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Internal shear layers generated by the longitudinal libration of the inner core in a spherical
shell rotating at a rate Ω∗ are analysed asymptotically and numerically. The forcing
frequency is chosen as

√
2Ω∗ such that the layers issued from the inner core boundary at

the critical latitude in the form of concentrated conical beams draw a simple rectangular
pattern in meridional cross-sections. The asymptotic structure of the internal shear layers
is described by extending the self-similar solution known for open domains to closed
domains where reflections on the boundaries occur. The periodic nature of the ray path
ensures that the internal shear layers remain localised around the periodic orbit. The
solution obtained by summing infinitely many cycles is found to converge. The asymptotic
predictions are compared to direct numerical results obtained for Ekman number as low
as E = 10−10. The agreement between the asymptotic predictions and numerical results is
shown to improve as the Ekman decreases. The scalings E1/12 for the amplitude and E1/2

for the dissipation rate predicted by the asymptotic theory are recovered numerically.
Since the self-similar solution is singular on the axis, a new local asymptotic solution is
derived close to the axis and is also validated numerically. This study demonstrates that,
in the limit of vanishing Ekman numbers and for particular frequencies, the main features
of the flow generated by a librating inner core are obtained by propagating through the
spherical shell the self-similar solution generated by the singularity at the critical latitude
on the inner core.

1. Introduction

In astrophysical fluid bodies, such as metallic liquid cores and subsurface oceans,
complex fluid flows can be excited by mechanical forcing (Le Bars et al. 2015). Libration,
precession and tides, which correspond to harmonic perturbations of the rotation rate,
rotation axis and body shape respectively, are the most common large-scale forcing
originating from gravitational interactions between orbiting bodies. Libration in par-
ticular is crucial for quasi-synchronised bodies locked in a spin-orbit resonance with their
orbiting companion. The amplitude of the response to libration forcing helps constrain
the internal structure of astrophysical bodies, indicating, for example, the existence of a
subsurface ocean in Enceladus (Thomas et al. 2016). The internal flows driven by such
forcing have been extensively studied both numerically (Calkins et al. 2010; Cébron et al.
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2012; Favier et al. 2015) and experimentally (Noir et al. 2009, 2012; Grannan et al. 2014;
Le Reun et al. 2019).
In a rotating fluid, the Coriolis acceleration acts as a restoring force leading to the prop-

agation of inertial waves whose frequency ω∗ is smaller than twice the rotation rate Ω∗

(Greenspan 1968). In closed geometries, propagating inertial waves can eventually form
global modes which can be resonantly excited by an external forcing (Aldridge & Toomre
1969). While analytical inviscid solutions exist for simple geometries such as the cylinder
or the sphere, the ill-posedness of the inviscid problem in a closed domain implies that
singularities are the norm rather than the exception. Even when inviscid modes exist,
such as for the cylinder, viscous corrections at the corners tend to spawn internal shear
layers (McEwan 1970). In a spherical shell, two types of inviscid singularities are observed.
Attractors are formed by the gradual convergence of characteristics along which inertial
wave beams propagate (Rieutord et al. 2001; Rieutord & Valdettaro 2018). A second
type of singularity appears wherever the boundary is locally tangent to the direction of
propagation of inertial waves, the so-called critical latitude (Kerswell 1995). Viscosity is
naturally regularising these inviscid attractors and the singular surfaces associated with
critical latitudes, which gives rise to different types of internal shear layers propagating
in the bulk of the rotating fluid. These shear layers are also relevant to stratified fluids,
which can support internal gravity waves that are very similar at the linear level with
inertial waves in rotating fluids. Internal and inertial attractors have been experimen-
tally found in a rectangular basin with one sloping boundary by Maas et al. (1997)
and Manders & Maas (2003) respectively. The internal shear layers spawned by critical
latitudes on concave and convex boundaries have also been observed experimentally in
a precessing spheroid (Noir et al. 2001) and librating (spherical and ellipsoidal) shells
(Koch et al. 2013; Lemasquerier et al. 2017), respectively. They could play an important
role in the mixing of stratified fluids (Brouzet et al. 2016; Dauxois et al. 2018) and the
generation of zonal flows in rapidly-rotating fluid bodies (Maas 2001; Morize et al. 2010;
Favier et al. 2014; Le Dizès 2015).
The dependence of oscillating internal shear layers on frequency has been

tackled both as eigenvalue (Rieutord & Valdettaro 1997; Rieutord et al. 2001, 2002;
Rieutord & Valdettaro 2018) and forced problems (Ogilvie 2009; Rieutord & Valdettaro
2010; Lin & Ogilvie 2018, 2021). Eigenmodes computed with the first approach are
categorised as attractors, critical-latitude and quasi-regular modes based on the path
of characteristics (Rieutord & Valdettaro 2018). For the forced problem, the response
is classified as resonant, non-resonant or anti-resonant when its dissipation increases,
remains constant or vanishes as viscosity tends to zero (Rieutord & Valdettaro 2010).
The anti-resonant response occurs at the frequencies of periodic orbits. The non-resonant
counterpart is observed at the frequencies of attractor modes, while the resonant one
corresponds to the frequencies where global modes are hidden beneath the localised
wave beams (Lin & Ogilvie 2021).
There are numerous theoretical and numerical studies investigating the scaling laws

of oscillating internal shear layers. It is now accepted that the width of the shear layers
spawned from the critical latitude scales like E1/3 (Walton 1975b; Kerswell 1995), where
E is the Ekman number measuring the importance of viscosity compared to rotational
effects. Such a scaling has been demonstrated in several numerical works (Favier et al.
2014; Lin & Noir 2020). However, the scaling for the amplitude of the response is disputed
in the literature. Early theoretical predictions by Kerswell (1995) asserted that the
strength of the internal shear layers spawned from the inner boundary in a spherical
shell should follow a E1/6 scaling, which is also observed numerically (Calkins et al.
2010; Favier et al. 2014; Cébron et al. 2019). However, by asymptotically matching the
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Figure 1. Contours of the amplitude of azimuthal velocity |vφ| (a) and dissipation D (b) for
three Ekman numbers obtained by the direct numerical integration of the linear forced viscous
problem. The aspect ratio of the spherical shell is η = 0.35 and the dimensionless librating
frequency of the inner core is ω =

√
2.

solution of the internal shear layer to that of the boundary layer near the critical latitude,
Le Dizès & Le Bars (2017) found that the amplitude should scale with E1/12. Recent
numerical results by Lin & Noir (2020) at Ekman number in the range 10−7 < E < 10−5,
namely at lower viscosities than previous work, tend to favour the scaling E1/12 over E1/6.
In the present paper, we will further validate the amplitude scaling E1/12 by reaching
Ekman numbers as low as E = 10−10.

One of the difficulties associated with these internal shear layers is their behaviour
as they bounce on solid boundaries. Moore & Saffman (1969) and Thomas & Stevenson
(1972) introduced self-similar solutions to describe the wave beams in unbounded ge-
ometries for rotating and stratified fluids respectively. These similarity solutions are
leading order expressions describing the viscous smoothing in a O(E1/3) layer of a local
inviscid singularity propagating along a characteristic line. Le Dizès & Le Bars (2017)
applied these solutions to the case of the critical latitude singularity on a librating
axisymmetric convex surface. They also numerically demonstrated the ability of the self-
similar solutions to describe the internal shear layers generated by librating spheroid in
an unbounded domain. In a bounded domain, such as a spherical shell, where reflections
on the boundaries and attractor singularities exist, the similarity solutions were found
to be able to describe the internal shear layers created by the critical latitude singu-
larity (Walton 1975a) and attractors (Rieutord et al. 2001; Ogilvie 2005). However, the
reflections on the solid boundaries were not considered by these previous studies. While
several theoretical works provide the reflection law on flat surfaces when the boundary
is not aligned with the direction of propagation (Phillips 1966; Kistovich & Chashechkin
1994; Le Dizès 2020), a more general assessment of these asymptotic solutions and the
way they reflect on curved boundaries in closed geometries is nevertheless required.

In this paper, we consider the inertial waves generated by the longitudinal libration of
the inner core of a rotating spherical shell in the linear limit of infinitesimal forcing ampli-
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tudes and Ekman numbers. The objective is to generalise the work of Le Dizès & Le Bars
(2017) to the case of a closed geometry involving reflections on curved solid boundaries.
For simplicity, we do not consider the case of attractors and focus on the shear layer
spawned from the critical latitude at a particular frequency for which the characteristic
path eventually comes back to the critical latitude after several reflections. These periodic
orbits (Rieutord et al. 2001; Rieutord & Valdettaro 2018) are a natural choice since the
path of characteristics remains topologically simple, which would not be the case for
frequencies sustaining attractors. For illustration, the shear layers in a spherical shell
forced by the libration of the inner core are displayed in figure 1. This solution is obtained
by the direct numerical integration of the linearised viscous equations and will serve as
a reference to which the generalised asymptotic solution introduced in this paper will be
systematically compared.
The paper is organised as follows. Section 2.1 introduces the setting of the problem

and the basic equations. Then we describe the asymptotic theory in section 2.2. The
self-similar solution in open geometry and its scaling are recalled in section 2.2.1. In
section 2.2.2, we derive the reflection law on a curved boundary. The extended asymptotic
solution in a bounded domain is derived in section 2.2.3. Section 2.3 is devoted to the
description of the numerical method to directly integrate the linearised equations. The
comparison between the theoretical self-similar predictions and numerical results are
made in section 3 for the solution in the bulk. Motivated by the singularity of the self-
similar solution on the axis, the asymptotic solution around the axis is derived using
Hankel transforms and a comparison with numerical solutions is also made in section 4.
Finally, a summary and possible directions for future works are discussed in section 5.

2. Framework

2.1. Basic equations

We consider the viscous incompressible rotating flow filling a spherical shell and forced
by the libration of the inner core, as shown in figure 2. The radii of the outer and inner
spheres are ρ∗ and ηρ∗ (with 0 < η < 1), respectively. The flow between them rotates
around the symmetry axis Oz and with an angular velocity Ω∗ . The inner core librates
at an amplitude ε∗ and frequency ω∗, such that the corresponding angular rotation rate is
Ω∗ + ε∗ cos(ω∗t∗). Space and time variables are non-dimensionalized by the outer radius
ρ∗ and angular period 1/Ω∗ respectively. The non-dimensional radii of the outer and
inner shells are then 1 and η respectively, while the non-dimensional angular velocity of
the inner core is 1+ ε cosωt with libration amplitude ε = ε∗/Ω∗ and libration frequency
ω = ω∗/Ω∗. The Ekman number is defined by

E =
ν

Ω∗ρ∗2
(2.1)

with ν being the kinematic viscosity.
Since we are concerned with the harmonic linear response in the limit of small viscosity,

both the libration amplitude and the Ekman number are assumed to be small. The
libration frequency ω is chosen in the inertial-wave range such that it can be written as
ω = 2 cos θc. The angle θc indicates the direction of propagation of the inertial waves with
respect to the equatorial plane. It also corresponds to the inclination angle that internal
shear layers make with respect to this plane. In order to form a simple closed circuit, θc
is fixed to 45◦. This means that the libration frequency ω is fixed to

√
2. These values

are unchanged throughout the paper. An example of the ray path is shown in figure 3,
where the internal shear layer is initially spawning at the critical latitude Sc and returns
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Figure 2. Schematic of the problem: the outer shell of radius r∗ rotates with an angular velocity
Ω∗, while the inner one of ηr∗ rotates at Ω∗ + ε∗ cos(ω∗t∗) with ε∗ and ω∗ being the amplitude
and frequency of the libration respectively.

to it after bouncing on the axis, reflecting twice on the outer boundary and reflecting on
the equatorial plane, thanks to the imposed symmetry.
The flow is governed by the linearised incompressible Navier-Stokes equations in the

rotating frame. We seek the following harmonic solution for the velocity V and pressure
P

(V , P ) = ε(v, p)e−iωt + c.c. , (2.2)

where the notation c.c. denotes complex conjugate terms. The velocity v and pressure p
satisfy the following equations in the rotating frame

− iωv + 2ez × v = −∇p+ E∇2
v , (2.3a)

∇ · v = 0 , (2.3b)

with the boundary conditions

v = reφ on the inner shell, (2.4a)

v = 0 on the outer shell, (2.4b)

where r is the distance to the rotation axis.

2.2. Asymptotic theory

The asymptotic analysis is conducted within the cylindrical coordinate system (r, z, φ).
The basic idea of the asymptotic theory is to assume that the main features of the
solution come from the propagation of the critical latitude singularity Sc localised at
r = η

√

1− ω2/4 and z = ηω/2 on the inner sphere. For the frequency ω =
√
2, this

singularity is expected to propagate along the critical characteristic lines Lj (j = 1 . . . 8)
and form a closed circuit (see figure 3). The northward rays correspond to the rays initially
propagating along the line L1. They then cover the circuit L1 → L2 → L3 → L4 → L5,
possibly bounce on the inner core leading to the additional path L6 → L7 → L8 before
starting the circuit again. Similarly, the southward rays start propagating on the line L5
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Figure 3. Critical lines Lj (j = 1, 2 . . . 8) and the local coordinate systems (x‖, x⊥) for rays
initially emitted in the northward direction. The opposite directions are used for rays initially
emitted in the southward direction.

from Sc, travelling on L5 → L4 → L3 → L2 → L1 (possibly on L8 → L7 → L6) and
continuing the same circuit again. Both northward and southward rays are expected to
contribute to the solution. Note however, that computing their contribution will require
considering their interaction with the rotation axis and their reflections on boundaries.

For building the asymptotic solution around these critical lines, it is useful to introduce
a local frame (x‖, x⊥) for each critical line where x⊥ = 0 corresponds to the critical line
itself. The variable x‖ measures the travelled distance from the source along the critical
lines. It increases as the ray propagates on each critical line. However, as we shall see
below, it may exhibit a jump when the ray is reflected. The variable x⊥ indicates the
position with respect to the critical line. The orientation of x⊥ can a priori be arbitrarily
chosen. For convenience, we have assumed that the orientation does not change sign
during the propagation, that is a ray at a positive x⊥ stays at a positive x⊥ after reflection.
The orientation of the local frames shown in figure 3 is for the northward rays. Opposite
local frames are taken for the southward rays.

2.2.1. Self-similar solution and scaling

As first shown by Moore & Saffman (1969), the propagation and viscous smoothing of
a localized singularity can be described in the limit of small Ekman numbers by a self-
similar solution. This result has been used and applied to the critical latitude singularity
generated by the libration of a sphere in Le Dizès & Le Bars (2017). We now briefly recall
the main results.
The self-similar form is derived by considering the small Ekman limit of the governing

equations projected onto the local frame (x‖, x⊥). The solution is characterised by v‖,
v⊥, vφ and p. The former two are velocity components along and perpendicular to the
critical lines, while the latter two correspond to the azimuthal velocity and pressure,
respectively. As the width of the internal shear layer regularised by viscosity scales with
E1/3, all quantities are expanded with the perturbation parameter E1/3. The dependence
on the radial coordinate r is removed by dividing the solution by

√
r. At leading order,

only v‖ and vφ are required to fully describe the solution. The former has the following
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self-similar form

v‖ =
1√
r
C0Hm

(

x‖, ζ
)

=
1√
r
C0

(

x‖

2 sin θc

)−m/3

hm(ζ) (2.5)

with the similarity variable

ζ = x⊥E
−1/3

(

2 sin θc
x‖

)1/3

(2.6)

and the function

hm(ζ) =
e−imπ/2

(m− 1)!

∫ +∞

0

eipζ−p3

pm−1dp . (2.7)

The real index m and the complex amplitude C0 are the parameters characterizing the
strength and the (complex) amplitude of the singularity. Expression (2.5) is a leading
order expression of a viscous solution in the limit of small Ekman numbers. Next order
corrections are expected to be O(E1/3). The solution preserves the self-similar structure

described by hm(ζ) during its propagation and decay as x
−m/3
‖ with x‖ being the distance

from the source. Note that there are two singularities in (2.5). One is on the rotation
axis where r = 0, the other is at the source x‖ = 0. The similarity solution is irrelevant
close to these two regions. In addition, it is also irrelevant close to the boundaries where
the solution should be derived following the more classical E1/2 scaling characteristic of
Ekman viscous layers.
Le Dizès & Le Bars (2017) derived the particular values of the two parameters m and

C0 for any axisymmetric convex librating object by matching the similarity solution with
the boundary layer solution close to the critical latitude. As a necessary condition for
matching, they obtained the particular values:

m = 5/4 (2.8)

and

C0 =
E1/12

8(2 sin θc)3/4
eiπ/2 for northward ray, (2.9a)

C0 =
E1/12

8(2 sin θc)3/4
ei3π/4 for southward ray. (2.9b)

The curvature at the critical latitude κc = − sin θc for the spherical inner core has been
applied. Note that there is an error about the phase of C0 in Le Dizès & Le Bars (2017),
which is corrected here. The value m = 5/4 implies that the ray amplitude decays as

x
−5/12
‖ . The parameters C0 for the northward and southward rays only differ by a phase

shift of π/4. These two values of C0 only hold for the initial rays directly spawning from
the source. For the subsequent reflected rays, the phase and amplitude of C0 have to be
modified as it will be in the next subsection.
The relation between the azimuthal velocity vφ and the parallel velocity v‖ is

vφ = ±iv‖. (2.10)

The sign depends on the angle between the local unit vector e‖ and the global unit vector
er. The + sign is taken for obtuse angles, while the − sign is taken for acute ones.
The values (2.9a,b) of C0 clearly show that the amplitude of the leading-order

asymptotic solution scales with E1/12. Numerical results in open and closed geometries
have partially confirmed such scaling at relatively high Ekman numbers (above 10−7)
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(Le Dizès & Le Bars 2017; Lin & Noir 2020). Further evidence about this scaling at
lower Ekman numbers will be provided here.

2.2.2. Reflections on the curved boundary and on the axis

The reflection of internal shear layers on a flat boundary has been studied by Le Dizès
(2020). Here we extend this result to curved boundaries to get a better approximation
of the reflected solution in a spherical shell. The idea is to take into account the finite
width of the wave beam, and to consider the variation of the boundary inclination angle
when the boundary is curved. This effect is illustrated in figure 4 that shows a close view
of the reflection L2 → L3 for a incident ray (in blue) located at a distance xi

⊥ from the
critical line indicated in red. We clearly see on this figure that the inclination angle θi of
the boundary with respect to the incident blue ray at the reflection point R is different
from the angle θic at the critical line reflection point Rc.

As in Le Dizès (2020), we still assume that the incident and the reflected ray beams
preserve their self-similar structures, which are

vi‖ = Ci
0Hm(xi

‖, ζ
i)/

√
r, vr‖ = Cr

0Hm(xr
‖, ζ

r)/
√
r, (2.11a, b)

where the superscripts i and r denote the variables associated with the incident and
reflected rays respectively. The relations between the incident and reflected variables are
obtained by requiring the vanishing of the normal velocity at the boundary. For a ray
not exactly on the critical line (x⊥ 6= 0; in blue in figure 4), this condition is written
as V · n ≈ −vi‖ sin θ

i + vr‖ sin θ
r = 0 at the reflection point R where θi and θr are the

incident and reflected angles of the rays relative to the tangent plane at the reflection
point. This leads to the relation

Ci
0

Cr
0

=
sin θr

sin θi

(

xr
‖

xi
‖

)−m/3

=
1

Kθ

(

xr
‖

xi
‖

)−m/3

, (2.12)

where Kθ denotes the ratio of the sines of the angles. The similarity variable ζ is also as-
sumed to be preserved during reflection (ζr = ζi). This provides another relation between
the ratio of the parallel coordinates and the ratio of the perpendicular coordinates

xi
‖

xr
‖

= K3
⊥, (2.13)

with K⊥ = xi
⊥/x

r
⊥. Thus, the ratio of amplitudes is related to Kθ and K⊥ by

Ci
0

Cr
0

=
Km

⊥

Kθ
. (2.14)

The values of x⊥ and θ can by obtained directly from figure 4. The corresponding ratios
Kθ andK⊥ can then be computed. Similarly to the reflection on a flat boundary (Le Dizès
2020), the reflection on a curved boundary also modifies the distance to the source and
the magnitude of the incident ray. The reflected ray appears to be generated from a
‘virtual’ source located at the position xr

‖ away from the reflection point R and with a
strength Cr

0 . Note that Kθ and K⊥ are real numbers, so the phase is left unchanged by
the reflection on the boundary.

We must notice that the above two expressions do not hold for rays exactly on the
critical lines where xi

⊥ = xr
⊥ = 0 shown by the red colour in figure 4. When the rays are
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Figure 4. Reflection on curved boundary from the incident beam with thickness xi
⊥ to the

reflected beam with thickness xr
⊥: red and blue lines are two rays on and off the characteristic

lines; dashed lines are the tangent planes at the reflection points; θi and θr are the incident and
reflected angles.

very close to the characteristic lines, the local coordinates can be expanded as

xi
‖ ≈ cos θics+ xi

‖c, xi
⊥ ≈ − sin θics, (2.15a)

xr
‖ ≈ cos θrcs+ xr

‖c, xr
⊥ ≈ − sin θrcs (2.15b)

where s is the arc length between the incidence point R and the critical reflection point
Rc. Moreover, K⊥ = Kθ = K = sin θic/ sin θ

r
c . Now the ratios of x‖ and C0 take the forms

xi
‖

xr
‖

= K3,
Ci

0

Cr
0

= Km−1, (2.16)

which are exactly the reflection law on a flat boundary (Le Dizès 2020). It is worth
mentioning that viscous corrections are also present during the reflection process. These
corrections are not considered in the present work. Le Dizès (2020) has shown that they
are O(E1/6) smaller and also possess a self-similar structure.
The reflection on the axis from L1 to L2 (see figure 3) has been discussed by

Le Dizès & Le Bars (2017) and Rieutord & Valdettaro (2018), which reveals that the
phase of the parallel velocity is shifted by π/2 while the amplitude and the distance to
the source is kept the same. By the same method, the reverse reflection from L2 to L1

also shifts the phase of the parallel velocity by π/2 while keeping all other quantities
unchanged. In other words, we always have on the axis:

Cr
0 = eiπ/2Ci

0. (2.17)

2.2.3. Asymptotic solution in a bounded domain

The complete asymptotic solution in a bounded domain is composed of the self-similar
solutions associated with each part of rays obtained between two reflection events. Thus,
it is necessary to know how rays propagate in the closed domain. For the chosen frequency
ω =

√
2, the ray pattern remains particularly simple. It only depends on the spherical

shell aspect ratio η. In figure 5, we show the ray circuits formed by the propagation of
rays for two geometries with η = 0.35 and η =

√
2/2 respectively. The former is inspired

by the aspect ratio of the Earth’s core while the latter is a particular case for which the
critical latitude is directly connected to the pole and to the equator by a characteristic
line.
The ray circuit also depends on the position of the source point relative to the critical

latitude. In figure 5, we consider the ray circuits generated above (Sa; in deep blue colour)
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Figure 5. Circuits of rays in spherical shells for different radii of the inner shell: (a) η = 0.35; (b)

η =
√
2/2. Red lines are characteristic lines; blue and green lines are two types of ray circuits. Sc,

Sa and Sb are source points on, above and below the critical latitude respectively; Rj(j = 0−7)
are reflection points. The arrows on the ray circuits shows the propagation directions of the
northward beam, which are opposite of those of the southward beam.

and below (Sb; in light blue colour) the critical latitude (Sc; in red colour). Each circuit
is made of several directed segments. These segments are denoted as Dij where i and j
are start and end points respectively. These points are the reflection points on the axis
and the boundaries. Specifically, R0 is the reflection point on the axis; R1, R2, R5 and
R6 are those on the outer boundary; R3 is the one on the equator; R4 and R7 are those
on the inner core. For the ray generated from the source below the critical latitude (Sb),
the circuit consists of eight directed segments, and is the same for both geometries. As
shown by the arrows on the circuits in figure 5, the sequences of directed segments that
the ray propagation follows are

D70 → D01 → D12 → D23 → D34 → D45 → D56 → D67 for northward rays, (2.18a)

D43 → D32 → D21 → D10 → D07 → D76 → D65 → D54 for southward rays. (2.18b)

By contrast, for the ray generated from the source above the critical latitude (Sa), the
circuit is different for the two values of η. There are five and nine directed segments for
η = 0.35 and

√
2/2 respectively. The sequences of directed segments are

DSa0 → D01 → D12 → D23 → D3Sa
, for northward rays, (2.19a)

DSa3 → D32 → D21 → D10 → D0Sa
for southward rays (2.19b)

in the geometry with η = 0.35, and

DSa1 → D10 → D07 → D76 → D65 →
→ D54 → D43 → D32 → D2Sa

for northward rays, (2.20a)

DSa2 → D23 → D34 → D45 → D56 →
→ D67 → D70 → D01 → D1Sa

for southward rays (2.20b)

in the geometry with η =
√
2/2.

The asymptotic solution on every directed segment of any circuit mentioned above is
described by the self-similar formula (2.5) with the same parameter m = 5/4, but with
different values of C0. Note that since the two sides of the shear layer (characterised
by different signs of x⊥) possibly have different propagation circuits, we effectively split
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the beam into two independent solutions. It will become clear when we compare the
asymptotic and numerical solutions why this is necessary. After one reflection on the
axis, the phase of C0 is shifted by π/2 according to the phase relation (2.17). After one
reflection on the boundary, the amplitude of C0 is scaled by the ratio (2.14). The distance
x‖ to the source is also scaled by the ratio (2.13). At the corners of a circuit where two
adjacent rays intersect, the asymptotic solution is the sum of these two rays (Ogilvie
2005).
Up to this stage, we have described how to build the asymptotic solution along one

complete revolution of the periodic orbit, from the critical latitude and back. However,
it is natural to assume that the self-similar solution will continue propagating along the
periodic characteristic path until its amplitude eventually becomes negligible. For each
cycle, the self-similar nature of the local solution should be preserved since only C0 and
x‖ are modified by reflections on the axis and boundaries. The asymptotic solution for

the nth cycle can be expressed by
√
rv‖n = CnHm(x‖n, ζn). (2.21)

The subscript n indicates a variable associated with the nth cycle. When n = 0,
equation (2.21) is equivalent to (2.5) for the very first cycle. The variables of the
subsequent cycles are related to those of the first n = 0 cycle by

x‖n = x‖0 + nL, (2.22)

ζn = ζ0
(

x‖n/x‖0

)1/3
, (2.23)

Cn = C0e
inπ/2, (2.24)

where L is the travelled distance within one cycle, and π/2 is the phase shift induced by
the reflection on the axis occurring once per cycle. Note that L depends on the circuit
(compare the deep blue and light blue circuits in figure 5a for instance), and it also varies
along the circuit for different directed segments, but it does not change from one cycle to
another (see details in Appendix A). Note also that the norm of the amplitude of the self-
similar solution does not change after each cycle (|Cn| = |C0|). This is associated with
the symmetric character of each cycle which guarantees that the phases of contraction
and expansion experienced by the beam during one cycle exactly compensate.

The complete asymptotic solution associated with one beam is thus the sum of the
solution (2.21) for every cycle. After N + 1 cycles, we obtain

√
rv

(N)
‖ =

N
∑

n=0

CnHm(x‖n, ζn). (2.25)

The self-similar solution decays with the travelled distance as x
−5/12
‖ (see equations (2.5)

and (2.8)). This gives a behavior in n−5/12 of the coefficients of the series (2.25) that does
not guarantee its absolute convergence. However, because Cn is oscillating with n (see
equation (2.24)), the series does converge. The number of cycles can therefore be chosen
as large as wanted. Using the relations (2.22-2.24), the series of the integrals (2.25) can
be transformed to an integral of a geometric series

√
rv

(N)
‖ = C0

(

x‖0

2 sin θc

)−m/3
e−imπ/2

(m− 1)!

∫ ∞

0

eipζ0−p3

pm−1
N
∑

n=0

ine−nL/x‖0p
3

dp. (2.26)

Moreover, with the closed form of the geometric series the solution can be expressed by
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two parts
√
rv

(N)
‖ = C0Gm

(

x‖0, x⊥, L
)

+ ε(N)
m

(

x‖0, x⊥, L
)

(2.27)

with

Gm

(

x‖0, x⊥, L
)

=

(

x‖0

2 sin θc

)−m/3

gm
(

ζ0, L/x‖0

)

, (2.28a)

gm
(

ζ0, L/x‖0

)

=
e−imπ/2

(m− 1)!

∫ ∞

0

eipζ0−p3

pm−1

1− ie−p3L/x‖0
dp, (2.28b)

and

ε(N)
m = C0

(

x‖0

2 sin θc

)−m/3
e−imπ/2

(m− 1)!

∫ ∞

0

eipζ0−p3

pm−1−iN+1e−p3L(N+1)/x‖0

1− ie−p3L/x‖0
dp. (2.29)

The correction term ε
(N)
m behaves as

ε(N)
m ∼ −C0

(

x‖0

2 sin θc

)−m/3
e−imπ/2

(m− 1)!

1

3

(x‖0

L

)5/12 Γ (5/12)

1− i
iN+1N−5/12, (2.30)

as the number of cycles becomes large. It vanishes as the number of cycles tends to
infinity. Therefore, in the limit N → ∞, the asymptotic solution takes the form

√
rv‖ = C0Gm

(

x‖, x⊥, L
)

. (2.31)

Only the local coordinates in the very first cycle are needed to compute the asymptotic
solution. Without any ambiguity, the subscript 0 denoting the very first cycle has been
dropped for the parallel coordinate and similarity variable hereafter. The above discussion
holds both for northward and southward rays. The final global asymptotic solution in
the closed geometry is the sum of the solutions of both rays, that is

√
rv‖ = CNW

0 Gm

(

xNW
‖ , xNW

⊥ , L
)

+ CSW
0 Gm

(

xSW
‖ , xSW

⊥ , L
)

, (2.32)

where the superscripts NW and SW denote northward and southward rays respectively.
The travelled distance L within one cycle is the same for the two rays, because they travel
along the same symmetric circuit, but is different for each circuit and every directed
segment shown in figure 5. More details about the computation of the circuit length L in
each case can be found in Appendix A. Equation (2.32) provides the description of the
parallel velocity, while the azimuthal velocity vφ can be derived from the phase relation
(2.10).

2.3. Numerical method

In order to validate the asymptotic approach, we now consider the complete numerical
resolution of the linear viscous harmonic problem described in section 2.1. The governing
equations (2.3) are solved numerically in spherical coordinates (ρ, ϑ, φ), where ρ, ϑ and
φ are the radial distance from the center of the sphere, polar and azimuthal angles
respectively. In order to compare the numerical results with asymptotic predictions
obtained within a different cylindrical coordinate system, the azimuthal velocity is
adopted since this velocity component is the same in both cylindrical and spherical
frames.
As in Rieutord & Valdettaro (1997), the fields are expanded onto spherical harmonics

in the polar and azimuthal directions and onto Chebyshev polynomials in the radial
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direction. We consider the expansion

v =

+∞
∑

l=0

+l
∑

m=−l

ul
m(ρ)Rm

l + vlm(ρ)Sm
l + wl

m(ρ)Tm
l , (2.33)

with

R
m
l = Y m

l (ϑ, ϕ)eρ, S
m
l = ∇Y

m
l , T

m
l = ∇×R

m
l , (2.34a − c)

where gradients are taken on the unit sphere. Projecting the curl of the momentum
equation (2.3a) on this basis yields (Rieutord 1987)

E∆lw
l + iωwl = −Alρ

l−1 ∂

∂ρ

(

ul−1

ρl−2

)

−Al+1ρ
−l−2 ∂

∂ρ

(

ρl+3ul+1
)

,

E∆l∆l(ρu
l) + iω∆l(ρu

l) = Blρ
l−1 ∂

∂ρ

(

wl−1

ρl−1

)

+Bl+1ρ
−l−2 ∂

∂ρ

(

ρl+2wl+1
)

,























(2.35)
with

Al =
1

l
√
4l2 − 1

, Bl = l2(l2 − 1)Al, ∆l =
1

ρ

d2

dρ2
ρ− l(l + 1)

ρ2
. (2.36a − c)

Axisymmetry (m = 0) is assumed. The unknown variables in equations (2.35) are only wl

and ul. The third component vl is related to ul through the continuity equation (2.3b),
that is

vl =
1

ρl(l + 1)

dρ2ul

dρ
. (2.37)

The no-slip boundary conditions on the outer core impose that

wl = ul =
dul

dρ
= 0, at ρ = 1. (2.38)

The libration on the inner boundary imposes a forcing in the azimuthal direction. Its
projection onto spherical harmonics yields the inhomogeneous boundary conditions on
the inner core

wl = 2

√

π

3
η δ1,l , ul =

dul

dρ
= 0 at ρ = η , (2.39)

where δi,j is the Kronecker symbol.
Equations (2.35-2.39) are then discretized on the collocation points of the Gauss-

Lobatto grid, which yields a linear system

Ax = b . (2.40)

This linear algebraic system of equations is solved using the LU decomposition. The
dimensions of the matrix A and the vector b depend on the spatial resolution which
is related to the number of spherical harmonics (lmax) and the number of Chebyshev
polynomials (Nr). For the computations at low Ekman numbers, large numbers of
spherical harmonics and Chebyshev polynomials are necessary. Typically, in order to
reach E = 10−10, we use lmax = 3600 and Nr = 1200 which leads to a matrix size of
4323600. In that case, the memory footprint of the LU solver is approximately of 500GB.
In order to display the wave structures and the scalings, the azimuthal velocity

(vφ) and viscous dissipation rate (D) are computed. The latter is defined as
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S1

S2 S3

S4

S5

S6

E = 10−6 E = 10−8 E = 10−10(a)

(b)

|vφ|
10−2

10−3

10−4

10−5

Figure 6. Contours of amplitudes of azimuthal velocity of numerical (a) and asymptotic (b)
solutions for three Ekman numbers E = 10−6, 10−8 and 10−10.

(Rieutord & Valdettaro 1997)

D =
1

2
E
[

S2
ρρ + S2

ϑϑ + S2
φφ + 2

(

S2
ρϑ + S2

ρφ + S2
ϑφ

)]

, (2.41)

where S is the rate-of-strain tensor. If the amplitude of the velocity scales with E1/12,
the dissipation rate should scale with E1/2 (= E1+(1/12−1/3)×2) by the above definition.
We validate this scaling numerically in the following.

3. Bulk solution

In this section, we compare the asymptotic and numerical solutions in the bulk region of
the spherical shell for the two geometries η = 0.35 and

√
2/2 respectively. When deriving

the similarity solutions (2.5-2.10), Le Dizès & Le Bars (2017) normalised lengths by the
distance to the axis of the critical latitude, while lengths are non-dimensionalised by
the radius of the outer shell in this paper. In order to adapt the theoretical results
to our framework, the Ekman number defined by (2.1) is rescaled by 2/η2, and the
coordinates rescaled by

√
2/η. The asymptotic solutions are obtained with the rescaled

Ekman number and rescaled coordinates. In order to compare asymptotic and numerical
solutions, the asymptotic solution has then to be divided by η/

√
2 or the numerical

solutions multiplied by this quantity. The former is used when doing comparison in
global coordinates, while the latter is used when doing comparison in local coordinates.

In the following, we shall only use the azimuthal component of the velocity for the
comparisons. Other components of the velocity show similar behaviours, and will not be
presented here.

3.1. Aspect ratio η = 0.35

The asymptotic solution for an infinite number of cycles is compared with the numerical
one in figure 6. The inner and outer Ekman boundary layers and a region close to the
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Figure 7. Azimuthal velocity profiles vφ of the asymptotic solution (AS) for northward &
southward rays and the sum of them and the numerical solution (NS) on three sections (S2, S3

and S4) and at the Ekman number E = 10−10.

axis are excluded since the asymptotic solution does not hold there. Note that we use
a logarithmic colour scale over three decades in amplitude. This figure qualitatively
demonstrates that our asymptotic solution can reproduce both global and local structures
of the internal shear layer at the frequency ω∗/Ω∗ =

√
2, especially as the Ekman number

gets small. The wave structure consists of an inclined rectangle and two beams near the
center line z = r. As the Ekman number decreases, the beams get thinner and their
amplitude decreases, which is observed for both asymptotic and numerical solutions. The
jumps of the asymptotic solution far away from the critical lines at high Ekman number
are caused by the finite intervals of circuits’ sources (see Appendix A) which tend to
disappear as the Ekman number is reduced and the solution becomes more localised.
In figure 6, S1−5 are the five sections crossing the main circuit, while S6 is crossing the
two beams near the center line z = r. Quantitative comparisons will be made on these
sections in the following.
Figure 7 compares the asymptotic velocity profiles for the northward and southward

rays independently and their sum with the numerical profiles on three sections (S2, S3

and S4) and at an Ekman number of E = 10−10. The northward ray propagates from
S2 to S4, while the southward one propagates from S4 to S2. Therefore, the amplitude
of the northward ray decays from S2 to S4, while that of the southward ray decays from
S4 to S2. The figure shows that only the superposition of both rays can approximate the
numerical solution.
The asymptotic and numerical solutions at different Ekman numbers on the section S2

are compared in figure 8(a), which shows that our asymptotic solution performs better as
the Ekman number decreases, as expected. At the lowest value of E = 10−10, which starts
to be relevant for geophysical applications, the agreement between the two solutions is
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Figure 8. Azimuthal velocity profiles vφ of the asymptotic and numerical solutions (AS and
NS) at three Ekman numbers (E = 10−6, 10−8 and 10−10) and on the sections S2 (a) and S6

(b).

remarkable even far from the characteristic path. In figure 8(b), the same comparison
is also made on the section S6 where the wave beams result from the reflections of the
rays generated below the critical latitude on the inner core (see the light blue circuit in
figure 5(a)). Better performance of asymptotic solutions with decreased Ekman number
is also observed. It demonstrates that our strategy of splitting the shear layer below and
above the critical latitude is necessary and effective at reconstructing the wave beams
near the center line z = r. Without this approach, the asymptotic solution would be
vanishingly small in that region. Note that in the figure the narrower regions of the
similarity variables at higher Ekman numbers are caused by the fixed length of the
sections. The similarity variables on the sections take wider range of values for lower
Ekman numbers (see equation (2.6)).

The physical scalings of the numerical results in the range of Ekman number 10−10 6

E 6 10−6 are presented in figure 9. A fixed point at the intersection between the critical
line and the section S2 is selected to measure both velocity amplitude and dissipation
rate at various Ekman numbers. The figure shows that the velocity amplitude of the
internal shear layer follows the scaling E1/12 predicted by Le Dizès & Le Bars (2017) for
an open geometry. This observation is to be contrasted with the scaling E1/6 assumed by
Kerswell (1995), who actually extrapolated the scaling of the shear layer emitted by an
oscillating split disc to the one emitted a librating inner core. The foregoing numerical
results show that this simple extrapolation is not valid. We note that our results also
further confirm the numerical observation made by Lin & Noir (2020) at comparatively
higher Ekman numbers. Regarding the dissipation rate, it follows the expected E1/2

scaling. This scaling implies that the power dissipated in the whole shell vanishes as
E5/6 when E → 0. Rieutord & Valdettaro (2010) also found such a vanishing dissipation
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Figure 9. Scalings for the azimuthal velocity amplitude and dissipation rate as a function of
the Ekman number. We focus on the numerical solution at the intersection between section S2

and the critical line.
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Figure 10. Absolute and relative errors on the azimuthal component of the velocity between
the asymptotic and numerical solutions computed for the five sections S1−5 defined in figure 6
in the range of −10 6 ζ 6 10 and as a function of the Ekman number.

when E → 0 but with a lower power, namely as E2/5 (see their Fig. 12). However,
Rieutord & Valdettaro (2010) forced the oscillating flow with an O(1) body force, while
in the present case the forcing vanishes as E → 0. This latter point underlines the
importance of the nature of the forcing in the response of the fluid and the associated
viscous dissipation.
The errors of the asymptotic solution relative to the numerical one are measured on the

five sections S1−5 in the narrow range−10 6 ζ 6 10 around the critical lines. The solution
in this narrow region is negligibly affected by the boundaries, the axis and the critical
latitude where the asymptotic solution is not expected to perform well. The absolute
error is measured by the norm of the difference between the theoretical predictions and
numerical results averaged over the region of interest around the beam. The relative error
between the two approaches is obtained by normalising with the reference numerical
solution. Both L2 and L∞ norms are considered for Ekman numbers ranging from 10−6

to 10−10, as shown in figure 10. For the L2 norm, results are scaled by the square root of
the number of points into the region −10 6 ζ 6 10 since the number of points changes
with the Ekman number. The absolute error plotted in figure 10(a) is shown to scale with
E1/6 for both L2 and L∞ norms. Figure 10(b) demonstrates that the scaling in E1/12

of the numerical solution is very well predicted if we focus on the beam near the critical
lines. This gives the relative error that is plotted in figure 10(c) with a scaling in E1/12

as expected.
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Figure 11. Contours of |vφ| at E = 10−10 and η = 1/
√
2 by numerical (a) and asymptotic (b)

methods.
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Figure 12. Velocity profiles along the three sections shown in figure 11 for E = 10−10 and
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√
2.

3.2. Aspect ratio η = 1/
√
2

We now consider the comparison between the theoretical asymptotic predictions and
numerical results in a spherical shell with an aspect ratio of η = 1/

√
2. The reason

behind this choice is the peculiar nature of the critical path, which connects the critical
latitude to the pole and the equator without reflection on the boundaries. We use the
same asymptotic approach as described previously.

Figure 11 compares the contours of the amplitude of the azimuthal velocity at E =
10−10. Once again, our asymptotic solution can reproduce the beam structure, including
the secondary weaker beam which corresponds to secondary reflections on the inner core
close to the critical latitude. The velocity profiles are compared in figure 12 for the three
sections defined in figure 11. We can see that a good agreement is obtained, even for this
more pathological case involving reflections near the poles. The convergence properties
as the Ekman number is reduced are the same as for the previous case η = 0.35.
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4. Solution close to the axis

The self-similar solution (2.32) is singular on the axis due to the term 1/
√
r. The region

close to the axis has therefore been ignored in the asymptotic results discussed so far.
Around the axis, the velocity and pressure can be expressed using Hankel transform as
done by Le Dizès & Le Bars (2017) in an open geometry. In this section, we generalise
this approach to the case of the spherical shell where the asymptotic solution now involves
a series of rays propagating in opposite directions.

4.1. Asymptotic theory

We consider the reflections on the axis at the intersection of two adjacent critical lines
L1 and L2 shown in figure 3 for the aspect ratio η = 0.35. In the spherical shell, two
types of rays are involved there: the northward rays that reflect from L1 to L2, and the
southward ones that reflect from L2 to L1 after having performed two reflections on the
outer sphere. Far away from the axis, the self-similar solution (2.32) holds. Close to the
axis, the following Hankel transform for the velocity components and pressure can be
used

vr =

∫ ∞

0

U1(k)J1(kr)e
iµ1zdk +

∫ ∞

0

U2(k)J1(kr)e
iµ2zdk, (4.1a)

vφ =

∫ ∞

0

V1(k)J1(kr)e
iµ1zdk +

∫ ∞

0

V2(k)J1(kr)e
iµ2zdk, (4.1b)

vz =

∫ ∞

0

W1(k)J0(kr)e
iµ1zdk +

∫ ∞

0

W2(k)J0(kr)e
iµ2zdk, (4.1c)

p =

∫ ∞

0

P1(k)J0(kr)e
iµ1zdk +

∫ ∞

0

P2(k)J0(kr)e
iµ2zdk, (4.1d)

where Jα(α = 0, 1) are the Bessel functions of the first kind, µ1 and µ2 inviscid
wavenumbers corresponding to the northward and southward rays respectively. The four
other viscous wavenumbers that could also be present in (4.1) (see Le Dizès 2015) have
been omitted here because they are not present in the internal shear layer structure
and not needed to smooth the singularity on the axis as we shall see. Note also that in
an open geometry, only the component µ1 associated with the northward ray was used
(Le Dizès & Le Bars 2017), since the southward ray goes to infinity and never comes
back close to the axis. At leading order, the two inviscid wavenumbers are related to k
by

µ1 = k
cos θc
sin θc

, µ2 = −k
cos θc
sin θc

. (4.2a, b)

The corresponding amplitudes (U1, V1,W1, P1) and (U2, V2,W2, P2) are related with each
other by the following expressions (Le Dizès 2015)

U1,2 = i cos θcV1,2, (4.3a)

W1 = − sin θcV1, (4.3b)

W2 = sin θcV2, (4.3c)

kP1,2 = −2 sin θcV1,2. (4.3d)

To describe the solution close to reflection point on the axis, of coordinates
(0, η/ cos θc), we introduce the local variables

r̃ = r/E1/3, z̃ = (z − η/ cos θc)/E
1/3, (4.4a, b).
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The Hankel transform (4.1) can then be written as

vr = i cos θc

[
∫ ∞

0

Ṽ1J1(k̃r̃)e
ik̃γz̃dk̃ +

∫ ∞

0

Ṽ2J1(k̃r̃)e
−ik̃γz̃dk̃

]

, (4.5a)

vφ =

∫ ∞

0

Ṽ1J1(k̃r̃)e
ik̃γz̃dk̃ +

∫ ∞

0

Ṽ2J1(k̃r̃)e
−ik̃γz̃dk̃, (4.5b)

vz = sin θc

[

−
∫ ∞

0

Ṽ1J0(k̃r̃)e
ik̃γz̃dk̃ +

∫ ∞

0

Ṽ2J0(k̃r̃)e
−ik̃γz̃dk̃

]

, (4.5c)

p = −2 sin θcE
1
3

[

∫ ∞

0

Ṽ1
J0(k̃r̃)

k̃
eik̃γz̃dk̃ +

∫ ∞

0

Ṽ2
J0(k̃r̃)

k̃
e−ik̃γz̃dk̃

]

, (4.5d)

with γ = 1/ tan θc.

Expressions for Ṽ1 and Ṽ2 are sought by matching the solution close to the axis (4.5)
with the self-similar solution in the bulk (2.32,2.10). When both r̃ and z̃ go to infinity,
the limit of vφ (4.5b) is

vφ ∼ 1√
2πr̃

∫ ∞

0

Ṽ1(k̃)
√

k̃
eik̃(r̃+γz̃)−i3π/4dk̃ (4.6a)

+
1√
2πr̃

∫ ∞

0

Ṽ1(k̃)
√

k̃
eik̃(−r̃+γz̃)+i3π/4dk̃ (4.6b)

+
1√
2πr̃

∫ ∞

0

Ṽ2(k̃)
√

k̃
eik̃(r̃−γz̃)−i3π/4dk̃ (4.6c)

+
1√
2πr̃

∫ ∞

0

Ṽ2(k̃)
√

k̃
eik̃(−r̃−γz̃)+i3π/4dk̃ (4.6d)

using the asymptotic behaviour of the Bessel function at infinity. The four components
correspond to the incident northward rays (L1), the reflected northward rays (L2), the
incident southward rays (L2) and the reflected southward rays (L1) respectively. The
former two components for the incident and reflected northward rays imply that there is
a phase shift from the incident to reflected rays, which is 3π/2 for the azimuthal velocity.
Considering the phase (2.10) between v‖ and vφ, the phase shift for v‖ is π/2. The same
is true for the southward rays.

On the other hand, the self-similar solution for vφ (2.32,2.10) in the bulk takes the
following form close to the intersection point on the axis (r → 0, z → η/ cos θc)

vφ ∼ i
1√
r
CNW

0 Gm (LNW , sin θc(r̃ + γz̃), L) (4.7a)

+
1√
r
CNW

0 Gm (LNW , sin θc(−r̃ + γz̃), L) (4.7b)

+ i
1√
r
CSW

0 Gm (LSW , sin θc(r̃ − γz̃), L) (4.7c)

+
1√
r
CSW

0 Gm (LSW , sin θc(−r̃ − γz̃), L) , (4.7d)

where LNW and LSW are the travelled distances of the northward and southward rays
from the source to the intersection point on the axis respectively. L is the travelled
distance within one cycle (see Appendix A).
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Figure 13. Comparison of asymptotic solutions and numerical results of vz on the axis for
three Ekman numbers.
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Figure 14. Comparison of asymptotic solutions and numerical results of three velocity
components on the line perpendicular to the axis at the reflection point (0, η/ cos θc) for three
Ekman numbers.
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By matching (4.6) with (4.7), the amplitudes Ṽ1 and Ṽ2 are obtained as follows

Ṽ1 = E−1/6CNW
0

√
2π

k̃m−1/2

sinm θc
ei5π/4

e−imπ/2

(m− 1)!

e−LNW k̃3/(2 sin4 θc)

1− ie−Lk̃3/(2 sin4 θc)
, (4.8a)

Ṽ2 = E−1/6CSW
0

√
2π

k̃m−1/2

sinm θc
ei5π/4

e−imπ/2

(m− 1)!

e−LSW k̃3/(2 sin4 θc)

1− ie−Lk̃3/(2 sin4 θc)
. (4.8b)

It is worth pointing out the factor E−1/6 in front of the ray amplitudes CNW
0 and

CSW
0 . These amplitude are O(E1/12), which means that Ṽ1 and Ṽ2 scales as E−1/12. This

implies that the solution close to the reflection point is expected to grow infinitely as E
goes to zero. It clearly shows the singular nature of the small Ekman number limit for
this problem: the linear solution is expected to vanish everywhere except in the boundary
layer on the inner sphere (where it is finite) and at this single reflection point on the axis
(where it diverges).

4.2. Comparison with numerical results

The asymptotic solution close to the axis (4.5) with the amplitudes (4.8) is compared
with the numerical results. Figure 13 compares the asymptotic and numerical solutions
along the rotation axis for three Ekman numbers. Only the velocity component vz is
concerned, as the other two components are zero by axisymmetry. We obtain a good
agreement between the theoretical predictions and the numerical results. As the Ekman
number decreases, our asymptotic solution converges to the numerical one. Figure 14
shows the same comparison but on the line perpendicular to the rotation axis and
passing by the reflection point (0, η/ cos θc). All three velocity components are considered.
Contrary to previous results, only one part of the asymptotic solution (namely the
imaginary part of vr and the real part of vz and vφ) performs well. However, as we
decrease the Ekman number, the other part of the asymptotic solution approaches the
corresponding numerical one, although there are still obvious differences for our lowest
Ekman number 10−10. Interestingly, the absolute errors of the asymptotic solution close
to axis are found to be almost invariant with the Ekman number (not shown here), while
the relative errors scale with E1/12 similarly to those in the bulk (see figure 10(c)). It
is suggested that both the errors of the asymptotic solutions close to axis and in the
bulk come from the same source, which could be a weaker singularity at the critical
latitude. It is suspected that the order of this singularity is O(E1/6), which corresponds
to m = 1 if its solution is still self-similar. Its contribution to the asymptotic solution is
not considered here, since we are concerned with the leading-order response, but could
be further investigated in future studies.

5. Conclusion

Using both numerical and asymptotic methods, we have studied the harmonic response
that is generated in a rotating spherical shell by librating the inner sphere at the frequency
ω =

√
2Ω where Ω is the angular frequency of the fluid. For this particular frequency, the

inertial waves propagate along rays inclined at 45 degree with respect to the equatorial
plane and therefore form closed periodic orbits in a spherical shell. We have shown by
considering numerical results down to Ekman numbers E = 10−10 that the harmonic
response is mainly governed by the internal shear layers that are emitted from the critical
latitude of the inner sphere. In Le Dizès & Le Bars (2017), it was shown that these
internal shear layers are concentrated wave beams that can be described in an open
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geometry and at small Ekman numbers by the similarity solution initially introduced by
Moore & Saffman (1969). Here, we have further generalised this model and constructed
an asymptotic solution by monitoring the reflections of the critical latitude beams on
the boundaries and on the axis. For this purpose, we have improved the known reflection
rules (Le Dizès 2020) to take into account the curvature of the spherical shell boundaries.
This extension has been shown to be necessary to describe the flow far from the main
beam, in particular the wave beams generated by reflections on the inner core close to the
critical latitude. We have finally obtained that the asymptotic solution can be written
as an infinite sum of similarity solutions. Interestingly, this sum converges owing to the
phase shift of π/2 that the beams experience at each reflection on the rotation axis.

The asymptotic solution has been compared to the numerical solution of the linearised
equations for several Ekman numbers and two values of the shell aspect ratio, and a
very good agreement has been demonstrated. The relative error has been shown to be
of order E1/12. We suspect that it could be associated with a weaker singularity at the
critical latitude. An immediate consequence of our result is the scaling in E1/12 of the
harmonic response velocity, as predicted for the internal shear layer amplitude in an open
geometry (Le Dizès & Le Bars 2017). This scaling was also observed in recent simulations
by Lin & Noir (2020) but it contrasts with the E1/6 scaling previously reported in
the literature in similar contexts (Kerswell 1995; Calkins et al. 2010; Favier et al. 2014;
Cébron et al. 2019).

We have also analysed the solution close to the point on the rotation axis where
the critical latitude beam reflects. The similarity solution diverges at this point. We
have provided a new asymptotic expression describing the solution in the O(E1/3)
neighbourhood of this point. We have in particular shown that the solution also scales
as E−1/12 in this region.

It is worth emphasising that the theoretical method that has been used to build the
asymptotic solution can be applied to other situations. For instance, one can imagine
considering other libration frequencies. As long as ω < 2Ω, critical latitude beams are
expected to be excited. These beams would propagate in the spherical shell, be reflected
on boundaries and form a complex ray pattern depending on the aspect ratio and the
frequency. If the critical latitude beams converge towards an attractor, or if they travel
along a periodic orbit, as in the present case, the solution is expected to be localised
along these beams. The solution could then be obtained as a sum of similarity solutions.
Because these similarity solutions decrease slowly along their direction of propagation

as x
−5/12
‖ , the convergence of this sum would depend on the phase shift that the beam

experiences on the periodic orbit or on the attractor, that is on the number of reflection
on the axis. If the sum converges, we claim that our approach should apply. The other
situation where the sum does not converge is naturally of interest. We suspect that in that
case one obtains a completely different response with a new scaling in E, and probably
multi-layer structures as observed in the Stewartson layers between differentially rotating
spheres (Stewartson 1966).

Finally, it is important to mention that we have limited our analysis to libration to
be able to use an existing model for the structure of the critical latitude beam. Yet,
critical latitude beams exist for other types of harmonic forcing. The Saint Andrews cross
pattern (Mowbray & Rarity 1967; Greenspan 1968) obtained by translating periodically a
sphere is nothing but the pattern left by the critical latitude beams. If these beams can be
described by the similarity solution of Moore & Saffman (1969), a similar approach could
then naturally be developed in those cases and further generalised to closed geometries.
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Appendix A. Expressions of local coordinates and one-cycle distances

In this section, we will provide the expressions of the local coordinates (x‖, x⊥) and the
one-cycle distances L required by the asymptotic solution (2.32). We denote the position
where the asymptotic solution is calculated as P . The ray circuit crossing P can be built
by tracing the propagation of rays starting from P until a closed path is formed. The
global coordinates of the circuit’s vertices can be obtained from that of P . The position
of the circuit’s source relative to that of the critical latitude (defined as x⊥S) can also be
obtained from their global coordinates. For the circuits shown in figure 5, the positions
of their sources fall into the following intervals

(
√
2/2− 1)η < x⊥Sb

< 0, (A 1a)

0 < x⊥Sa
<

√
2/2− η, for η = 0.35, (A 1b)

0 < x⊥Sa
<
√

1− η2/2− η, for η = 1/
√
2. (A 1c)

These intervals are adjacent to the critical lines (x⊥ = 0), and the sources within them
should play dominant roles over those outside them, especially when the wave beams
are thinner at lower Ekman numbers. At higher Ekman numbers where wave beams are
thicker, considering only the sources within these intervals creates unphysical cutoffs at
the endpoints, which are illustrated in figure 6. However, these cutoffs are almost invisible
at lower Ekman numbers. It should be sufficient to consider the sources within the
intervals (A 1). The circuits with sources outside these intervals possess different patterns
from those shown in figure 5. One can still construct the corresponding asymptotic
solutions using the approach presented in this paper, in order to smooth the cutoffs
at the endpoints of the intervals.

For convenience, we denote Lij as the length between two points i and j. When the
two points are two adjacent vertices of a circuit, Lij denotes the length of the relevant
directed segment. The ratio of the perpendicular coordinates between the incident and
reflected rays at a reflection point i is defined as K⊥i. x⊥S solely determines a circuit,
and Lij of the directed segments and K⊥i at the reflection points for the circuit can be
expressed as a function of the corresponding x⊥S .

We start with the northward rays in the geometry of η = 0.35. Lij and K⊥i for the
circuit generated by Sa (deep blue line in figure 5a; x⊥S > 0) take the forms

LSaR0
= LR3Sa

= η + x⊥S , (A 2a)

LR0R1
= LR2R3

= −(η + x⊥S) +
√

1− (η + x⊥S)2, (A 2b)

LR1R2
= 2(η + x⊥S), (A 2c)
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and

K⊥R1
= 1/K⊥R2

=

√

1− η2 +
√

1− (η + x⊥S)2

2η + x⊥S
. (A 3)

The local coordinates of P can be obtained by propagating the source Sa to the target
P , during which they are scaled at the reflection points on the boundaries. On every
directed segment, the local coordinates are expressed as

x‖ = LSaP , x⊥ = x⊥S , P ∈ DSaR0
, (A 4a)

x‖ = x‖R0
+ LR0P , x⊥ = x⊥S , P ∈ DR0R1

, (A 4b)

x‖ = x‖R1
/K3

⊥R1
+ LR1P , x⊥ = x⊥S/K⊥R1

, P ∈ DR1R2
, (A 4c)

x‖ = x‖R2
K3

⊥R1
+ LR2P , x⊥ = x⊥S , P ∈ DR2R3

, (A 4d)

x‖ = x‖R3
+ LR3P , x⊥ = x⊥S , P ∈ DR3Sa

, (A 4e)

where x‖i in the last four directed segments takes the parallel coordinate of P locating
at the end of the previous directed segment. If we define the following formula

La = 2LSaR0
+ 2LR0R1

+ LR1R2
K3

⊥R1
, (A 5)

the one-cycle distance L for every directed segment takes the form

L = La, P ∈ DSaR0
, DR0R1

, DR2R3
, DR3Sa

, (A 6a)

L = La/K
3
⊥R1

, P ∈ DR1R2
. (A 6b)

When P locates on the circuit generated by Sb (light blue line in figure 5a; x⊥S < 0),
LSbR0

, LR0R1
, LR1R2

and LR2R3
take the same forms as those of Sa (A 2), while the rest

directed segments take the lengths

LR7R0
= LR3R4

= (η + x⊥S)−
√

η2 − (η + x⊥S)2, (A 7a)

LR4R5
= LR6R7

=
√

1− [η2 − (η + x⊥S)2]− (η + x⊥S), (A 7b)

LR5R6
= 2
√

η2 − (η + x⊥S)2. (A 7c)

K⊥R1
and K⊥R2

also take the same forms as those of Sa (A 3). The other ratios are

K⊥R4
= 1/K⊥R7

=

√−x⊥S√
2η + x⊥S

, (A 8a)

K⊥R5
= 1/K⊥R6

=

√

1− [η2 − (η + x⊥S)2] + 1√
2η + x⊥S

√−x⊥S
. (A 8b)
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The local coordinates of P on every directed segment are

x‖ = LSbP , x⊥ = x⊥S , P ∈ DS7R0
, (A 9a)

x‖ = x‖R0
+ LR0P , x⊥ = x⊥S , P ∈ DR0R1

, (A 9b)

x‖ = x‖R1
/K3

⊥R1
+ LR1P , x⊥ = x⊥S/K⊥R1

, P ∈ DR1R2
, (A 9c)

x‖ = x‖R2
K3

⊥R1
+ LR2P , x⊥ = x⊥S , P ∈ DR2R3

, (A 9d)

x‖ = x‖R3
+ LR3P , x⊥ = x⊥S , P ∈ DR3R4

, (A 9e)

x‖ = x‖R4
/K3

⊥R4
+ LR4P , x⊥ = x⊥S/K⊥R4

, P ∈ DR4R5
, (A 9f)

x‖ = x‖R5
/K3

⊥R5
+ LR5P , x⊥ = x⊥S/(K⊥R4

K⊥R5
), P ∈ DR5R6

, (A 9g)

x‖ = x‖R6
K3

⊥R5
+ LR6P , x⊥ = x⊥S/K⊥R4

, P ∈ DR6R7
, (A 9h)

where x‖i in the last seven directed segments is defined as before. If we define the following
formula

Lb = 2LR7R0
+ 2LR0R1

+ LR1R2
K3

⊥R1
+ 2LR4R5

K3
⊥R4

+ LR5R6
K3

⊥R4
K3

⊥R5
, (A 10)

the one-cycle distance can be expressed for every directed segment as

L = Lb, P ∈ DR7R0
, DR0R1

, DR2R3
, DR3R4

, (A 11a)

L = Lb/K
3
⊥R1

, P ∈ DR1R2
, (A 11b)

L = Lb/K
3
⊥R4

, P ∈ DR4R5
, DR6R7

(A 11c)

L = Lb/(K
3
⊥R4

K3
⊥R5

), P ∈ DR5R6
. (A 11d)

It is worth mentioning that although L and x‖ exhibit jumps as the ray is reflected
on boundaries, the ratio x‖/L does not. This ratio is a continuous increasing function
varying from 0 to 1 for Sa or from LSbR7

/Lb to LSbR7
/Lb + 1 for Sb over one cycle.

The local coordinates of P for the first five directed segments of the circuit generated
by Sb (A 9a-e) are the same as those of the circuit generated by Sa (A 4). As the two
sources Sa and Sb go to the critical latitude (x⊥S → 0) from opposite sides, the local
coordinates are continuous at the critical lines. In this limit, we also have the following
behaviors

LSaR0
∼ η, LR7R0

∼ η, LR4R5
∼ 1− η, LR5R6

→ 0, (A 12a)

K⊥R4
→ 0, K⊥R4

K⊥R5
∼ 1/η, (A 12b)

which guarantee that La (A 5) and Lb (A 10) converge towards each other. Thus, the
one-cycle distance is also continuous at x⊥ = 0 (ζ = 0). The same is also true for the
other geometry of η = 1/

√
2. This observation makes sure that the asymptotic solution is

continuous at the critical lines although the wave beam is split there. This is also justified
in the results of the section 3 where no jump is observed at ζ = 0 for the asymptotic
velocity profiles.
We then turn to the southward rays in the same geometry (η = 0.35). These rays

propagate along the same circuits as the northward rays but in the opposite direction.
Because the geometry and the circuits are symmetric with respect to the diagonal (r = z),
the southward rays exhibit the same contract/expansion processes on the outer core as the
northward rays. The lengths of the directed segments (A 2, A 7) are then unchanged, while
the ratios of perpendicular coordinates on the reflection points take the multiplicative
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inverse of those of northward rays (A 3, A 8). The one-cycle distances then satisfy the
same expressions (A 6, A 11). Finally, similar expressions for the local coordinates as (A 4,
A 9) can also be derived.
In the geometry of η = 1/

√
2, the relevant expressions for the circuit generated by Sb

(light blue line in figure 5b) are the same as those in the geometry of η = 0.35, while
those for the circuit generated by Sa (deep blue line in figure 5b) are different. However,
the two types of circuits in the geometry of η = 1/

√
2 actually take the same topology

but with different locations of sources. The northward ray generated by the source Sa

located at x⊥S can be treated as a southward ray generated by a ‘virtual’ source S′
b

located at the following position

x′
⊥S =

√

1− (η + x⊥S)2 − η. (A 13)

The real source Sa is moved backward to the ‘virtual’ source S′
b. The lengths of the

directed segments and ratios of perpendicular coordinates at the reflection points can
be obtained using this ‘virtual’ source S′

b. The same strategy can also be applied to
the southward ray generated by the source Sa, where it is treated as a northward ray
generated by the same ‘virtual’ source S′

b. Then the local coordinates and the one-cycle
distances can be built using the same approach as before.
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Noir, J., Cébron, D., Le Bars, M., Sauret, A. & Aurnou, J.M. 2012 Experimental study
of libration-driven zonal flows in non-axisymmetric containers. Phys. Earth Planet. Inter.
204, 1–10.

Noir, J., Hemmerlin, F., Wicht, J., Baca, S.M. & Aurnou, J.M. 2009 An experimental
and numerical study of librationally driven flow in planetary cores and subsurface oceans.
Phys. Earth Planet. Inter. 173 (1-2), 141–152.

Ogilvie, G. I. 2005 Wave attractors and the asymptotic dissipation rate of tidal disturbances.
J. Fluid Mech. 543, 19–44.

Ogilvie, G. I. 2009 Tidal dissipation in rotating fluid bodies: A simplified model. Mon. Not.
R. Astron. Soc. 396 (2), 794–806.

Phillips, O. M. 1966 The Dynamics of the Upper Ocean. Cambridge University Press.

Rieutord, M. 1987 Linear theory of rotating fluids using spherical harmonics part I: Steady
flows. Geophys. Astrophys. Fluid Dyn. 39 (3), 163–182.

Rieutord, M., Georgeot, B. & Valdettaro, L. 2001 Inertial waves in a rotating spherical
shell: Attractors and asymptotic spectrum. J. Fluid Mech. 435, 103–144.

Rieutord, M. & Valdettaro, L. 1997 Inertial waves in a rotating spherical shell. J. Fluid
Mech. 341, 77–99.

Rieutord, M. & Valdettaro, L. 2010 Viscous dissipation by tidally forced inertial modes in
a rotating spherical shell. J. Fluid Mech. 643, 363–394.

Rieutord, M. & Valdettaro, L. 2018 Axisymmetric inertial modes in a spherical shell at
low Ekman numbers. J. Fluid Mech. 844, 597–634.

Rieutord, M., Valdettaro, L. & Georgeot, B. 2002 Analysis of singular inertial modes in
a spherical shell: The slender toroidal shell model. J. Fluid Mech. 463, 345–360.

Stewartson, K. 1966 On almost rigid rotations. Part 2. J. Fluid Mech. 26 (01), 131.



Internal shear layers in a spherical shell 29

Thomas, N. H. & Stevenson, T. N. 1972 A similarity solution for viscous internal waves. J.
Fluid Mech. 54 (3), 495–506.

Thomas, P.C., Tajeddine, R., Tiscareno, M.S., Burns, J.A., Joseph, J., Loredo, T.J.,
Helfenstein, P. & Porco, C. 2016 Enceladus’s measured physical libration requires a
global subsurface ocean. Icarus 264, 37–47.

Walton, I. C. 1975a On waves in a thin rotating spherical shell of slightly viscous fluid.
Mathematika 22 (1), 46–59.

Walton, I. C. 1975b Viscous shear layers in an oscillating rotating fluid. Proc. R. Soc. Lond.
A 344 (1636), 101–110.


	Introduction
	Framework
	Basic equations
	Asymptotic theory
	Self-similar solution and scaling
	Reflections on the curved boundary and on the axis
	Asymptotic solution in a bounded domain

	Numerical method

	Bulk solution
	Aspect ratio Lg
	Aspect ratio Lg

	Solution close to the axis
	Asymptotic theory
	Comparison with numerical results

	Conclusion
	Appendix A

