
HAL Id: hal-03352684
https://hal.science/hal-03352684v1

Preprint submitted on 23 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DisTop: Discovering a Topological representation to
learn diverse and rewarding skills

Arthur Aubret, Laetitia Matignon, Salima Hassas

To cite this version:
Arthur Aubret, Laetitia Matignon, Salima Hassas. DisTop: Discovering a Topological representation
to learn diverse and rewarding skills. 2021. �hal-03352684�

https://hal.science/hal-03352684v1
https://hal.archives-ouvertes.fr

DisTop: Discovering a Topological representation to
learn diverse and rewarding skills

Arthur Aubret, Laetitia Matignon, Salima Hassas
Univ Lyon, Université Lyon 1, CNRS, LIRIS F-69622

Villeurbanne, France
{firstname.lastname}@univ-lyon1.fr

Abstract

An efficient way for a deep reinforcement learning (DRL) agent to explore can
be to learn a set of skills that achieves a uniform distribution of states. Following
this, we introduce DisTop, a new model that simultaneously learns diverse skills
and focuses on improving rewarding skills. DisTop progressively builds a discrete
topology of the environment using an unsupervised contrastive loss, a growing
network and a goal-conditioned policy. Using this topology, a state-independent
hierarchical policy can select where the agent has to keep discovering skills in
the state space and explicitly forget skills unrelated to tasks. In turn, the new set
of visited states allows an improved learnt representation and the learning loop
continues. Our experiments emphasize that DisTop is agnostic to the ground state
representation and that the agent can discover the topology of its environment
whether the states are high-dimensional binary data, images, or proprioceptive
inputs. We demonstrate that this paradigm is competitive on MuJoCo benchmarks
with state-of-the-art algorithms on both single-task dense rewards and diverse skill
discovery. By combining these two aspects, we show that DisTop outperforms a
state-of-the-art hierarchical reinforcement learning (HRL) algorithm when rewards
are sparse. We believe DisTop opens new perspectives by showing that bottom-up
skill discovery combined with representation learning can tackle different hard
reward settings.

1 Introduction

In reinforcement learning (RL), an autonomous agent learns to solve a task by interacting with its
environment [63] thus receiving a reward that has to be hand-engineered by an expert to efficiently
guide the agent. However, when the reward is sparse or not available, the agent keeps having an
erratic behavior.

This issue partially motivated methods where an agent hierarchically commits to a temporally
extended behavior named skills [5] or options [64], thus avoiding erratic behaviors and easing the
exploration of the environment [42, 4]. While it is possible to learn hierarchical skills with an extrinsic
(i.e task-specific) reward [6, 55], it does not fully address the exploration issue. In contrast, if an
agent learns skills in a bottom-up way with intrinsic rewards, it makes the skills task-independent
[4]: they are learnt without access to an extrinsic reward. It follows that, to explore without extrinsic
rewards, the intrinsic objective of an agent may be to acquire a large and diverse repertoire of skills.
Such paradigm contrasts with the way prediction-based [13] or count-based [8] methods explore [4]
since their inability to return to the frontier of their knowledge can make their exploration collapse
[20]. Previous approaches [47, 53, 22] manage to learn a large set of different skills, yet they are
learnt during a developmental period [44], which is just an unsupervised pre-training phase.

Preprint. Under review.

These approaches based on a pre-training phase are incompatible with a continual learning framework
where the agent has to discover increasingly complex skills according to sequentially given tasks
[61, 51]. Ideally, a continually learning agent should learn new diverse skills by default, and focus
on extrinsically rewarding skills when it gets extrinsic rewards [52, 5]. It would make exploration
very efficient since diverse skill learning can maximize the state entropy [31, 54]. To follow such
principle, we assume that the agent should not focus on what to learn, as commonly done in RL, but
rather on where to learn in its environment. Thus the agent should learn a representation of states
that keeps the structure of the environment to be able to select where it is worth learning, instead of
learning a representation that fits a wanted behavior which is most of the time unknown.

In this paper, we introduce a new way to learn a goal space and select the goals, keeping the
learning process end-to-end. We propose a new model that progressively Discovers a Topological
representation (DisTop) of the environment. DisTop bridges the gap between acquiring skills that
reach a uniform distribution of terminal embedded states and solving a task. It makes diversity-
based skill learning suitable for end-to-end exploration in a single-task setting irrespective of
the ground state space. DisTop simultaneously optimizes three components: 1- it learns a continuous
representation of its states using a contrastive loss that brings together consecutive states; 2- this
representation allows the building of a discrete topology of the environment with a new variation of a
Growing When Required network [43]. Using the clusters of the topology, DisTop can sample from
an almost-arbitrary distribution of visited embedded states using a very small set of parameters; 3-
it trains a goal-conditioned deep RL policy to reach embedded states. Upon these 3 components, a
hierarchical state-independent Boltzmann policy selects the cluster of skills to improve according to
an extrinsic reward and a diversity-based intrinsic reward.

We show, through DisTop, that the paradigm of choosing where to learn and what to forget using
a learnt discrete topology is more generic than previous approaches. Our contribution is 4-folds:
1- we visualize the representation learnt by DisTop and exhibit that, unlike previous approaches
[54], DisTop is agnostic to the shape of the ground state space and works with states being images,
high-dimensional proprioceptive data or high-dimensional binary data; 2- we demonstrate that
DisTop clearly outperforms ELSIM, a recent method that shares similar properties [5]; 3- we show
that DisTop achieves similar performance with state-of-the-art (SOTA) algorithms on both single-task
dense rewards settings [29] and multi-skills learning benchmarks [54]; 4- we show that it improves
exploration over state-of-the-art hierarchical methods on hard hierarchical benchmarks.

2 Background

2.1 Goal-conditioned reinforcement learning for skill discovery

In episodic RL, the problem is modelled with a Markov Decision Process (MDP). An agent can
interact with an unknown environment in the following way: the agent gets a state s0 ∈ S that
follows an initial state distribution ρ0(s). Its policy π selects actions a ∈ A to execute depending
on its current state s ∈ S, aexecute ∼ π(a|s). Then, a new state is returned according to transition
dynamics distribution s′ ∼ p(s′|s, a). The agent repeats the procedure until it reaches a particular
state or exceeds a fixed number of steps T . This loop is called an episode. An agent tries to adapt π
to maximize the expected cumulative discounted reward Eπ

[∑T
t=0 γ

tR(st−1, at−1, st)
]

where γ is
the discount factor. The policy πθ can be approximated with a neural network parameterized by θ
[29]. In our case, the agent tries to learn skills, defined as a policy that tries to target a state (which
we name goal). To this end, it autonomously computes an intrinsic reward according to the chosen
skill [4]. The intrinsic reward is approximated through parameters ω. Following Universal Value
Function Approximators [58], the intrinsic reward and the skill’s policy become dependent on the
chosen goal g: rgt = Rω(st−1, at−1, st, gt) and πgθ (s) = πθ(s, g). Hindsight Experience Replay [3]
is used to recompute the intrinsic reward to learn on arbitrary skills.

In particular, Skew-Fit [54] strives to learn goal-conditioned policies that visit a maximal entropy of
states. To generate goal-states with high entropy, they learn a generative model that incrementally
increases the entropy of generated goals and makes visited states progressively tend towards a
uniform distribution. Assuming a parameterized generative model qψ(s) is available, an agent
would like to learn ψ to maximize the log-likelihood of the state distribution according to a uniform
distribution: Es∼U(S) log qψ(s). But sampling from the uniform distribution U(S) is hard since the
set of reachable states is unknown. Skew-Fit uses importance sampling and approximates the true

2

OEGN
clustering

1
2

3

4

1
2

3

4

1 2

3 4

Figure 1: Illustration of a learning step of our growing network and contrastive loss (cf. text).
Cylinders are buffers associated to each cluster, blue circles are states embedded with φ and pink
circles represent clusters. The image is an example of state in the Visual Door[47] environment.

ratio with a skewed distribution of the generative model qψ(s)αskew where αskew < 0. This way, it
maximizes Es∼Buffer qψ(s)αskew log qψ(s) where s are uniformly sampled from the buffer of the
agent. αskew defines the importance given to low-density states; if αskew = 0, the distribution will
stay similar, if αskew = −1, it strongly over-weights low-density states to approximate U(S). In
practice, they show that directly sampling states s ∼ 1

Z qψ(s)
αskew , with Z being the normalization

constant reduces the variance.

2.2 Contrastive learning and InfoNCE

Contrastive learning aims at discovering a similarity metric between data points [17]. First, positive
pairs that represent similar data and fake negative pairs are built. Second they are given to an algorithm
that computes a data representation able to discriminate the positive from the negative ones. InfoNCE
[49] proposed to build positive pairs from states that belong to the same trajectory, making the process
scale to all input representations. The negative pairs are built with states randomly sampled. For a
sampled trajectory, they build a set B that concatenates N − 1 negative states and a positive one st+p.
Then, they maximize LNInfoNCE = −EB

[
log

fp(st+p,vt)∑
sj∈B fp(sj ,vt)

]
where vt represents an aggregation

of previous states learnt with an autoregressive model, p indicates the additional number of steps
needed to select the positive sample and fp are positive similarity functions. The numerator brings
together states that are part of the same trajectory and the denominator pushes away negative pairs.
InfoNCE maximizes a lower bound of the mutual information I(vt, st+p).

3 Method

We propose to redefine the interest of an agent so that its default behavior is to learn skills that achieve
a uniform distribution of terminal states while focusing its skill discovery in extrinsically rewarding
areas when a task is provided. If the agent understands the true intrinsic environment structure and
can execute the skills that navigate in the environment, a hierarchical policy would just have to select
the state to target and to call for the corresponding skill. However, it is difficult to learn both skills
and the structure. First the ground representation of states may give no clue of this structure and may
be high-dimensional. Second, the agent has to autonomously discover new reachable states. Third,
the agent must be able to easily sample goals where it wants to learn.

DisTop tackles theses challenges by executing skills that target low-density or previously rewarding
visited states in a learnt topological representation. Figure 1 illustrates how DisTop learns a topological
representation. It samples an interaction (sprev, a, s, sg) from different buffers (see below), where sg
is the original goal-state, and embeds the associated observations with a neural network φω . Then, φω
is trained with the contrastive loss that guarantees the proximity between consecutive states (cf. §3.1).
This makes the embeddings of states reflect the topology of the environment, which is important to
make the next step meaningful. After that, our growing network dynamically clusters the embedded
states in order to uniformly cover the embedded state distribution (cf. §3.1). DisTop approximates
the probability density of visiting a state with the probability of visiting its cluster (cf. §3.2). Then, it
assigns buffers to clusters, and can sample goal-states or states with almost-arbitrary density over the
support of visited states, e.g the uniform or reward-weighted ones (cf. §3.2).

At the beginning of each episode, a state-independent Boltzmann policy πhigh selects a cluster;
then a state s is selected that belongs to the buffer of the selected cluster and finally compute its
representation g = φω′(s) where weights ω′ are a slow exponential moving average of ω (see §3.2).
A goal-conditioned policy πgθ , trained to reach g, acts in the environment and discovers new reachable

3

states close to its goal. The interactions made by the policy are stored in a buffer according to their
initial objective and the embedding of the reached state.

3.1 Learning the topology of the states

In order to learn the discrete topology of the known states, the agent passes through two steps: 1- it
learns a continuous representation of states undistorted with respect to the environment dynamics; 2-
it discretizes this representation and tracks the changes.

Learning an undistorted continuous representation. DisTop strives to learn a state represen-
tation φω that reflects the topology of its environment. We propose to maximize the constrained
mutual information between the consecutive states resulting from the interactions of an agent. To do
this, DisTop takes advantage of the InfoNCE loss (cf. §2.2). In contrast with previous approaches
[40, 49, 39], we do not consider the whole sequence of interactions since this makes it more dependent
on the policy. Typically, a constant and deterministic policy would lose the structure of the environ-
ment and could emerge once the agent has converged to an optimal deterministic policy. DisTop con-
siders its local variant and builds positive pairs with only two consecutive states. This way, it keeps
distinct the states that cannot be consecutive and it more accurately matches the topology of the
environment. We propose to select our similarity function as fω(st, st+1) = e−k||φω(st)−φω(st+1)||2

where φω is a neural network parameterized by ω, ||2 is the L2 norm and k is a temperature hyper-
parameter [15]. If B is a batch of N different consecutive pairs, the local InfoNCE objective,
LInfoNCE, is described by eq. 1 (cf. Appendix C).

LLInfoNCE = E
(st,st+1)∈B

[
log

fω(st, st+1)∑
s∈B fω(st, s)

]
≥ E

(st,st+1)∈B

[
− k||φω(st)− φω(st+1)||2 − log(1 +

∑
s∈Bs 6=st+1

fω(s, st+1))
]

(1)

We introduce the lower bound since it stabilizes the learning process. Intuitively, eq. 1 brings together
consecutive states, and pushes away states that are separated by a large number of actions(see second
step of Figure 1). There are several drawbacks with this objective function. Firstly, the representation
may still be strongly distorted, making a clustering algorithm inefficient since the pushing away term
(right-hand term) can override the other one. Secondly, the DRL algorithm requires semantically
stable inputs to compute Q-values: if the representation of its goals quickly changes, it can not take
into account the changes and may output bad approximations of Q-values. To tackle these issues,
eq. 2 reformulates the objective as a constrained maximization. Firstly, DisTop forces the distance
between consecutive states to be below a threshold δ (first constraint of eq. 2). Secondly, it enforces
our representation to stay consistent over time, i.e lower than a close to 0 constant ε(second constraint
of eq. 2). In consequence, we avoid using a hand-engineered environment-specific scheduling [54]
and update representations in an online fashion.

max
ω

E
(st+1)∈B

− log(1 +
∑
s∈B

fω(s, st+1)) s.t. E
(st,st+1)∈B

||φω(st)− φω(st+1)||2 ≤ δ

E
st+1∈B

||φω(st+1)− φω′(st+1)||22 = 0
(2)

Transforming the constraints into penalties, the agent maximizes eq. 3. kc is the temperature hyper-
parameter that brings closer consecutive states, β is the coefficient that slows down the speed of
change of the representation. In practice we set kc > 1 to avoid distortions (cf. §A).

LDisTop = E
(st,st+1)∈B

[
− kc(ReLU(||φω(st)− φω(st+1)||2 − δ))− log(1 +

∑
s∈B

fω(s, st+1))

− β||φω(st+1)− φω′(st+1)||22
]
≤ ε (3)

4

By applying this objective function, DisTop learns a consistent, not distorted representation that
keeps close consecutive states while avoiding collapse (see Figure 2 for an example). In fact, by
increasing kc and/or k, one can select the level of distortion of the representation (cf. Appendix A for
an analysis). One can notice that the function depends on the distribution of consecutive states in B;
we experimentally found that using tuples (st, st+1) from sufficiently stochastic policy is enough
to keep the representation stable. We discuss the distribution of states that feed B in §3.3. In the
following, we will study how DisTop takes advantage of this specific representation to sample diverse
or rewarding state-goals.

Mapping the continuous topology to a discrete one learning the goal-conditioned and the repre-
sentation (cf. §3.3). We first give the working principle before explaining how we define the skewed
distribution and sample from it.

Since our representation strives to avoid distortion by keeping close consecutive states, DisTop can
match the topology of the embedded environment by clustering the embedded states. Using this
topology, the next Section will detail how to bias the goal and state sampling procedure to favor
exploration and the maximization of an extrinsic reward.

In order to adapt the building process to temporally-related and goal-related interactions, we adapt
the GWQ and propose the Off-policy Embedded Growing Network (OEGN). OEGN dynamically
creates, moves and deletes clusters so that clusters generates a network that uniformly cover the
whole set of embedded states, independently of their density; this is illustrated in the two last steps of
Figure 1. Each node (or cluster) c ∈ C has a reference vector wc which represents its position in the
input space. The update operators make sure that all embedded states s are within a ball centered
on the center of its cluster, i.e minc (φω(s)-wc)

>(φω(s)-wc) ≤ δnew where δnew is the radius of the
ball and the threshold for creating clusters. δnew is particularly important since it is responsible of
the granularity of the clustering: if it is low, we will have a lot of small clusters, else we will obtain
few large clusters that badly approximate the topology. The algorithm works as follows: assuming
a new low-density embedded state is discovered, there are two possibilities: 1- the balls currently
overlap: OEGN progressively moves the clusters closer to the new state and reduces overlapping; 2-
the clusters almost do not overlap and OEGN creates a new cluster next to the embedded state. A
learnt discrete topology can be visualized at the far right of Figure 2. Details about OEGN can be
found in §B.

3.2 Selecting novel or rewarding skills

While sampling low-density or rewarding states is attractive to solve a task, it is not easy to sample
new reachable goals. For instance, using an embedding space R10, the topology of the environment
may only exploit a small part of it, making most of the goals pointless. Similarly to previous works
[66], DisTop generates goals by sampling previously visited states. To sample the states, DisTop first
samples a cluster, and then samples a state that belongs to the cluster.

Building a skewed distribution To sample more often low-density embedded states, we assume
that the density of a visited state is reflected by the marginal probability of its cluster. So we
approximate the density of a state with the density parameterized byw, reference vector of e = φω′(s):
qw(e) ≈ count(ce)∑

c′∈C count(c
′) where count(ce) denotes the number of interactions that belong to the

cluster that contains e. Using this approximation, we skew the distribution very efficiently by first
sampling a cluster with the probability given by pαskew(c) =

count(c)1+αskew∑
c′∈C count(c

′)1+αskew
where αskew is

the skewed parameter (cf. §2).

While our approximation qw(s) decreases the quality of our skewed objective, it makes our algorithm
very efficient: we associate a buffer to each cluster and only weight the distribution of clusters;
DisTop does not weight each visited state [54], but only a limited set of clusters. In practice we can
trade-off the bias and the instability of OEGN by decreasing δnew: the smaller the clusters are, the
smaller the bias is, but the more unstable are OEGN and the sampling distribution. So, in contrast
with Skew-Fit, we do not need to compute the approximated density of each state, we just need to
keep states in the buffer of their closest node. In practice, we associate to each node a second buffer
that takes in interactions according to the proximity of the original goal with respect to the node.
This results in two sets of buffers: BG and BS to respectively sample goal-states and states with the

5

skewed distribution. Formally, in BS , DisTop selects the cluster argminc∈C ||φ(s) − c||2; in BG,
DisTop selects the cluster argminc∈C ||φ(sg)− c||2.

In the next sections, we will detail how we use this skewed distribution over BG and BS for sampling
low-density goal-states (§3.2) and sampling learning interactions (§3.3).

Sampling from a skewed distribution

Sampling a cluster: To increase the entropy of states, DisTop samples goal-states with the skewed
distribution defined in §3.1 that can be reformulated as:

pαskew(c) =
e(1+αskew) log count(c)∑

c′∈C e
(1+αskew) log count(c′)

(4)

It is equivalent to sampling with a simple Boltzmann policy πhigh, using a novelty bonus reward
log count(c) and a fixed temperature parameter 1 + αskew. In practice, we can use a different α′skew
than in §3.1 to trade-off the importance of the novelty reward in comparison with an extrinsic reward
(see below) or decrease the speed at which we gather low-density states [54].

We can add a second reward to modify our skewed policy πhigh so as to take into consideration
extrinsic rewards. We associate to a cluster c ∈ C a value rc that represents the mean average
extrinsic rewards received by the skills associated to its goals :

rc = E
s∈c,g=φω(s)

1

T

T∑
t=0

E
at∼πgθ (·|st),st+1∼p(·|st,at)

R(st, at, st+1). (5)

The extrinsic value of a cluster Rextc is updated with an exponential moving average Rextc =
(1−αc)∗Rextc +αc ∗ rc where αc is the learning rate. To favours exploration, we can also update the
extrinsic value of the cluster’s neighbors with a slower learning rate (cf. Appendix D). Our sampling
rule can then be :

πhigh(c) = softmaxC(textRextc + (1 + α′skew) log count(c)) (6)

Sampling a state: Once the cluster is selected, we keep exploring independently of the presence
of extrinsic rewards. To approximate a uniform distribution over visited states that belongs to the
cluster, DisTop samples a vector in the ball of radius δnew that surrounds the center of its cluster. It
rejects the vector and samples another one if it does not belong to the cluster. Finally, it selects the
closest embedded state to the random vector and extracts the corresponding interaction. For example,
one can imagine a ball with 100 states close to the center of the ball and two states on its surface;
with a random sampling system, the agent would give priority to states close to the center. In contrast,
by computing the state that is the closest to a uniformly sampled point in the ball, our preliminary
experiments suggested it increases the uniformity of selection inside the ball and favors exploration.

3.3 Training goal-conditioned policies

We now briefly introduce the few mechanisms used to efficiently learn the goal-conditioned policies.
In consequence, we avoid using a hand-engineered environment-specific scheduling [54]. Our
implementation of the goal-conditioned policy is trained with Soft Actor-Critic (SAC)[29] and the
reward is the L2 distance between the state and the goal in the learnt representation. In practice, our
goal-conditioned policy πθ needs a uniform distribution of goals to avoid forgetting previously learnt
skills. Our representation function φω requires a uniform distribution over visited states to quickly
learn the representation of novel areas. In consequence, DisTop samples a cluster c ∼ pαskew and
randomly takes half of the interactions from BG and the rest from BS . We can also sample a ratio of
clusters with πhigh if we do not care about forgetting skills (cf. Appendix A). θ, ω and w are learnt
over the same mini-batch and we relabel the goals extracted from BS (cf. Appendix D).

4 Experiments

Our experiments aim at studying whether the ability of DisTopto select skills to learn and forget
makes the approach generic to different task settings. We compare DisTopto three SOTA algorithms

6

Figure 2: Visualization of the representations learnt by a VAE and DisTopon the environment
displayed at the far left. From left to right, we respectively see a- the rendering of the maze;
b- the continuous representation learnt by DisTop with 900-dimensional binary inputs; c- a VAE
representation with true (x,y) coordinates; d- a VAE representation with 900-dimensional binary
inputs; e- OEGN network learnt from binary inputs.

on three kinds of tasks with very different ground state spaces, thereby we compare DisTop to: the
SOTA algorithm SAC [29] on dense rewards task; the SOTA algorithm Skew-Fit [53] on no-rewards
task; SAC and the SOTA algorithm LESSON [39] on sparse rewards task. We also compare DisTop
to ELSIM, which follows the same paradigm than ours, on the ability to explore the environment
and solve a dense-reward task. That is unclear to us how to fairly adapt Skew-fit to solve a particular
task and we can not assess the skills diversity of SAC since it does not learn skills. Similarly,
LESSON requires a task to learn skills and it explores with hierarchical random walk, making a fair
comparison unrelevant in no/dense-rewards task. We also compare the learnt representation with the
representation learnt by a VAE to exhibit its properties.

All curves are a smooth averaged over 5 seeds, completed with a shaded area that represent the
mean +/- the standard deviation over seeds. Used hyper-parameters are described in Appendix
E, environments and evaluation protocols details are given in Appendix F. Videos and images are
available in Appendix H.

Is DisTop able to learn diverse skills without rewards ? We assess the diversity of learnt skills
on two robotic tasks Visual Pusher (a robotic arm moves in 2D and eventually pushes a puck)
and Visual Door (a robotic arm moves in 3D and can open a door) [47]. These environments are
particularly challenging since the agent has to learn skill from 48x48 images using continuous actions
without accessing extrinsic rewards. We compare to the SOTA algorithm Skew-Fit [53], which
skews the goal distribution in ground the state space with a VAE [33] and periodically updates its
representation. We use the same evaluation protocol than Skew-Fit: a set of images are sampled,
given to the representation function and the goal-conditioned policy executes the skill. In Figure 3,
we observe that skills of DisTop are learnt quicker on Visual Pusher but are slightly worst on Visual
Door. Since both Skew-Fit and DisTop generates rewards with the L2 distance, we hypothesize that
this is due to the structure of the learnt goal space. In practice we observed that DisTop is more
stochastic than Skew-Fit, probably because the intrinsic reward function is required to be smooth over
consecutive states. It results that a one-step complete change of the door angle creates a small change
in the representation, thereby a small negative intrinsic reward. Despite the stochasticity, it is able
to reach the goal as evidenced by the minimal distance reached through the episode (Distop(min)).
Stochasticity does not bother the evaluation on Visual Pusher since the arm moves elsewhere after
pushing the puck in the right position. Therefore, DisTop manages to learn diverse skills, but may
more or less fluctuate according to the overall proximity of states.

Does DisTop discover the environment topology even though the ground state space is unstruc-
tured ? In this experiment, we analyze the representation learnt by a standard Variational Auto
Encoder (VAE) and DisTop. To make sure that the best representation is visualizable, we adapted
the gym-minigrid environment [16] (cf. Figure 2) where a randomly initialized agent moves for
fifty timesteps in the four cardinal directions. Each observation is either a 900-dimensional one-hot
vector with 1 at the position of the agent (binary) or the (x,y) coordinates of the agent. Interactions
are given to the representation learning algorithm. Except for OEGN, we display as a node the
learnt representation of each possible state and connect states that are reachable in one step. In
Figure 2, we clearly see that DisTop is able to discover the topology of its environment since each
connected points are distinct but close with each other. In contrast, the VAE representation collapses

7

0.0

0.1

0.2

0.3

0.4

0.5

0.02 0.04 0.06 0.08
million steps

av
er

ag
e

di
st

an
ce

DISTOP
DISTOP(min)
SKEWFIT

Visual Door

0.025

0.050

0.075

0.100

0.125

0.0 0.1 0.2 0.3 0.4
million steps

Visual Pusher

0

5

10

0.0 0.5 1.0
million steps

av
er

ag
e

re
w

ar
d

DISTOP
ELSIM
SAC

Halfcheetah

0

2

4

6

8

0.0 0.5 1.0 1.5 2.0
million steps

Ant

Figure 3: Left: Comparison of DisTop and Skew-Fit on their ability to reach diverse states. In the Vi-
sual Pusher environment, we compare the final distance of the position puck with its desired position;
in the door environment, we compare the angle of the door with the desired angle. DisTop(min) is the
minimal distance reached through evaluation episode. At each evaluation iteration, the distances are
averaged over fifty goals. Right: Average rewards gathered throughout episodes of 300 steps while
training on Halfcheetah-v2 and Ant-v2 environments.

Figure 4: Left: Average rewards throughout training episodes. Right: Top view of Ant Maze
environment with its goal position and, to its right, an example of OEGN network learnt by DisTop.
Small green points represent selected goal-states.

since it cannot take advantage of the proximity of states in the ground state space; it only learns a
correct representation when it gets (x,y) positions, which are well-structured. This toy visualization
highlights that, unlike VAE-based models, DisTop does not depend on well-structured ground state
spaces to learn a suitable environment representation for learning skills.

Can DisTop solve non-hierarchical dense rewards tasks? We test DisTop on MuJoCo environ-
ments Halfcheetah-v2 and Ant-v2 [65], where the agent gets rewards to move forward as fast as
possible. We fix the maximal number of timesteps to 300. We compare DisTop to our implementation
of SAC[29] and to ELSIM [5], a method that follows the same paradigm than DisTop (see §5). We
obtain better results than in the original ELSIM paper using similar hyper-parameters to DisTop. In
Figure 3 (Right), we observe that DisTop obtains high extrinsic rewards and clearly outperforms
ELSIM. It also outperforms SAC on Halfcheetah-v2 and is close to SAC on Ant-v2. In contrast, we
highlight that SAC overfits to dense rewards settings and cannot learn in sparse or no-reward settings
(see below). Despite the genericity of DisTop and the narrowness of SAC, DisTop competes
with SAC on two of its favourite environments.

Does combining representation learning, entropy of states maximization and task-learning
improve exploration on high-dimensional hierarchical tasks ? We evaluate DisTop ability to
explore and optimize rewards on image-based versions of Ant Maze and Point Maze environments
[46]. The state is composed of a proprioceptive state of the agent and a top view of the maze
("Image"). Details about state and action spaces are given in Appendix F.2. In contrast with previous
methods [46, 39], we remove the implicit curriculum that changes the extrinsic goal across episodes;
here we train only on the farthest goal and use a sparse reward function. Thus, the agent gets a
non-negative reward only when it gets close to the top-right goal. We compare our method with
a SOTA hierarchical method, LESSON [39] since it performs well on hierarchical environments
like mazes, ELSIM and our implementation of SAC [29]. For ELSIM, LESSON and DisTop, we
only pass the "image" to the representation learning part of the algorithms, assuming that an agent
can separate its proprioceptive state from the sensorial state. In Figure 5, we can see that DisTop is

8

the only method that manages to regularly reach the goal; in fact, looking at a learnt 3D OEGN
network in Figure 4, we can see that it successfully represents the U-shape form of the maze and
sets goals close to the extrinsic goal. LESSON discovers the goal but does not learn to return to it1;
we hypothesize that this is because, unline DisTop it does maximize the entropy of states, and thus
hardly reach the goal. Neither SAC, nor ELSIM find the reward. We suppose that the undirected
width expansion of the tree of ELSIM does not maximize the state-entropy, making it spend too
much time in useless areas and thus inefficient for exploration. Therefore, DisTop outperforms
two hierarchical methods in two sparse rewards environment by priorizing its goal sampling
process on low-entropy areas.

5 Related works

Intrinsic skills in hierarchical RL Some works propose to learn hierarchical skills, but do not
introduce a default behavior that maximizes the visited state entropy [31], limiting the ability of an
agent to explore. For example, it is possible to learn skills that target a ground state or a change in
the ground state space [46, 38]. These approaches do not generalize well with high-dimensional
states. To address this, one may want to generate rewards with a learnt representation of goals.
NOR [45] bounds the sub-optimality of such representation to solve a task and LESSON [39] uses
a slow dynamic heuristic to learn the representation. In fact, it uses an InfoNCE-like objective
function; this is similar to [40] which learns the representation during pre-training with random walks.
DCO [32] generates options by approximating the second eigenfunction of the combinatorial graph
Laplacian of the MDP. It extends previous works [42, 7] to continuous state spaces. Above-mentioned
methods uses a hierarchical random walk to explore the environment, we have shown in §4 that
DisTop explores quicker by maximizing the entropy of states in its topological representation.

Intrinsic motivation to learn diverse skills. DisTop simultaneously learns skills, their goal rep-
resentation, and which skill to train on. It contrasts with several methods that exclusively focus on
selecting which skill to train on assuming a good goal representation is available [24, 18, 25, 70, 19].
They either select goals according to a curriculum defined with intermediate difficulty and the learning
progress [50] or by imagining new language-based goals [19]. In addition, DisTop strives to learn
either skills that are diverse or extrinsically rewarding. It differs from a set of prior methods that learn
only diverse skills during a pre-training phase, preventing exploration for end-to-end learning. Some
of them maximize the mutual information (MI) between a set of states and skills. Typically, DIAYN
[22], VALOR [1] and SNN [23] learn a discrete set of skills, but hardly generalize over skills. It has
been further extended to continuous set of skills, using a generative model [60] or successor features
[30, 12]. In both case, directly maximizing this MI may incite the agent to focus only on simple
skills [14]. DISCERN [66] maximizes the MI between a skill and the last state of an episode using a
contrastive loss. Unlike us, they use the true goal to generate positive pairs and a L2 distance over
pixels to define a strategy that improves the diversity of skills. In addition, unlike VAE-based models,
our method better scales to any ground state space (see §4). Typically, RIG [47] uses a VAE [33]
to compute a goal representation before training the goal-conditioned policies. Using a VAE, it is
possible to define a frontier with a reachability network, from which the agent should start stochastic
exploration [11]; but the gradual extension of the frontier is not automatically discovered, unlike
approaches that maximize the entropy of states (including DisTop). Skew-Fit [54] further extended
RIG to improve the diversity of learnt skills by making the VAE over-weight low-density states.
Unlike DisTop, it is unclear how Skew-Fit could target another distribution over states than a uniform
one. Approaches based on learning progress (LP) have already been built over VAEs [35, 36]; we
believe that DisTop could make use of LP to avoid distractors or further improve skill selection.

Skill discovery for end-to-end exploration. Like DisTop, ELSIM [5] discovers diverse and re-
warding skills in an end-to-end way. It builds a tree of skills and selects the branch to improve with
extrinsic rewards. DisTop outperforms ELSIM for both dense and sparse-rewards settings (cf. §4).
This end-to-end setting has also been experimented through multi-goal distribution matching [52, 37]
where the agent tries to reduce the difference between the density of visited states and a given distri-
bution (with high-density in rewarding areas). Yet, either they approximate a distribution over the
ground state space [37] or assume a well-structured state representation [52]. Similar well-structured
goal space is assumed when an agent maximizes the reward-weighted entropy of goals [71].

1In Point Maze, the best seed of LESSON returns to the goal after 5 millions timesteps

9

Dynamic-aware representations. A set of RL methods try to learn a topological map without
addressing the problem of discovering new and rewarding skills. Some methods [56, 57, 21]
consider a topological map over direct observations, but to give flat intrinsic rewards or make
planning possible. We emphasize that SFA-GWR-HRL [72] hierarchically takes advantage of a
topological map built with two GWQ placed over two Slow Feature Analysis algorithms [67]; it
is unclear whether it can be applied to other environments than their robotic setting. Functional
dynamic-aware representations can be discovered by making the distance between two states match
the expected difference of trajectories to go to the two states [27]; interestingly, they exhibit the
interest of topological representations for HRL and propose to use a fix number of clusters to create
goals. Previous work also showed that an active dynamic-aware search of independent factors
can disentangle the controllable aspects of an environment [9]. Other methods take advantage of
temporal contrastive losses for other functional uses; therefore, unlike DisTop, they do not try to
learn a topology of the environment by preventing the distortion of the representation. For example,
successor representations [32, 68] orthogonalize the features of the representation and standard
temporal contrastive losses use the representation for imitation [59], end-to-end task solving [2, 62]
or flat exploration [69, 28].

6 Conclusion

We introduced a new model, DisTop, that simultaneously learns a discrete topology of its environment
and the skills that navigate into it. In contrast with previous approaches [52, 53], there is no pre-
training, particular scheduling [53] or random walks [41]. It manages to select whether it wants to
forget a skill, does not need a well-structured goal space like [52] or dense rewards as required by
[39]. Our main take-away message is as follow: computing a discrete topology of the environment
allows to control which skills to forget, improve or explore. With this control capacity, DisTop
is generic enough to compete with SOTA algorithms on three very different reward settings
and state spaces. Yet, there are limitations and exciting perspectives: HRL and planning based
approaches [48] could both take advantage of the topology and make easier states discovery; Frontier-
based exploration [11] could also be explored to reduce skill stochasticity. Disentangling the topology
[10] could improve the scalability of the approach: currently, the number of created cluster may
exponentially grow with respect to the number of independent factors.

References

[1] Achiam, J., Edwards, H., Amodei, D., Abbeel, P.: Variational option discovery algorithms.
CoRR abs/1807.10299 (2018)

[2] Anand, A., Racah, E., Ozair, S., Bengio, Y., Côté, M.A., Hjelm, R.D.: Unsupervised state
representation learning in atari. In: Proceedings of the 33rd International Conference on Neural
Information Processing Systems. pp. 8769–8782 (2019)

[3] Andrychowicz, M., Crow, D., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin,
J., Abbeel, P., Zaremba, W.: Hindsight experience replay. In: Annual Conference on Neural
Information Processing Systems. pp. 5048–5058 (2017)

[4] Aubret, A., Matignon, L., Hassas, S.: A survey on intrinsic motivation in reinforcement learning.
arXiv preprint arXiv:1908.06976 (2019)

[5] Aubret, A., Matignon, L., Hassas, S.: ELSIM: end-to-end learning of reusable skills through in-
trinsic motivation. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) Machine Learning and
Knowledge Discovery in Databases - European Conference, ECML PKDD 2020, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 12458, pp. 541–556. Springer (2020)

[6] Bacon, P.L., Harb, J., Precup, D.: The option-critic architecture. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 31 (2017)

[7] Bar, A., Talmon, R., Meir, R.: Option discovery in the absence of rewards with manifold
analysis. In: International Conference on Machine Learning. pp. 664–674. PMLR (2020)

[8] Bellemare, M.G., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., Munos, R.: Unifying
count-based exploration and intrinsic motivation. In: Lee, D.D., Sugiyama, M., von Luxburg, U.,
Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29: Annual

10

Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain. pp. 1471–1479 (2016)

[9] Bengio, E., Thomas, V., Pineau, J., Precup, D., Bengio, Y.: Independently controllable features.
CoRR abs/1703.07718 (2017)

[10] Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine intelligence 35(8), 1798–1828 (2013)

[11] Bharadhwaj, H., Garg, A., Shkurti, F.: Leaf: Latent exploration along the frontier. arXiv e-prints
pp. arXiv–2005 (2020)

[12] Borsa, D., Barreto, A., Quan, J., Mankowitz, D.J., van Hasselt, H., Munos, R., Silver, D., Schaul,
T.: Universal successor features approximators. In: 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net (2019)

[13] Burda, Y., Edwards, H., Pathak, D., Storkey, A.J., Darrell, T., Efros, A.A.: Large-scale study of
curiosity-driven learning. In: 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net (2019)

[14] Campos, V., Trott, A., Xiong, C., Socher, R., Giro-i Nieto, X., Torres, J.: Explore, discover and
learn: Unsupervised discovery of state-covering skills. In: International Conference on Machine
Learning. pp. 1317–1327. PMLR (2020)

[15] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning
of visual representations. In: International conference on machine learning. pp. 1597–1607.
PMLR (2020)

[16] Chevalier-Boisvert, M., Willems, L.: Minimalistic gridworld environment for openai gym.
https://github.com/maximecb/gym-minigrid (2018)

[17] Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with applica-
tion to face verification. In: 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05). vol. 1, pp. 539–546. IEEE (2005)

[18] Colas, C., Fournier, P., Sigaud, O., Oudeyer, P.: CURIOUS: intrinsically motivated multi-task,
multi-goal reinforcement learning. CoRR abs/1810.06284 (2018)

[19] Colas, C., Karch, T., Lair, N., Dussoux, J., Moulin-Frier, C., Dominey, P.F., Oudeyer, P.:
Language as a cognitive tool to imagine goals in curiosity driven exploration. In: Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual (2020)

[20] Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K.O., Clune, J.: First return, then explore. Nature
590(7847), 580–586 (2021)

[21] Eysenbach, B., Salakhutdinov, R., Levine, S.: Search on the replay buffer: Bridging planning
and reinforcement learning. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc,
F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada. pp. 15220–15231 (2019)

[22] Eysenbach, B., Gupta, A., Ibarz, J., Levine, S.: Diversity is all you need: Learning skills without
a reward function. In: 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net (2019)

[23] Florensa, C., Duan, Y., Abbeel, P.: Stochastic neural networks for hierarchical reinforcement
learning. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net (2017)

[24] Florensa, C., Held, D., Geng, X., Abbeel, P.: Automatic goal generation for reinforcement
learning agents. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018.
Proceedings of Machine Learning Research, vol. 80, pp. 1514–1523. PMLR (2018)

[25] Fournier, P., Colas, C., Chetouani, M., Sigaud, O.: Clic: Curriculum learning and imitation for
object control in non-rewarding environments. IEEE Transactions on Cognitive and Develop-
mental Systems (2019)

11

https://github.com/maximecb/gym-minigrid

[26] Fritzke, B., et al.: A growing neural gas network learns topologies. Advances in neural informa-
tion processing systems 7, 625–632 (1995)

[27] Ghosh, D., Gupta, A., Levine, S.: Learning actionable representations with goal conditioned
policies. In: 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net (2019), https://openreview.net/
forum?id=Hye9lnCct7

[28] Guo, Z.D., Azar, M.G., Saade, A., Thakoor, S., Piot, B., Pires, B.A., Valko, M., Mesnard, T.,
Lattimore, T., Munos, R.: Geometric entropic exploration. arXiv preprint arXiv:2101.02055
(2021)

[29] Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In: International Conference on Machine
Learning. pp. 1861–1870. PMLR (2018)

[30] Hansen, S., Dabney, W., Barreto, A., Warde-Farley, D., de Wiele, T.V., Mnih, V.: Fast task
inference with variational intrinsic successor features. In: 8th International Conference on Learn-
ing Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net
(2020)

[31] Hazan, E., Kakade, S., Singh, K., Van Soest, A.: Provably efficient maximum entropy explo-
ration. In: International Conference on Machine Learning. pp. 2681–2691. PMLR (2019)

[32] Jinnai, Y., Park, J.W., Machado, M.C., Konidaris, G.: Exploration in reinforcement learning
with deep covering options. In: International Conference on Learning Representations (2019)

[33] Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Bengio, Y., LeCun, Y. (eds.)
2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings (2014)

[34] Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480 (1990)
[35] Kovač, G., Laversanne-Finot, A., Oudeyer, P.Y.: Grimgep: learning progress for robust goal

sampling in visual deep reinforcement learning. arXiv preprint arXiv:2008.04388 (2020)
[36] Laversanne-Finot, A., Pere, A., Oudeyer, P.Y.: Curiosity driven exploration of learned disentan-

gled goal spaces. In: Conference on Robot Learning. pp. 487–504. PMLR (2018)
[37] Lee, L., Eysenbach, B., Parisotto, E., Xing, E.P., Levine, S., Salakhutdinov, R.: Efficient

exploration via state marginal matching. CoRR abs/1906.05274 (2019)
[38] Levy, A., Platt, R., Saenko, K.: Hierarchical reinforcement learning with hindsight. In: Interna-

tional Conference on Learning Representations (2019)
[39] Li, S., Zheng, L., Wang, J., Zhang, C.: Learning subgoal representations with slow dynamics. In:

International Conference on Learning Representations (2021), https://openreview.net/
forum?id=wxRwhSdORKG

[40] Lu, X., Tiomkin, S., Abbeel, P.: Predictive coding for boosting deep reinforcement learning
with sparse rewards. CoRR abs/1912.13414 (2019)

[41] Lu, X., Tiomkin, S., Abbeel, P.: Predictive coding for boosting deep reinforcement learning
with sparse rewards. CoRR abs/1912.13414 (2019)

[42] Machado, M.C., Bellemare, M.G., Bowling, M.H.: A laplacian framework for option discovery
in reinforcement learning. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017.
Proceedings of Machine Learning Research, vol. 70, pp. 2295–2304. PMLR (2017)

[43] Marsland, S., Shapiro, J., Nehmzow, U.: A self-organising network that grows when required.
Neural Networks 15(8-9), 1041–1058 (2002)

[44] Metzen, J.H., Kirchner, F.: Incremental learning of skill collections based on intrinsic motivation.
Frontiers in neurorobotics 7, 11 (2013)

[45] Nachum, O., Gu, S., Lee, H., Levine, S.: Near-optimal representation learning for hierarchical
reinforcement learning. arXiv preprint arXiv:1810.01257 (2018)

[46] Nachum, O., Gu, S.S., Lee, H., Levine, S.: Data-efficient hierarchical reinforcement learning.
In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 31, pp. 3303–3313 (2018)

12

https://openreview.net/forum?id=Hye9lnCct7
https://openreview.net/forum?id=Hye9lnCct7
https://openreview.net/forum?id=wxRwhSdORKG
https://openreview.net/forum?id=wxRwhSdORKG

[47] Nair, A., Pong, V., Dalal, M., Bahl, S., Lin, S., Levine, S.: Visual reinforcement learning with
imagined goals. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada. pp. 9209–9220 (2018)

[48] Nasiriany, S., Pong, V., Lin, S., Levine, S.: Planning with goal-conditioned policies. In: Wallach,
H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. pp.
14814–14825 (2019)

[49] van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding.
CoRR abs/1807.03748 (2018)

[50] Oudeyer, P.Y., Kaplan, F.: What is intrinsic motivation? a typology of computational approaches.
Frontiers in neurorobotics 1, 6 (2009)

[51] Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with
neural networks: A review. Neural Networks 113, 54–71 (2019)

[52] Pitis, S., Chan, H., Zhao, S., Stadie, B., Ba, J.: Maximum entropy gain exploration for long
horizon multi-goal reinforcement learning. In: International Conference on Machine Learning.
pp. 7750–7761. PMLR (2020)

[53] Pong, V., Dalal, M., Lin, S., Nair, A., Bahl, S., Levine, S.: Skew-fit: State-covering self-
supervised reinforcement learning. In: Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event. Proceedings of Machine
Learning Research, vol. 119, pp. 7783–7792. PMLR (2020)

[54] Pong, V., Dalal, M., Lin, S., Nair, A., Bahl, S., Levine, S.: Skew-fit: State-covering self-
supervised reinforcement learning. In: Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event. Proceedings of Machine
Learning Research, vol. 119, pp. 7783–7792. PMLR (2020)

[55] Riemer, M., Liu, M., Tesauro, G.: Learning abstract options. In: Bengio, S., Wallach, H.M.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Informa-
tion Processing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. pp. 10445–10455 (2018)

[56] Savinov, N., Dosovitskiy, A., Koltun, V.: Semi-parametric topological memory for navigation.
In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net (2018),
https://openreview.net/forum?id=SygwwGbRW

[57] Savinov, N., Raichuk, A., Vincent, D., Marinier, R., Pollefeys, M., Lillicrap, T.P., Gelly,
S.: Episodic curiosity through reachability. In: 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net (2019)

[58] Schaul, T., Horgan, D., Gregor, K., Silver, D.: Universal value function approximators. In:
International conference on machine learning. pp. 1312–1320. PMLR (2015)

[59] Sermanet, P., Lynch, C., Chebotar, Y., Hsu, J., Jang, E., Schaal, S., Levine, S., Brain, G.:
Time-contrastive networks: Self-supervised learning from video. In: 2018 IEEE international
conference on robotics and automation (ICRA). pp. 1134–1141. IEEE (2018)

[60] Sharma, A., Gu, S., Levine, S., Kumar, V., Hausman, K.: Dynamics-aware unsupervised
discovery of skills. In: 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net (2020)

[61] Silver, D.L., Yang, Q., Li, L.: Lifelong machine learning systems: Beyond learning algorithms.
In: Lifelong Machine Learning, Papers from the 2013 AAAI Spring Symposium, Palo Alto,
California, USA, March 25-27, 2013. AAAI Technical Report, vol. SS-13-05. AAAI (2013)

[62] Stooke, A., Lee, K., Abbeel, P., Laskin, M.: Decoupling representation learning from rein-
forcement learning. In: International Conference on Machine Learning. pp. 9870–9879. PMLR
(2021)

[63] Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction, vol. 1. MIT press Cam-
bridge (1998)

13

https://openreview.net/forum?id=SygwwGbRW

[64] Sutton, R.S., Precup, D., Singh, S.: Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence 112(1-2), 181–211 (1999)

[65] Todorov, E., Erez, T., Tassa, Y.: Mujoco: A physics engine for model-based control. In:
IEEE/RSJ IROS. pp. 5026–5033. IEEE (2012)

[66] Warde-Farley, D., de Wiele, T.V., Kulkarni, T.D., Ionescu, C., Hansen, S., Mnih, V.: Unsuper-
vised control through non-parametric discriminative rewards. In: 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net (2019)

[67] Wiskott, L., Sejnowski, T.J.: Slow feature analysis: Unsupervised learning of invariances.
Neural computation 14(4), 715–770 (2002)

[68] Wu, Y., Tucker, G., Nachum, O.: The laplacian in rl: Learning representations with efficient
approximations. In: International Conference on Learning Representations (2018)

[69] Yarats, D., Fergus, R., Lazaric, A., Pinto, L.: Reinforcement learning with prototypical repre-
sentations. arXiv preprint arXiv:2102.11271 (2021)

[70] Zhang, Y., Abbeel, P., Pinto, L.: Automatic curriculum learning through value disagreement.
Advances in Neural Information Processing Systems 33 (2020)

[71] Zhao, R., Sun, X., Tresp, V.: Maximum entropy-regularized multi-goal reinforcement learning.
In: International Conference on Machine Learning. pp. 7553–7562. PMLR (2019)

[72] Zhou, X., Bai, T., Gao, Y., Han, Y.: Vision-based robot navigation through combining unsuper-
vised learning and hierarchical reinforcement learning. Sensors 19(7), 1576 (2019)

14

A Ablation study

In this section, we study the impact of the different key hyper-parameters of DisTop. Except for paper
results (entitled "paper"), we average the results over 3 random seeds. For visualizations based on the
topology, the protocol is the same as the one described in §4. In addition, we select the most viewable
one among 3 learnt topologies; while we did not observe variance in our analysis through the seeds,
the 3D angle of rotation can bother our perception of the topology.

Details about maze experiments. Figure 5 shows the same experiments as in §4, but we duplicate
the graph to clearly see the curves of each method. For SAC, we use different experiments with
γ = 0.996 rather than γ = 0.99.

Controlling the distortion of the representation. The analysis of our objective function LDisTop
shares some similarities with standard works on contrastive learning [17]. However, we review it to
clarify the role of the representation with respect to the interactions, the reward function and OEGN.

In Figure 6, we study the influence of the distortion parameter kc that brings closer consecutive states
in LDisTop (cf. eq. 3). We can see that the distortion parameter kc rules the global dilatation of the
learnt representation. A low kc also increases the distortion of the representation, which may hurt
the quality of the clustering algorithm. kc competes with k, the temperature hyper-parameter of the
similarity function in eq. 3. As we can see in Figure 8, k rules the minimal allowed distance between
very different states. So, there is a trade-off between a low k that distorts the representation, and a
high k that allows different states to be close with each other. With a high k, the L2 rewards may
admit several local optimas.

In Figure 7, we see that the distortion threshold δ, which prevents consecutive embeddings to be equal
in eq. 3, also impacts the distortion of the representation, however it mostly limits the compression
of the representation in the areas the agent often interacts in. In the borders, the agent often hurts
the wall and stays in the same position. So in comparison with large rooms, the bring together is
less important than the move away part. δ limits such asymmetries and keeps large rooms dilated.
Overall, this asymmetry also occurs when the number of states increases due to the exploration of the
agent: the agent progressively compresses its representation since interesting negative samples are
less frequent.

The size of the clusters of OEGN has to match the distortion of the representation. Figure 9 emphasizes
the importance of the creation threshold parameter δnew that rules the radius of cluster in §3.1. With
a low δnew = 0.2, clusters do not move and a lot of clusters are created. OEGN waits a long time
to delete them. with a high δnew = 1, the approximation of the topology becomes very rough, and
states that belong to very different parts of the topology are classified in the same cluster; this hurts
our density approximation.

Selection of interactions: Figure 10 shows the importance of the different hyper-parameters that
rule the sampling of goals and states in §3.2. In Ant environment, we see that the agent has to
sample a small ratio of learning interactions from πhigh rather than pαskew ; it speeds up its learning
process by making it focus on important interactions relatively to extrinsic rewards. Otherwise, it
remains hard to learn all skills at the same time. However, the learning process becomes unstable if it
deterministically samples from a very small set of clusters (ratios 0.9 and 0.7).

Then we evaluate the importance of 1+α′skew on Visual Pusher. We see that the agent learns quicker
with a low 1 + α′skew. It hardly learns when the high-level policy almost does not over-sample
low-density clusters (−0.1). This makes our results consistent with the analysis provided in the paper
of Skew-Fit [53].

In the last two graphics of Figure 10, we show the impact of 1 + αskew; we observe that the agent
learns quicker when 1 + αskew is close to 0. It highlights that the agent quicker learns both a good
representation and novel skills by sampling uniformly over the clusters.

Overall, we also observe that some seeds become unstable since they coincide with large deletions of
clusters. We expect that an hyper-parameter search on the delete operators of OEGN may solve this
issue in these specific cases.

15

B OEGN and GWQ

Algorithm 1 Algorithm of OEGN (red) and GWQ (blue)
Initialize network with two random nodes, set theirs attributes to 0 and connect them.
for each learning iteration do

Sample a tuple si, ci, s
prev
i ← sample(B).

Embed states: ei ← φω′(si); e
prev
i ← φω′(sprevi)

Sample an input ei ← sample(B).
closest← minnodes(||nodes− ei||2).
Increase error count of ci by 1.
Reset error count of closest to 0
Apply DeleteOperator().
If a node is deleted, stop the learning iteration
Apply CreationOperator().
Apply MovingOperator().
Apply EdgeOperator().

end for

Several methods introduced unsupervised neural networks to learn a discrete representation of a
fixed input distribution [34, 26, 43]. The objective is to have clusters (or nodes) that cover the space
defined by the input points. Each node c ∈ C has a reference vector wc which represents its position
in the input space. We are interested in the Growing when required algorithm (GWQ) [43] since it
updates the structure of the network (creation and deletion of edges and nodes) and does not impose
a frequency of node addition. OEGN is an adaptation of GWQ; Algorithm 1 describes the major
steps of OEGN and GWQ. Operators and relative changes are described below. Specific operations
of OEGN are colored in red, the ones of GWQ in blue and the common parts are black. We define
e = φω′(s) and closest(e) = minc∈C(||c− e||2) for all s ∈ B.

Our modifications are made to 1- make the network aware of the dynamics and goals; 2- adapt the
network to the dynamically changing true distribution.

Delete operator: Delete ci if ci.error is above a threshold δerror to verify that the node is still
active; delete the less filled neighbors of two neighbors if their distance is below δprox to avoid too
much overlapping; check it has been selected ndel times before deleting it. Delete if a node does not
have edges anymore.

Both creation and moving operators: Check that the distance between the original goal gi and
the resulting embedding ||gi − ei||2 is below a threshold δsuccess.

Creation operator: Check if ||closest− ei||2 > δnew. Verify closest has already been selected
δcount times by the goal-selection policy. If the conditions are filled, a new node is created at the
position of the incoming input ei and it is connected to closest. Update a firing count of the winning
node and its neighbors and check it is below a threshold. A node is created halfway between the
winning node and the second closest node. The two winning nodes are connected to the new node.

Moving operator: If no node is created or deleted, which happens most of the time, we apply the
moving operator described by eq. 7 assuming closest = argminc(φω′(s)− wc)>(φω′(s)− wc). In
our case, we use a very low αneighbors to avoid the nodes to concentrate close to high-density areas.

wj =

wj + α(φω′(s)− wj), if j = closest

wj + αneighbors(φω′(s)− wj), if j ∈ neighbors(closest)
wj , otherwise.

(7)

Edge operator: edges are added or updated with attribute age = 0 between the winning node of
ei and the one of eprevi . Edges with age = 0 are added or updated between the two closest nodes of
ei. When an edge is added or updated, increment the age of the other neighbors of closest and delete
edges that are above a threshold δage.

16

Parameters Value
Age deletion threshold δage 600
Error deletion count δerror 600

Proximity deletion threshold δprox 0.4× δnew
Count creation threshold δcount 5

Minimal number of selection ndel 10
Learning rate α 0.001

Neighbors learning rate αneighbors 0.000001
Number of updates per batch ∼ 32

Table 1: Fixed hyper-parameters used in OEGN. They have not been tuned.

Except for δnew and δsuccess, we emphasize that thresholds parameters have not been fine-tuned and
are common to all experiments; we give them in Table 1.

C Derivation of the contrastive loss

LInfoNCE = E
(st,st+1)∈B

[
log

fω(st, st+1)∑
s∈B fω(s, st+1)

]
= E

(st,st+1)∈B

[
− k||φω(st)− φω(st+1)||2 − log(

∑
s∈B

fω(s, st+1))
]

(8)

= E
(st,st+1)∈B

[
− k||φω(st)− φω(st+1)||2 − log(fω(st, st+1) +

∑
s∈Bs 6=st

f(s, st+1))
]
(9)

≥ E
(st,st+1)∈B

[
− k||φω(st)− φω(st+1)||2 − log(1 +

∑
s∈Bs 6=st

f(s, st+1))
]

(10)

In the last line of eq. 10, we upper-bound fω(st, st+1) with 1 since e−v < 1 when v is positive. The
logarithmic function is monotonic, so the negative logarithm inverses the bound.

D Implementation details

In this section, we provide some details about DisTop.

Number of negative samples. In practice, to learn φω we do not consider the whole batch of states
as negative samples. For each positive pair, we randomly sample only 10 states within the batch of
states. This number has not been fine-tuned.

Relabeling strategies. We propose three relabeling strategies;

1. πhigh relabelling: we take samples from BS and relabel the goal using clusters sampled
with πhigh and randomly sampled states. This is interesting when the agent focuses on a
task; this gives more importance to rewarding clusters and allows to forget uninteresting
skills. We use it in Ant and Half-Cheetah environments.

2. Uniform relabelling: we take samples from BS and relabel the goal using states sampled
from from BS . When αskew ≈ 0, this is equivalent to relabeling uniformly over the
embedded state space. This is used for maze environments and Visual Door.

3. Topological relabelling: we take samples from both BS and BG and relabel each goal with a
state that belongs to a neighboring cluster. This is interesting when the topology is very large,
making an uniform relabelling inefficient. This is applied in Visual Pusher experiments, but
we found it to work well in mazes and Visual Door environments.

17

D.1 Comparison methods

LESSON: we used the code provided by the authors and reproduced some of their results in dense
rewards settings. Since the environments are similar, we used the same hyper-parameter as in the
original paper [39].

Skew-Fit: since we use the same evaluation protocol, we directly used the results of the paper. In
order to fairly compare DisTop to Skew-Fit, the state given to the DRL policy of DisTop is also the
embedding of the true image. We do not do this in other environments. We also use the exact same
convolutional neural network (CNN) architecture for weights ω as in the original paper of Skew-Fit.
It results that our CNN is composed of three convolutional layers with kernel sizes: 5x5, 3x3, and
3x3; number of channels: 16, 32, and 64; strides: 3, 2 and 2. Finally, there is a last linear layer with
neurons that corresponds to the topology dimensions d. This latent dimension is different from the
ones of Skew-Fit, but this is not tuned and set to 10.

ELSIM: we use the code provided by the authors. We noticed they used very small batch sizes
and few updates, so we changed the hyper-parameters and get better results than in the paper on
Half-Cheetah. We set the batch size to 256 and use neural networks with 2 × 256 hidden layers.
The weight decay of the discriminator is set to 1 · 10−4 in the maze environment and 1 · 10−3 in
Ant and Half-Cheetah. In Ant and Half-Cheetah, the learning process was too slow since the agent
sequentially runs up to 15 neural networks to compute the intrinsic reward; so we divided the number
of updates by two. In our results, it did not bring significant changes.

SAC: we made our own implementation of SAC. We made a hyper-parameter search on entropy
scale, batch size and neural networks structure. Our results are consistent with the results from the
original paper [29].

E Hyper-parameters

Table 2 shows the hyper-parameters used in our main experiments. We emphasize that tasks are very
heterogeneous and we did not try to homogenize hyper-parameters across environments.

F Environment details

F.1 Robotic environments

Environments and protocols are as described in [54]. For convenience, we sum up again some details
here.

Visual Door: a MuJoCo environment where a robotic arm must open a door placed on a table to a
target angle. The state space is composed of 48x48 images and the action space is a move of the end
effector (at the end of the arm) into (x,y,z) directions. Each direction ranges in the interval [-1,1].
The agent only resets during evaluation in a random state. During evaluation, goal-states are sampled
from a set of images and given to the goal-conditioned policy. At the end of the 100-steps episode, we
measure the distance between the final angle of the door and the angle of the door in the goal image.

Visual Pusher: a MuJoCo environment where a robotic arm has to push a puck on a table. The
state space is composed of 48x48 images and the action space is a move of the end effector (at the
end of the arm) in (x,y) direction. Each direction ranges in the interval [-1,1]. The agent resets in a
fixed state every 50 steps. During evaluation, goal-states are sampled randomly in the set of possible
goals. At the end of the episode, we measure the distance between the final puck position and the
puck position in the goal image.

F.2 Maze environments

These environments are described in [45] and we used the code modified by [39]. For convenience,
we provide again some details and explain our sparse version. The environment is composed of
8x8x8 fixed blocks that confine the agent in a U-shaped corridor displayed in Figure 4.

18

Parameters Values RP/RD/MA/MC/SAM/SPM Comments
DRL algorithm SAC

Entropy scale 0.1/0.1/0.2/0.2/0.1/0.2
Hidden layers 3/3/3/3/4/4

Number of neurons 512 Smaller may work
Learning rate RP: 3 · 10−4 else 5 · 10−4 Works with both

Batch size RP: 256 else 512 Works with both
Smooth update RP:0.001 else 0.005 Works with both.

Discount factor γ 0.99/0.99/0.99/0.99/0.996/0.996 Tuned for mazes
Representation φω

Learns on BG No/No/No/No/Yes/Yes Works with both
Learning rate 1 · 10−4, MA: 5 · 10−4, MC: 1 · 10−3 Not tuned on MA, MC

Number of neurons 256 except robotic images Not tuned
Hidden layers 2 except robotic images Not tuned

Distortion threshold δ SPM: 0.01 else 0.1 Tuned on SPM
Distortion coefficient kc 20 See Appendix A

Consistency coefficient β RD: 0.2 else 2 Not tuned
Smooth update αslow 0.001 Not tuned

Temperature k 1/1/3/3/3/3 See Appendix A
Topology dimensions d 10/10/10/3/3/3 Not tuned
OEGN and sampling

Creation threshold δnew RP:0.8 else 0.6 See Appendix A
Success threshold δsuccess ∞/∞/0.2/0.2/∞/∞

Buffers size [8/15/5/5/15/15] · 103
Skew sampling 1 + αskew RD:0.1 else 0 See Appendix A

updates per steps 2/2/0.5/0.5/0.25/0.25
High-level policy πhigh

Learning rate αc 0.05 Tuned
Neighbors learning rate 0/0/0.2αc/0.2αc/0/0 Not fine-tuned

Skew selection 1 + α′skew −1/− 0, 1/0/0/− 1/− 1/ See Appendix A
Reward temperature text 0/0/50/10/100/100

Table 2: Hyper-parameters used in experiments. RP, RD, MA, MC, SAM, SPM respectively stands
for Robotic Visual Pusher, Robotic Visual Door, MuJoCo Ant, MuJoCo Half-Cheetah, Sparse Ant
Maze, Sparse Point Maze.

Similarly to [39], we zero-out the (x,y) coordinates and append a low-resolution top view of the maze
to the proprioceptive state. This "image" is a 75-dimensional vector. In our sparse version, the agent
gets 0 reward when its distance to the target position is below 1.5 and gets -1 reward otherwise. The
fixed goal is set at the top-left part of the maze.

Sparse Point Maze: the proprioceptive state is composed of 4 dimensions and its 2-dimensional
action space ranges in the intervals [-1,1] for forward/backward movements and [-0.25,0.25] for
rotation movements.

Sparse Ant Maze: the proprioceptive state is composed of 27 dimensions and its 8-dimension
action space ranges in the intervals [-16,16].

G Computational resources

Each simulation runs on one GPU during 20 to 40 hours according to the environment. Here are the
settings we used:

• Nvidia Tesla K80, 4 CPU cores from of a Xeon E5-2640v3, 32G of RAM.
• Nvidia Tesla V100, 4 CPU cores from a Xeon Silver 4114, 32G of RAM.
• Nvidia Tesla V100 SXM2, 4 CPU cores from a Intel Cascade Lake 6226 processors, 48G of

RAM. (Least used).

19

H Example of skills

Figures 11, 12, 13 show examples skills learnt in respectively Visual Door, Visual Pusher and Ant
Maze. Additional videos of skills are available in supplementary materials. We also provide videos of
the topology building process in maze environments. We only display it in maze environments since
the 3D-topology is suitable.

20

−1.0

−0.8

−0.6

−0.4

−0.2

0.0 0.5 1.0 1.5 2.0
million steps

av
er

ag
e

re
w

ar
d DisTop

LESSON

Sparse Ant Maze

−1.0

−0.8

−0.6

−0.4

−0.2

0.0 0.5 1.0 1.5 2.0
million steps

av
er

ag
e

re
w

ar
d DisTop

SAC

Sparse Ant Maze

−1.0

−0.8

−0.6

−0.4

−0.2

0.0 0.5 1.0 1.5 2.0
million steps

av
er

ag
e

re
w

ar
d DisTop

ELSIM

Sparse Ant Maze

−1.0

−0.8

−0.6

0.0 0.5 1.0 1.5
million steps

av
er

ag
e

re
w

ar
d DisTop

LESSON

Sparse Point Maze

−1.0

−0.8

−0.6

0.0 0.5 1.0 1.5
million steps

av
er

ag
e

re
w

ar
d DisTop

SAC

Sparse Point Maze

−1.0

−0.8

−0.6

0.0 0.5 1.0 1.5
million steps

av
er

ag
e

re
w

ar
d DisTop

ELSIM

Sparse Point Maze

Figure 5: Same experiments than in §4.

Figure 6: Different Topologies learnt on the gridworld displayed in §4. From left to right, we show
the learnt topology with kc = 2, kc = 10, kc = 50.

Figure 7: Different Topologies learnt on the gridworld displayed in §4. From left to right, we show
the learnt topology with δ = 0.01, δ = 0.05, δ = 0.1, δ = 0.2.

Figure 8: Different Topologies learnt on the gridworld displayed in §4. From left to right, we show
the learnt topology with k = 0.5, k = 1, k = 3, k = 10.

Figure 9: Different OEGN networks learnt according to δnew. From left to right, we show the OEGN
network with δnew = 0.2,δnew = 0.4,δnew = 0.6,δnew = 0.8,δnew = 1

21

0

2

4

6

0.0 0.5 1.0 1.5 2.0 2.5
million steps

av
er

ag
e

re
w

ar
d

Ratio

0.1
0.3
0.5(paper)
0.7
0.9

Ant

0.04

0.06

0.08

0.0 0.1 0.2 0.3 0.4
million steps

av
er

ag
e

di
st

an
ce

Skew selection

−0.1
−0.2
−0.5
−1
−1 (paper)

Visual Pusher

0.04

0.06

0.08

0.0 0.1 0.2 0.3 0.4
million steps

av
er

ag
e

di
st

an
ce

Skew sampling

0(paper)
0.1
0.2
0.5
1

Visual Pusher

0.0

0.1

0.2

0.3

0.4

0.00 0.05 0.10 0.15 0.20 0.25
million steps

av
er

ag
e

di
st

an
ce

Skew sampling

0.1(paper)
0.1
0.2
0.5
1

Visual Door

Figure 10: Different learning curves showing the impact of the choice of interactions. 1- We study
the impact choosing learning interactions with πhigh rather than pαskew . 2- we study the importance
of 1 + α′skew in Visual Pusher. 3 and 4- we assess the importance of 1 + αskew in Visual Pusher and
Visual Door.

Figure 11: Examples of 8 skills learnt in Visual Door.

Figure 12: Examples of 8 skills learnt in Visual Pusher.

22

Figure 13: Examples of 8 skills learnt in Ant Maze.

23

	Introduction
	Background
	Goal-conditioned reinforcement learning for skill discovery
	Contrastive learning and InfoNCE

	Method
	Learning the topology of the states
	Selecting novel or rewarding skills
	Training goal-conditioned policies

	Experiments
	Related works
	Conclusion
	Ablation study
	OEGN and GWQ
	Derivation of the contrastive loss
	Implementation details
	Comparison methods

	Hyper-parameters
	Environment details
	Robotic environments
	Maze environments

	Computational resources
	Example of skills

