeer-reviewed sources(). Given both the size (valued at 75 bn
health technology47). A clear step-by-step example applied toin 2017 by Technavio's Global Digital Health Market resharc

our use case, i.e., digital mental health, is the text-basadhing  €Port) and the evolution rate (projected to reach 223 bn in
practical guidance provided by Lattie et alg), 2023 as predicted by Global Market Insights) of the digital theal

All in all, it is crucial to dene then narrow the goal Market, itseems crucialto complement the literature rewet

progressively while balancing between clinical requiretmand ~ a2dequate market research also called gray literature.

market realities by staying agile and considering the pdéent Given the complexity that is characteristic of the digital
conceptions and misconceptions of all stakeholders. health landscape of technologies, market research cannot be

straightforward. For it to be as thorough as possible, it

. . . should include project reports, market research foreseegypol
Cl_ar|fy|ng D_|g|tal Health Research Conceptions and documents, and industry white paper3d. For instance, in the
Misconceptions . . . oversaturated market of mobile apps advocating for wellneds an
Everyone is susceptible to the misconceptions of researceitcare, one approach would be to conduct a systematic review
development, and innovation, including researchers and anys nplicly available apps on the stores using key words related t
other individual in academia or in the private industry (seeine topic ¢3).
Identifying cognitive biases in digital health to improvalthe In the context of digital mental health research, the market
outcomep The what of research is challenging in itself andresearch would allow researchers not only to compare the
even more so in the digital health context that often inclsde potential outcome of their research to the state of current
translational application at the end of the process as well agchnology §1) but also to predict or at least speculate whether
the need to confront the views and requirements of academigeir solution will still have the same value by the time itcbas
and the industry. It is therefore critical to identify these the market. Such market research could also provide researcher
misconceptions early in the research project to reduce theth anyjiin an overview of the general landscape, i.e., of the unezglo
promote alternative conceptions where necessary. Most COmMx\w market areas (blue ocean strategy; 47).
misconceptions include the following 9):

Ehis “awakening” step is of particular importance in DHI
as interdisciplinary and intersectoral collaborations regse
by the day (seddentifying the team and potential partners
or collaborators

- Good research procedures necessarily yield positive sesult  [dentifying the Team and Potential Partners or

- Research becomes true when published. Collaborators
- Properly conducted research never yieldsCommon bene ts to collaboration including brainstorming,
contradictory ndings. division of labor, and speed of execution are challenged by
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the di culty of developing a shared vision and de ning roles
and responsibilities for the di erent collaborator$3). These
challenges are exacerbated in the context of digital healithe 2.
eld is essentially both interdisciplinary and intersecbi(53),
bringing together academic researchers, private industaied
their R&D departments, clinicians, patients, and other hezdtie
consumer groups54). Indeed, while collaborations in the eld
are facilitated by complementary roles, authentic commatian
between partners, and clearly outlined goals or expectations
prior to the collaboration, they can also be jeopardized by
misaligned expectations, di erences in productivity timels 3.
and balancing business outcomes vs. the generation oftscien
evidence{3). Itis thus crucial not only to identify the right tfor

a collaboration but also to outline and communicate openlguth
goals, expectations, and timelines. This was dong&2Ad, a US-
based digital health company that developed in collaboration
with experts (including clinical, ethical, technical, aresearch
collaborators) an ethical code for startups, labs, and otinéities
delivering emotional Al services for mental health supp&)(
Once the project is developed, it moves to the commitment phase
or project planning.

is either more in-depth (usually by email) or more cost-
e ective (web- and app-based surveys})
Observationmonitors subjects without directly interacting
with them. This can be done either in the environment
of the subject with di erent monitoring devices (ecological
environment) or in a lab setting using one-way mirrors,
sensors, and cameras to study biophysiological markers or
behavior (controlled environment)6{). Faster digital tools
now allow monitoring patientwia their health insurance or
viadi erent health apps.

Experimentallow researchers to modify variables and explain
changes observed in a dependent variable by a change
observed in the independent variable. Experiments were
mostly restricted to laboratory contexts as it is very diltu

to control all the variables in an environment. This contei
limitation is, however, blurred with digital health researand

the use of technologies in less controlled environments. In
addition, and even within a laboratory, attention should be
given to hardware and software variability between devices
as it can aect stimulus presentation and perception of a
stimulus as well as human—machine interactiér)(

Although there is no one best method for all digital health
. . research projects, a well-de ned problem usually hints at the
Project Execution most appropriate method of research. There also often are

Sampling :
t lity t -0 sthat th hert t
The rapid advancement of digital health technologies hagaz/t?mugg F;g(rjteo?tﬁe ;er?;?zfl deesrigie;ré:cssrsoconshwge

produced a research and development approach characterize
by rapid iteration, often at the expense of medical design,
large cohort testing, and clinical trial8¢ 43). According to PROJECT DESIGN
the WHO's guidance for digital health research6), digital A - .
research measures are too often evaluated in studies wiginga Designing Dlgltal Health Systems With
samples and lack of or poor validation. Additional challengediuman Factors Approach
with digital health research include a potentially unrepreséive ~ What Is User-Centered Design?
sample §7). Consequently, insu cient sample sizes may make itA user-centered design (UCD) is an iterative design process in
di cult for these data to be interpreted through ML techniques Which designers focus on users and their needs in each phase of
(59 (see Data postprocessing: visualization and evalujtionthe design process. Design teams may include professiooats fr
Underestimation occurs when a learning algorithm is trainedmultiple disciplines (ethnographers, psychologists, engineass
on insu cient data and fails to provide estimates for intetesy ~ Well as domain experts, stakeholders, and the users theraselve
or important cases, instead approximating mean trends to avoidhey also involve users throughout the design procéssa
over tting (59). variety of research and design techniques (surveys, iie&sy

It is, however, necessary to pursue the adequate amount bfainstorming), to create highly usable and accessible ymtsd
evaluation and veri cation to avoid dubious quality and ensu Each iteration of the UCD approach involves four distinct phases

usefulness and adequacy of the solutié®) (To do so, itis crucial
to improve sampling strategies by including underrepresente_dL
groups in the recruitment, collecting and analyzing reasans f 2
declining, analyzing the pro les of recurrent participants1j, 3

and creating ultimately novel smart sampling approacti. ( 4

Choosing the Appropriate Material and Method

Research projects in the digital health sector can take tha for
of cohort studies, randomized trials, surveys, or secondata
analysis such as decision analyses, cost-e ectivenessesaty
meta-analyses. To sum things up, there are three basic metho?
of research:

illustrated inFigure 2(65) [see norm ISO (9241-210, 2010)]:

understanding the context of use,
identifying and specifying user requirements,

. designing solutions, and

evaluating the outcomes of to assess

its performance.

the design

Iterations are repeated until the evaluation phase is satisfi

The term “user-centered method” was rst used in 1986 by

Don Norman (66), who argued the importance of design in
ur everyday lives, and the consequences of errors caused by b
esigng Ambler later highlighted the e ciency of agility 47)

by demonstrating that UCD reduces computing costg)(UCD

1. Surveysby e-mail, via a web platform orvia a mobile

approaches further provide advantages in a digital changesgbnt

application. They usually involve a lengthy questionnai@th (68), all of which can be distinguished in four way&):
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FIGURE 2 | The four phases of the user-centered design:4) understanding the context of use, §) identifying and specifying user requirements4j designing
solutions, and ) evaluating the outcomes of the design to assess its perforance. Adapted from Nielsen §5).

- User involvement increases the likelihood for a product todevelopment,implementation, and the quest for patient-cexde
meet expectations which in turn increases sales and reduceare (7). The emergence of ML chatbots and other patient-

customer services costs. centered designs within Internet-based cognitive behaVio
- Tailored products reduce the risk of human err@( 70). therapy has proven to facilitate access and improve tailored
- Designer—user reconciliation increases empathy and eseattreatments {8). This is mainly due to the digital removal of
ethical designs that respect privacy. several barriers such as reduced perceptions of stigma (very

- By focusing on speci ¢ product users, designers recogniee thpresent in face-to-face services) and a rapid response to the
diversity of cultures and human values through UCD—a stemeed of “in the moment” support for mental distress. All these
in the right direction to create sustainable businesses. reasons increase the demand for digital mental healthaare i

formal healthcare settingg ).

User-Centered Design in Digital Health

Digital health asserts a translational vision of changeaticas

and care systems [new modes of assessment through virtudéne ts, Facilitators, and Barriers of UCD in DHI

reality (71) and the presence of sensors in smartphones fofo truly bene t from DHI, privacy and data governance, clinica

instance 27, 29)] to drive better health outcomes. However, the safety (handling crisis in mental health apps for instanceyl a

human—technology interaction was only put in light recentlyevidence for e ectiveness must be at the core of the design

(72): ittook a decade to rst develop and then apply a theoretica(80, 81). This is unfortunately not always the case as shown by a

understanding of the scope for a substantial, human-centeresimartphone app review revealing that, out of all health apps, onl

“design-reality” gap in healthcar&3). 11 were identi ed as “prescriptible” [meaning that they indkd
In terms of functionalities, the focus is on usability of randomized controlled trials (RCTs) reporting of e ectivesse

parameters such as appearance, appeal, and ease of navigatidgthout clinical intervention] 82).

as well as various interventions that include quizzes, gaself- The UCD of digital health systems enables greater engagement

monitoring tools, progress reports, downloadable documentsand long-term use of digital tools8@). However, little attention

and other similar features [e.g., for social anxiety digor@4)]. is given to human factors such as ethnography of users or

On the other hand, numerous barriers potentially prevent peopl@sability testing {7), or to the real-world di culties that

from participating in evaluations of DHIs such as being tooindividuals face §4, 85) such as technology cost and privacy or

busy, feeling incapable of using the technology, or distikiis  security issues3(). These barriers reduce health outcomes with

impersonal nature (5, 76). poor user engagement despite mobile health interventi@ns (
Increasing interest in human factors has underpinned39). The decision-making power toward consumers is in turn

key developments in digital health, spanning interventioninsu cient ( 80), raising questions of access [namely in low- and
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middle-income countriesq0)], equity, health literacy, privacy, the calibration (the degree to which the perceived and actual

and care continuity {4).

In their review of all barriers and facilitators for DHI
engagement and recruitment, O'Connor et &l1) distinguished
four themes:

1. personal agency and motivation,

2. personal life and values,

3. the engagement and recruitment approach, and

4. DHI quality. -

Education 01) and age 92, 93) were given particular attention as
poor computer skills in both low-education individuals and old
adults added to the enroliment struggle. In the same veirdcy
skills 94, 95) and the ability to pay for the technolog$€) have
impact on people's ability to interact with and use DHIs. All dee
factors ought to be further explored. )
In summary, adopting a UCD of DHI would optimize long-
term tool acceptances]. Interdisciplinary collaborations could
provide knowledge about “the context of used7), but it
is crucial to further identify the technological and econicm
feasibility of the designS@, 99). In addition to the central role
of human factors in DHI, attention should also be given to
cognitive biases that come with ML strategy implementatiod an
data interpretation.

Identifying Cognitive Biases in Digital

Health to Improve Health Outcomes

Studies from the past decades point at the vulnerability of
the human mind to cognitive biases, logical fallacies,efals
assumptions, and other reasoning failuré9@. In the health
system context, cognitive biases can be de ned as faultgfbel
that a ect decision-making and can result in the use of heticts

in the diagnostic processl(1, 102. Kahneman and Tversky
introduced a dual-system theoretical framework to explain
judgments, decision under uncertainty, ammbgnitive biases
(103 109. In this model, illustrated inFigure 3 system 1
refers to an automatic, intuitive, unconscious, fast, amdtkess

- Overcondence and

diagnostic accuracy corresponds) will di er.

The main cognitive biases a ecting medical performance and

diagnosis are the followind.(.1, 1129):

Premature closurg 13-117): an automatic process that occurs
when the provider closes the diagnostic reasoning process
by clinging to an early distractor/diagnosis without fully
considering all the salient cues{g.

Search satis cing112 118: a subtype of premature closure
in which searches for further evidence are terminated adter
diagnosis is reached. This is the case for medical studeats t
do not initiate a search for a secondary diagno$isg.

Availability (106 113 118: falsely enhancing the probability of

a diagnosis following the recent exposure of the physician to
that diagnosis106).

Anchoring(112 113 115: a subtype of premature closure in
which a provider stakes their claim on a diagnosis, minimizing
information that do not support the diagnosis with which they
have attached their proverbial anchdrl§.

Base rate negle¢t19: predicting the diagnosis occurrence
probability when two independent probabilities are
erroneously combined, ignoring the base rate and leading to
under- or overestimating the diagnosis possibility2().

Diagnostic momenturfiL12 119 121): a subtype of anchoring
and premature closure in which the suggestion power of
colleagues is taken at face value. For example, the diagnosis
of anxiety disorder of the patient established from her fgmil
doctor through to the emergency department (ED), and
although she might well have had hyperventilation due to
anxiety, other possibilities were not ruled out earlier orhir

care (L19).

lower tolerance to risk/ambiguity
(122 123. Because of these two biases, misdiagnosis,
mismanagement, and mistreatment are frequently associated
with poorer outcomes, leading to patient dissatisfaction and
medical complaints and eventually to a dropout of the digital
health system79, 124-126).

decision process. Conversely, system 2 makes deliberate, non _ o o
programmed, conscious, slow, and e ortful decisions. Mosin the speci ¢ context of digital mental health, it is importan
cognitive biases are likely due to the overuse of system 1 u.identify potential cognitive biases in patients as well ider

system 210Q 105-107).

to avoid misinterpretation and treatment misusage. In acfiti

to the eight cognitive biases mentioned above, other cognit

Cognitive Biases Included in Diagnostic Reasoning
and Healthcare Strategies

factors such as coping strategie2{] 128 and the role of
emotional stimuli (e.g., in depression, there is a lack ohsac

“Diagnostic reasoning is the complex cognitive process us@d) (129 require particular attention in order to design tailored
by clinicians to ascertain a correct diagnosis and therefqgﬁ]im treatments and to drive ultimately an e ective digjit

prescribe appropriate treatment for patiént§l09: the
ultimate consequences of diagnostic errors include unssagy
hospitalizations, medication underuse and overuse, andedas
resourcesi09 110.

health strategy.

Early recognition of the cognitive biases of physicians is

crucial to optimize medical decisions, prevent medical errors,
provide realistic patient expectations, and decrease heakhc

Diagnostic reasoning and risk of errors can be explained by ;s (07 126 130. Some debiasing strategies include
adapting the dual-system model to the health system contexf, . following:

For instance (99—seg&ppendix 2), system 2 overrides system

1 when physicians take a time-out to re ect on their thinking. 1. Advocating for a view in which clinicians can change

System 1 also often irrationally overrides system 2 when

physicians ignore evidence-based clinical decision ruheg t
outperform them. Depending on what system overrides the gther

thinking patterns through awareness of bias and feedback
(100. It consists of theories of reasoning and medical
decision-making, bias inoculation, simulation training,
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FIGURE 3 | Properties of the dual-system theoretical framework of Katreman (L03) to explain judgments, decision under uncertainty, and cagtive biases: 2)
system 1 refers to an automatic, intuitive, unconscious, f&, and effortless decision process; §) system 2 makes deliberate, non-programmed, conscious, sh, and
effortful decisions. Schema taken from Kahneman1Q3).

computerized cognitive tutoring, metacognition, slow-dow are also prone to specic cognitive biases given the strong
strategies, group decision strategy, and clinical detisiointerpretative component of data science and MI3§). Biases
support systems to force diagnostic reasoning out of biasa ecting data scientists in the digital mental health saitin
prone thought analytic processes. include but are not limited to the followingl39:

2. Digital cognitive behavioral therapy [see, for review5]12
through which positive cognitive bias modi cation could
be used as a potential treatment for depressidsl),
for anxiety disordersZ5), for persecutory delusionsl82),

for improvement of social interaction in autism spectrum working W!th incomplete data .
disorders and dementia2§), and for people with suicidal retrospective coshe tendency to make decisions based on how

thoughts (133. much of an 'investment they have already made, which leads to
even more investment but no returns whatsoever;
There is, however, no consensus regarding the e cacy of such illusion of causalitythe belief that there is a causal connection
debiasing approached.19. In addition, other biases such as between two events that are unrelated:;
aggregation biagthe assumption that aggregated data from- availability: the natural tendency to base decisions on
clinical guidelines do not apply to their patients)lindsight bias  information that is already available without looking at
(the tendency to view events as more predictable than thélyrea potentially useful alternatives that might be useful; and

are) also compromise a realistic clinical appraisal and cadd | - con rmation: the interpretation of new information in a way
to medical errors {34 139. This brings us to the urgentneed for  that makes it compatible with prior beliefs.
transparent and explicit data and strategy.

- survivorshipa selection bias in which data scientists implicitly
Iter data based on some arbitrary criteria and then try to neak
sense out of it without realizing or acknowledging that tlaeg

Despite these data science biases, a promise of ML in healthcare
Biases in De ning Machine Learning Strategies is precisely to avoid biases. The biases of scientists andatigic
Cognitive biases exposed previously mainly concern physiciativould be circumvented by an algorithm that would objectively
and their ability to analyze a digital diagnosis. Data sig® Synthesize and interpret the data in the medical record and/o
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o er clinical decision support to guide diagnosis and treatrhen continuous signal as in the recording of an electroencepiraim

(59. In the digital health context, integration of ML to clinica (EEG), an image representing a magnetic resonance imaging
decision support tools such as computerized alerts or diagnost(MRI), a textual data, or a sequence of numerical values
support could o er targeted and timely information that would representing a series of physiological measurements or desisi

in turn improve clinical decisions58, 137/~140. With the rise of  takenvia an application. Data can be complete, partial, or noisy.
ML in the DHI, data sources and data collection methods shouldror example, if only a portion of an EEG recording is available,
be further examined to better understand their potential impa then the data are partial. Conversely, an EEG recording that
(141-143. Biases that could be introduced through reliance orhas been completed but that has some parts unusable is said
data derived from the electronic health record include natiaot  to be noisy because the noise alters the completeness of the
limited to the following: recording. Two types of data can be distinguished: unstructure

L . . data, i.e., data directly after their collection or genienat and
- Missing data If communicated sources such as patient- .
. o . . tructured data, i.e., data that have been analyzed, warsked

reported data are incomplete (missing or inaccessible

. . nd put in relation to each other to put them in a format
algorithms (that only use available data) may correctly . . .
7 . . suitable for the analysis considered afterwards. In the stcase,
misinterpret available datal{4). Algorithms could thus be a it is considered information. Importantly. data by themsed
bad choice for people with missing dat&l§) [people with low - 'mp Y y

socioeconomic statusl{§ or those with psychosocial issues are worthiess.
. psy Informationis dependent on the original data and the context.
(147 for instance].

- Misclassi cation and measurement errdvlisclassi cation of Ifitis lost, it can be reproduced by analyzing the data. Depreqd

. on the data processed at timeinformation must be accurate,
diseases and measurement errors are common sources Q

S . . . relevant, complete, and available. Information is inteltligiby a
bias in observational studies and analyses based on eiectro . L .
. - . ~human operator and can be used in a decision-making process.
health record data. Care quality may be a ected by implicit

. . It is therefore signi cant and valuable since it provides aiswer
biases related to patient factors, such as sex and race 9 P

. . . . * @'a question. It can take various forms such as a text mesaage
practitioner factors [e.g., patient with low socioeconomic,

status (49 or women (149). If patients receive di erential table ofnum_encal values, graphs of all kinds, or even in biaps
of a sound signal.

care or are dierentially incorrectly diagnosed based on . . L
) X . . When semantics are added to a set of information, it becomes
sociodemographic factors, algorithms may re ect practigon . . .
biases and misclassify patients based on those fa&its ( knowledgelnformation, depending on the context, will not have
P ) the same impact. It is the context and the semantics brought by
We mostly identi ed and described biases that interfere enc it and the human operator involved that will determine theweal
the data are already collected. It is important to note thatof that knowledge.
biases can also interfere earlier in the process, at evepyoste  To illustrate these de nitions in a mental health settingire
it, from brainstorming to literature reviewingl@3. The main case of a patient undergoing a follow-up with a psychiatris¢: th
recommendation is to stay alert to all di erent biases, whegth psychiatrist can make his patient pass numerous tests in oader t

they are mentioned in this paper or not. collect data: MRI, EEG, and textual answers to questionnaires.
These data, once processed, formatted, and analyzed tagethe
_ will represent a set of information on the condition of the patie
DATA COLLECTION-ANALYSIS It is the combination of the knowledge and experience of the
From Data to Information doctor, combined with his knowledge of the patient, his famil

As seen above, decision-making in the medical eld often hasf context, and the current socioeconomic context, that withlele
reaching consequences. To better measure these conseguendim to have a global knowledge of his patient and to provide him
it is essential to build certainties: certainties on theadased, With the best possible support.

their source, their format, and their update; certainties the The passage from data to information thus requires a majority
information put forward and their implications; and certaias ~ Of digital processing to highlight correlations accordingtgiven

on the tools exploiting these data as well as on the religholit context. However, the passage to the knowledge stage require
the algorithms and visual representations made availaliles& considering individuals involved (seroject design Figure 4

guestions concern data in a broad way. illustrates data transformation into information throughgital
It thus seems important to start this technical part of the papeiprocessing and into knowledge through human evaluation.
by de ning the notions of data, information, and knowledgses There is thus an increasing complexity in this process of
all three are involved in decision-making processes. transforming data into information and then into knowledge
We will then focus our approach on the data and the di erentwhich make it di cult to identify and extract. We will present
steps to structure, exploit, and enhance them. a process dedicated to these tasks in the following section.
De nitions: Data, Information, and Knowledge Knowledge Data Extraction in the Literature

Grazzini and Pantisandl60 de ned each concept as follows:  The process of Knowledge Discovery of Data (KDD) is de ned
Data can be considered as raw material given as input to aas the process of discovering useful knowledge from diid).(

algorithm. Since it cannot be reproduced when lost, it must bé\s a three-step process, the KDD includé} & preprocessing

carefully preserved and harvested. It can be of di erent farens step which consists of data preparation and selecti@), &
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FIGURE 4 | Data transformation into information (from 1 to 5) then knoledge through KDD steps: (a) raw data can be collected to beame target data, which can
also be acquired or generated by an external process: it is #ndata generation, acquisition, or collection step. (b) Tget data are submitted to a data preprocessing
step according to the data mining techniques targeted: targt data can thus be cleaned, Itered, completed, and anonymied if necessary. This second step allows to
obtain preprocessed data. (c) Preprocessed data are subntiéd to data mining techniques to detect, identify, and extrat patterns and relevant features. (d)
Discovered patterns and features can thus be rearranged (g., with visual tools) for or within the phase of interpretain during the postprocessing step. The result is
the generation of information. (e) Information evaluated kyhuman becomes knowledge: this step is an external one (i.enot technical) and takes into account
knowledge of the situation (context, issues, stakeholdersetc.).

data mining step involving the application of one or manystages in the life cycle of a digital health product from the
algorithms in order to extract information (i.e., patterngnd @)  de nition of the scienti ¢ question to data collection anchalysis
a postprocessing step to analyze extracted information mignua (for further details, seAppendix 3). We will reveal our approach
by a human operator and lead to knowledge discovery. in the following section.

As an iterative and interactive process, KDD involves many
steps and decisions of the users. Iterations can continue &’formation Data Extraction Applied to Technology
long as extracted information does not satisfy the decisionVe are aligned with the three-step approach of Fayyiad)(for
maker (seédentifying cognitive biases in digital health to improvénformation extraction:
health outcomes

Concretely, as illustrated inFigure5 the KDD stages
encompass the following2) understanding the scope of the _
appligation eld; @) crea.tion of the targgt dataset,4).(dalta algorithms, and
cleanl_ng and preprocessmgi)(data reduction and prOJect|_on: - postprocessing focusing on data visualization.
reducing the number of variables to be analyzed by reducieg th
dimensionality of the data, extracting invariant represgiiins, ~ Figure 4 proposes a representation of the global approach for
or searching for relevant characteristic§) fnatching the goals information extraction for a speci ¢ question or product dgsi
of the KDD process with the right method(s) in data mining; Upstream of these activities, we would like to highlight two
(7) exploratory analysis and selection model and hypothesigreas that are essential to good data management and tbat all
selection of the data mining algorithm and method that will an optimization of the research of a team: data strategy, lwhic
be used for the pattern searct) (data mining: searching for aims at standardizing data management, and data goverpance
interesting patterns in a particular form of representatiomjgh  the implementation of solutions to respond to the strategseiess
includes rule and tree classi cation, regression, andtetisg;  de ned beforehand.
(9) data postprocessing and visualization: interpretation & th
patterns found with possible return to any step from 1 to 7 forGlobal Approach: Data Strategy and
a new cycle; andl() action on discovered knowledge. Governance

Here, we mainly focus our approach on the technical aspecData Strategy
i.e., data and their transformation into information. Wenaito ~ Within a digital research project, technical and operational
present a complete and global approach by covering the KDEasks are either managed by the same person (it is

- data preprocessing (data cleaning, data editing, data curati
and data wrangling),
data mining with a special focus on biostatistics and Al and ML
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FIGURE 5 | The nine Knowledge Discovery of Data stages adapted from Fggd (151): ¢) understanding the scope of the application eld, §) creation of the target
dataset, (@) data cleaning and preprocessing, ) data reduction and projection: dimensionality reductiomnd extraction of invariant representations and relevant
characteristics, §) matching the KDD goals with the right data mining method(sj7) exploratory analysis and selection model and hypothesiselection of the data
mining algorithm and method that will be used for the patterrsearch, @) data mining: searching for interesting patterns in a padillar form of representation (e.g., tree
classi cation, regression, and clustering),{) data postprocessing and visualization: interpretationfdhe patterns found with possible return to any step from 1 to/ for
a new cycle, and (LO) action on discovered knowledge.

generally the case in a fundamental research team) or hynprovement of accuracy, access, sharing, and reuse of
distinct groups (it is the case for R&D groups in which data (L52.

technical teams focus on system architecture, development, Data strategy applied to research aims at using, sharing,
quality, and testing, while operational teams handleand moving data resources e ciently (adapted from 147)
experimental requirements and process de nition). Thesen order to manage projects easily, facilitate scientic
concepts are classically and poorly applied to data (irollaboration, and accelerate decision-making regardilegv n
fundamental and R&D teams), thus slowing down theprojectideas.
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Data strategy contains ve core components thatwhen it comes to pain points and the de nition of use cases
work together to comprehensively support an optimal(e.g., to ensure data quality of a mental health digital pitojec
data management: focused on schizophrenia). Good practices could anticipate
value creation and changes triggered by the data governance
framework (harmonious collaborations and their impact ortala
related decisions for instance).

Regarding enterprise systems, research teams and/or scienti
‘collaboration will require only a restricted number of rulasd
$hus do notneed a large organization assigned to data gavee
but more likely some clear and identi ed accountabilitiesda

- Storage to maintain data in |nform§t|0n technology (lT). documentation for all scienti c members (for further delsiisee
systems that allow easy access, sharing, and data processm%ppendix )

- Provisionto anticipate and to prepare data in order to directly In summary, data strategy and governance give a starting

share or reuse it with adequate documentation explainingsul framework to structure the data management policy and sgyte

and de nition. - .
. . of a research team. Depending on the size of the team, the
- Processingto aggregate data from di erent IT systems and. .
. - .- issues at stake, and the collaborations, these steps can have
obtain a centralized 360data vision. In a mental health

- . . . . . a real added value. As research teams do not rely on nor
project, it could be pertinent to aggregate clinical, biolagic S . -

. . ) need large organizations for their data governance, it $® al
and imaging data for instance.

- Governancesee dedicated chapter beloeta governange important to |ncluc_ie other operational steps in a digital h&alt
data-centered project.

- Identi cation: to set common data de nition shared with
the team, collaborators, and more broadly with the scienti c
community. In the mental health context for instance, it is
crucial to de ne all biomarkers (whether they are genetic
molecular, anatomical, or environmental) to encompass th
complexity of psychiatric disorders.

Data Governance ) )

According to the Data Governance Institute, data govermaisc  Operational Approach: From Preparation

“a system of decision rights and accountabilities for infwmat and Mining to Visualization

related processes, executed according to agreed-uptswinicte  Data Preprocessing: Cleaning and Making Data

describe who can take what actions with what information, anflyailable

when, under what circumstances, using what meth@sa The preprocessing step consists in preparing the dataset to

governance is generally informal in fundamental reseaetis| pe mined (seeFigure 4). This implies the following: 4) data

due to reduced <15 people) and homogeneous (with the cleaningwhich consists in removing noise, corrupted data, and

same background) teams in which processes, information, anglaccurate records3( 153 154 data editingto control data

tools are shared by everyone. This informal approach is leggyality by reviewing and adjusting it 65 and to anonymize data

applicable with team expansion, dierent pro le recruitment, \when needed with respect to data privacy standa#ds%6 157

scienti ¢ collaboration, or any operation that implies Cress data curationto manage data maintainability over time for reuse

functional activities. Initially designed for private inglies, gnd preservationi(59; and 4)data wranglingor the process of

formal data governance approaches allow to frame crosgnapping data from one type to another to t the selected mining

functional activities with a set of objectives adapted fromData  technique (e.g., from natural language to numerical vextor

Governance Institute: (159. It is an important step in the KDD process.§0 since

- to optimize decision-making: with a deeper knowledge of€ guality of the analysis of a data mining algorithm relies on
data assets and related documentation. This is helpful fde data available for the analysis. This step is inevitableach
instance when a choice has to be made between sevefi@l@set must be preprocessed before being mined. Altersative
scienti ¢ projects or strategies and the formal data govecea (167 to preprocessing data exist but depend on the objective

approach estimates the ratio between investment and expect8§d the nature of available data, which makes it overwhelming
scienti ¢ value: to unexperienced useré 2. It is thus essential to x an explicit

- to reduce operational friction: with de ned and transparent OPiective (i.e., a question to answer or a hypothesis to study)
roles and accountabilities regarding data and data use; before preprocessing to choose the appropriate techniques.

- to protect the needs of teams within a scientic
collaboration framework;

- to train teams and collaborators to build common standard
for approaching data issues;

- to reduce costs and increase e ectiveness throug
e ort coordination;

- to ensure transparency of processes;

- to accelerate and facilitate scienti ¢ collaboration;

- to allow scienti ¢ audit; and

- to respect compliance with the required documentation.

Data Mining: From Biostatistics to Machine Learning
Biostatistics

ﬁJnIike ML, biostatistics are not used to establish predictions;
Hence, they do not require a large amount of data. Biostagistic
study inferences between di erent populations by establighin
a quantitative measure of con dence on a given sample of the
population (L63.

The frontiers between statistics and ML can be blurry as data
analyses are often common to both [it is the case for the baagbstr
method used for statistical inference and for the randonresir
Data governance should not be applied as a theoretical concef®®F) algorithm]. It is thus important to di erentiate statistic
but should rather be considered for its potential added valuéthat require us to choose a model incorporating our knowledg
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of the system) from ML (that requires us to choose a predictivelesigned for the targeted audience. This can involve exianra
algorithm by relying on its empirical capabilities)&3. and/or explanatory objective$ {0:

- Pure exploratoryaddressed to teammates and collaborators to
highlight main results in order to make data memorable and to
identify the next strategic steps of the project.
Explanatory/exploratory mixedaddressed to the scientic
community, to share information and provide reliable
(accessible and intelligible) data that can be analyzed and
challenged by others. It can also support the scienti ¢ story

Data Mining

Data mining is characterized by the willingness to nd any

possible means in order to be able to answer the research

question. It can thus be de ned as the process of analyzinglarg

amounts of data to uncover patterns, associations, anomalies

commonalities, and statically signi cant structures inad#164).

The two main goals oflata miningare thuspredictionof future . L
telling in a grant application.

behavior according to discovered patterns alescriptioror the Pure explanatory addressed to patients, to quickly and

presentation in human-unde_rstandable shapes of the patternse ciently explain scienti ¢ information with an appropriate
found. To do so, data mining focuses on the analysis and .
and tailored content.

extraction of features (extractable measurements orhaiteis)

and patterns (arrangements or ordering with an underlyingAs seen inFigures4 5, evaluating and interpreting mined

structure). Sub elds of data mining include pattern recaipmi  patterns or extracted data through visualization can pogsibl

domain (or the characterization of patterns)§9 and pattern induce returning to any previous step from preprocessing t@dat

detectiorand matching(mining data to characterize patterns).  mining until discovered knowledge answers the xed goal.
Data mining also includes subsets of popular algorithms:

- Classi cationconsists in learning a function that classi es dataAn Example of Our Method Applied to
into one or more prede ned classes. For example, to predicMenta| Health

generalized anxiety disorder among women, it is possible t
either use RF to implement featured selection of the dat
mining classi er on the mental health datal§g, or to

Phere is a growing number of mobile apps dedicated to mental
fealth. Among them, “Mood t” shapes up the mood, “Mood
o R mission” teaches coping skills, “Talkspace” provides a Mirtua
use qu'Slon tree-based classi catiat6y) or Shapley value space for therapy, “Sanvello” acts as a stress relief, “Healspac
algorlthm (168'. . . . opens a virtual door to meditation, and “Shine” answers the
- Regressiononsists in learning a function that matches .dataspeci ¢ mental health needs of BIPOC communities. However,
. . . ) . there is no single guide for the development of evidence-based
is to analyze the relationship of vanabl_es with respect ® thMHapps (7). An analysis of all apps dedicated to depression
othe'rs, one by one, and to m?‘k? predictions according to_thes&n the major marketplaces (Apple App and Google Play stores)
relationships. It can be a statistical method or a ML algorithm o e 4 093 apps that self-advertised as research-basad (

Fto ' dexc;ample, Yengll dEt aIl_(S? gsedt_regtress_:(r)]nbaigotﬂtr:ms to Among these apps, only 3.41% had published research that
study depression and anxiety in patients with beta aaSﬂsemlsupports their claims of e ectiveness, among which 20.48%

major and to further evaluate the impact of the disorder ONwere a liated with an academic institution or medical faityl.

quality oflife. This analysis strongly indicates the need for mental health

) Anothgr type_ of algorithm |s_cluster|ngthat consists i applications to be more rigorousl(2, i.e., by following a
detecting a nite set of categories to describe data. Caiego strict method

can be mutually exclusive and exhaustive or consist of @rich . 1 -0 thus applied our end-to-end methodology to
representation SU(.:h as higrarchical or overlapping categorieguild a mobile application called i-decide (www.i-decide.fr)
The k-mean aIgonthm for instance can descnbeapopulat!orﬂhat facilitates decision processes under uncertainty. The
pf _pgnents as a hite set of clusters, e_ach one grOUpIn%1pp|ication aims at complementing existing neuropsychological
|nd|V|du§Is s.harlng same features (e.g., children vs.ta)jgl . testing that take places punctually in a controlled setting
- Summarizatioomethods are used to nd a compact description by collecting longitudinal data on a daily basis. The data

g)rasudbset ofdz;tal._ istsin ndi delthatd i collected concern decision processes and all cognitive and
- bependency modeliagnsists in nding a model tat describes gy 4tiona)| functions that impact decision-making (Boulos ket a

s'tgt?]' Ca,?t dtepeln:jencl:les be.twleen dvar|abOIIes.tTh|§ (l;?n be dtori]r? revision). All data are used to feed an algorithm that learn
atfhe stiuctural feve (spegfymg ependent variablesyer optimal choices (that reduce long hesitations and assatiate
quantitative level (specifying the strength of a dependencgnxiety as well as the percentage of regret postdecision)

using numerical scales). under uncertain conditions. We tested the application on a

All these methods aim at extracting features or patternsvahg  population of 200 adult users with no diagnosed mental illness.
the search method as previously discusse®éning the goal Results revealed time slots during which decision-making was

and the approach optimal as well as clusters of decision proles according to
stress, motivation, daily goals, support system, and the ratio
Data Postprocessing: Visualization and Evaluation of minor vs. major decisions (Boulos et al., in revision).

To eciently communicate scientic information, data More information can be found on the mobile application's
visualization (or graphic representation) should be spediyca website www.i-decide.fr.
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DISCUSSION For a trial to be ethical, the assumption of equipoise (i.e.,
S equilibrium) should be included in the design. While general
“mm‘."“y . . designing and conducting RCT principles13 are applicable to
Al algorithms together with advances in data storage havgy, o specic DHI features deserve consideration when a trial

recently made it possible to better charactgrlzg, .predlcgs expected to provide evidence for rational decision-makigy:
preyent, and _eventuall_y cure a range 9f ps_ychlatrlg IIInesse&zle trial context, 8) the trade-o between external validity (the
Amid the rap!dly growing r_]umber of b'f)lOg'C&l devices andextent to which the results apply to a de nable group of patients
the exponential a<_:cumu|at|on of df_;\ta in the mental healtr]n a particular setting) and internal validity (how the desig
sector, the upcoming years are facing a need to .homogem%%d conduct of the trial minimizes potential for bias)14 175
_research_and development Processes in acgdemla as W_e"(&%., of poor trade-o : recruiting highly motivated participts

in the private _sector and to cgntrahze data into federafizin because of missing follow-up data)7d), (4) the speci cation
platforms. In this work, we describe an end-to-end methodgio f the intervention and delivery platform,5) the choice of

that optimizes ?‘“‘?‘ homogenizeg digital b‘?_phySiO'ogica' aNGhe comparator, and€) establishing methods for separate data
behavioral monitoring with the ultimate ambition to bridgee collection from the DHI itself.

gap between fundamental and applied research. Detailed speci cation of DHI is important, because it is
required for the replication of trial results, the comparison

Methodology and Recommendations between DHIs, and synthesizing data across trials in syaiem
The rst step described project conception and planning stage&€Views and meta-analyses7(). The relevant data to collect

We proposed approaches to evaluate the feasibility of a digit4fould then focus on usage, adherence, demographic access
mental health project, to de ne its goal, and to design theesgsh  Parameters, and user preferencés 177), even if participants

approach accordingly. We clari ed digital mental health ras are biased because they have access to a myriad of other DHIs.
conceptions and misconceptions and described the di culties"deed, someone who has sought help for a problem, entered a
of combining academic literature and market research. wd'al. and been randomized to the comparator arm, only to nd
further underlined the importance of collaborations in the the intervention unhelpful, may well search online until they
interdisciplinary and intersectoral eld to better undeastd what ~ & Petter resourcel(’g. . _ .

digital mental health is. We nally focused on the concrete Finally, @ well-designed RCT, especially for its ethical part,
planning of such methodology, that is, how to inject agilitgsy _h|gh|_|g_hts the need to create interdisciplinarity. Res_earsh
step of the way to create ultimately platforms that reconcild" digital mental health could learn from the multicycled

di erent stakeholders to provide the best assistance possible {€rative approach adopted in the industry for optimized
patients with mental health issues. development. Researchers from an engineering or computer

The second step zoomed in on the speci cities of projecECience background may be surprised by the reliance on

design in mental health. We explained the importance of digitaRCTS, whereas those from a biomedical or behavioral scence

health interventions, the necessity to have clear goat$,tam Packground may consider that there is too much emphasis
importance of human factors in de ning them (introducing the N Meéthods other than RCTs. By enhancing critical thinking,
user-centered design). We nally described cognitive ésaand interdisciplinarity in a team also tends to reduce cognitiieses.

their impact on both physicians and data scientists in digitaf\though we have dedicated an entire part of this paper to
mental health. cognitive biasesldentifying cognitive biases in digital health to

The third, last, and more technical step described the stagdMProve health outcomeshere are several important points yet
from data collection to data analysis and visualization. Wd0 Pe discussed. Thisincludes the impact of biases in theideei

di erentiated the notions of data (raw element), informatio Making process in digital mental health, the repercussion of
(transformed data), and knowledge (transformed data witd® Piases of practitioners on the data, and the biases of
semantic contextual value) to then focus on the key stepdldorithms. One important message is that there are numerous
of data in a digital mental health research. We providedo9nitive biases across multiple domains (such as perception,
recommendations for data management, strategy angtatistics, logic, causality, social relations. . . ) arad these biases

governance depending on the size and type of research steuct e 9enerally unconscious and e ortless, making them hardly
and further elaborated a KDD-based operational approach thafétectable and even less so controllabl&). Another important

can be especially useful for small research teams that wish 91Nt is how Al and ML acceptability by the community on a
work from collection to processing. social level can in turn a ect the cognitive biases of physigjan

researchers, and patients on digital mental healt#ppendix 5,

we discuss these di erent issues and propose recommendations
Issues at Stake: Ethics and Biases to better control the impact of cognitive biases in digitalmted
Exploring the literature around digital mental health health research with the ultimate ambition to improve diagtio
interventions leads us to question existing practices, thatasoning and health outcomes.
is, both their strengths and their issues. There are so many
questions the scientic community and other stakeholdersTechnical Challenges
should consider when developing digital mental health sohg, In addition to the ethical considerations, working with data
and these include ethics and biases. comes with technical challenges, three of which we wish to
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highlight: (2) interoperability that is de ned as the property = Beyond this work, we nd through our review of the

that facilitates rapid and unrestricted sharing and use diada literature that the various approaches taken to address diere

or resources between disparate systeres networks ((80), facets of product conception and design from research to

(3) the trade-o between anonymization (to respect datamarket are siloed. Advances are often made separately and

privacy standards) and anonymization willingness, afd IL  little attention is given to interdisciplinary and interdecal

interpretability and explainability issues in digital mehteealth  centralizing approaches like ours in an attempt to provide a

and digital health in general. complete end-to-end methodology. We cannot stress enough
The multiplicity of tools that needs to be functional all wéil on the timely importance of collaborations in digital mental

operating easily with other tools rushed the need for a “plag-a health to reduce the disciplinary and sectoral gap and create

play” interoperability. This is particularly the case for thedical platforms that deliver solutions trusted both by scientistslan

eld and its daily clinical use of various medical devices (MRI end users.

computed tomography, ultrasound...). Beyond the traditiona

interoperability between di erent healthcare infrastruoés, the

will o? patien)t/s to consult and understand their own dataDATA AVAILABILITY STATEMENT

is imposing a new infrastructure-to-individual interopeibty

(181). In the light of this context, we believe that interoperdiil

should be considered by a research team for their dat

strategy, especially when the research involves colldbosat

that are wanted or already in place. Beyond optimizing the

collaboration and facilitating patient contribution, thisould AUTHOR CONTRIBUTIONS
avoid data manipulation mistakes, as well as security or

con dentiality failure. All authors listed have made substantial, direct and ietlial
Beyond con dentiality, one of the most sensitive points iscontribution to the work and approved it for publication.

privacy. In the context of digital mental health, and giver fact

that it is a relatively young eld with little information rgarding

clinically relevant variable<.67), the bigger the data volume, the FUNDING

easier it is to identify relevant variables. The need fogdatata ) ) )

volumes is, however, challenged by the di culty to collebese W€ €xpress our gratitude to onepoint, especially Erwan Le

data all while respecting the strict health ethics and lawis | Bronec, for the nancial support to the R&D department, which

thus crucial to set up the right privacy strategy. We wouldlik permitted us to carry out this work. The funder was not invalve

also to highlight the existence of other technical chalanguch N the study design, collection, analysis, interpretatibdata, the
as anonymization of data and explainable Al that are growin riting of this article or the decision to submit it for publigan.

research elds (for further details, sé@pendix 6). he _on_Iy contribution of the funder is to pay the preliminary
publishing fees.

The original contributions presented in the study are inchdd
in the articleSupplementary Materia) further inquiries can be
irected to the corresponding author/s.
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