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CELL MOTILITY IN CONFINEMENT: A COMPUTATIONAL MODEL FOR THE
SHAPE OF THE CELL

Florence Hubert1, Meriem Jedouaa2, Imene Khames3, Julien Olivier4, Olivier
Theodoly5 and Ariane Trescases6

Abstract. While cells typically tend to spread their cytoplasm in a flat and thin lamellipodium when
moving on a flat substrate, it is widely observed that the cytoplasm has a compact shape in micro-
channels, tending to fulfill the cross-section of the microchannel. We propose a minimal mathematical
model for a 2D test case which describes the cell lamellipodium deformations when confined in a
channel. We then go through a numerical investigation of this mathematical model and show that it
allows to recover qualitatively the physiological characteristics of the confined cell.

Résumé. Alors que les cellules ont généralement tendance à présenter un cytoplasme étendu en un
large lamellipode extrêmement fin lors du déplacement sur un substrat plat, il est communément observé
que le cytoplasme prend une forme compacte lors du déplacement dans des micro-canaux, remplissant
au possible le volume contenu dans le micro-channel. Nous proposons un modèle mathématique minimal
pour un cas test en 2D qui décrit les déformations du lamellipode en confinement. Nous proposons
une exploration numérique de ce modèle mathématique et nous montrons qu’il permet de retrouver
qualitativement les caractéristiques physiologiques de la cellule confinée.

Introduction

Cell migration inside extracellular matrix network is known to play a crucial role in a variety of physiological
and pathological processes, as, for example, wound healing, immune surveillance and inflammation [11], or
cancer growth [22]. Moreover, the research on cell migration already has come to some biomedical applications,
such as the regeneration of tissues [4, 25].

As a toy model to understand cell motility in the extracellular matrix network, many studies have considered
the movement of cells in simplified confined environments, and particularly, in micro-channels. Both experi-
mental and theoretical works have been done, questioning in particular the role of adhesion mechanisms for cell
displacement in confined settings, while it is known that adhesion plays a crucial role in cell motility on a flat
substrate [10–12,16]. Though it is not intuitive, it was also shown (experimentally and theoretically, [13]) that
confined cells could possibly reach velocities significantly larger than the velocities observed on flat substrates.
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On the other hand, a tremendous effort has been made to understand the motility on flat surfaces. Studies
typically focus on different aspect of cell motility, such as intern mechanisms, interaction with the environment,
communication between cells, polarization. . . Among them, many aim at describing and explaining the specific
shape of the cell (see for example [14,17,23] and references therein). Indeed, when migrating on a flat substrate,
the typical cell tends to extend its cytoplasm into an extremely thin layer which covers a wide area of substrate.
This flat domain of cytoplasm is called lamellipodium for its remarkable thinness, measured in [1] as 110–160
nm (lamella, lat.: thin layer of material; podos, gr.: foot).

By contrast, experiments show that the shape of the leading edge protrusion in micro-channels is not flat.
The lamellipodium contracts and tends to fulfill a compact volume of the micro-channel. For more details, see
for example [24,26] and references therein for a comparison between migration on flat substrates and in confined
environment. The duality of the shape of the lamellipodium is summarized in figure 1.

Figure 1. Duality of the lamellipodium on a flat substrate (left) and in a micro-channel (right)

In this paper, our aim is to better understand some of the essential mechanisms operating in the shaping of
the lamellipodium in confined domain. We will essentially focus on the influence of the adhesion forces. For that,
we present two toy-computationals models taking into account some of the basic mechanisms of cell migration.
We present numerical simulations associated with these models. This work is a first step in understanding the
impact of the confinement.

We now present the main mechanisms of cell motility, as described in the biology literature. The movement
can typically be decomposed in four steps: in the first step, the lamellipodium extends at the leading edge
(protrusion) by polymerization of actin. More precisely, polymerization in the cytoplasm pushes forward the
membrane. The second step is the adhesion of the membrane at the leading edge to the substrate of the walls.
Adhesion is crucial to acquire momentum (at least on a flat substrate). At this stage, the membrane has adhered
to the wall by its two extremities and the membrane is under tension (as a consequence of the protrusion at the
leading edge and the adhesion at the trailing edge). The third step is deadhesion at the trailing edge, which
allows to release the tension when the cell displaces: this is the fourth step. To summarize, the three main
biological mechanisms are therefore: polymerization at the membrane, adhesion and deadhesion to the wall,
and membrane tension. They are schematically represented (in the case of a micro-channel) on Figure 2.

This paper is organized as follows: In Section 1 are introduced the mathematical toy-models (the full model
and the simplified model) we propose for the cell in a micro-channel with a careful description of the different
mechanisms we want to take into account for the motility of the lamellipodium. In Section 2, the numerical
treatment and implementation of the full model is presented. In Section 3 is proposed a bench of numerical
simulations corresponding to two different configurations of the lamellipodia when entering in the micro channel.
In the last section, we sum up the conclusions we have derived from our study an lay down the various questions
we wish to work on in further, more detailed work.
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Figure 2. Mechanisms of the cell motility

1. Modelling the lamellipodia motility

1.1. Mechanical description of the lamellipodium

The focus of this section is to introduce mathematical models to describe the lamellipodia deformation and
movement in a micro-channel. This model inspired by [23] takes into account the lamellipodium immersed in
the fluid fulfilling the micro-channel, the polymerization of the actin network, the adhesion of the lamellipodium
to the walls and the membrane forces which are here limited to the surface tension. Moreover, it describes the
actin dynamics inside the lamellipodia.
We consider the two-dimensional case which corresponds to a toy model of the lamellipodium into the channel
and adhering on a two-dimensional substrate.

The basis of the model is to consider the lamellipodium as an “active fluid”: the complex material consisting
of a mix of intracellular liquid and actin network will be described by a continuous medium. To describe
the properties of this medium, we have to note that the scale of the setting allows us to use low Reynolds
number approximation. Now following the discussion in [21] we argue as follows: the intracellular liquid is an
incompressible Newtonian fluid and the actin network is an elastic system. We could then go and model our
lamellipodium as a viscoelastic material, inheriting properties of both its constituents. But we argue that the
scale of the outer mechanical forces that would act on the lamellipodium are too large to see the elastic response,
driving us to describe the lamellipodium as an incompressible Newtonian fluid with an apparent viscosity µ1.
We are aware that this description is rough and that others have argued that one may take into account the
elastic properties of the material by dropping the incompressibility condition, because the medium is slightly
compressible (due to the elastic network within) and this is made possible by neglecting the force of pressure [21].
Here for the sake of simplicity we choose not to follow this line of reasoning. Thus our medium will be described
by a Stokes law for incompressible fluids with apparent viscosity µ1. Then the medium would be described by
its velocity field U and the pressure field inside it P .

1.2. Forces driving the lamellipodium

We describe now the forces acting on this medium. In our model we take into account three possible effects
on the lamellipodium motion.

First, there is the interaction with the surrounding fluid in the channel. We consider the surrounding fluid to
be also a Newtonian fluid at low Reynolds, with viscosity µf . The interaction between the two media is taken
into account via the Level-Set method (described in Section 2).

Then we consider a force acting on the membrane of the lamellipodium called surface tension. This force is
a normal force on the membrane proportional to the local curvature of the surface.
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Finally, the force that interests us the most is the force coming from the polymerization of actin. Let us
describe the mechanism we take. According to experimental observations, the lamellipodium deformation and
its movement inside the channel are mainly due to the mechanical properties of the actin network. Hence,
actin polymerization/depolymerization is the main mechanism directing the movement of the cell. Moreover,
experiments show that the actin assembly is maximal near the membrane and that the actin network polymerizes
perpendicularly to the cell/wall interface.

In fact, the polymerization of the actin filaments induces a pressure at the membrane which pushes the plasma
membrane outward. The intensity of this pushing force depends on the concentrations of actin and actin binding
proteins. The higher the actin concentration, the more the pushing force applied on the membrane.

Note that we may have to distinguish actin under its “free” form whose density we note ρcyta and actin under
its polymerized form whose density we note ρa.

With these observations, we propose a polymerization force which is confined to the cell rim, normal to the
membrane and proportional to the polymerized actin density ρa.

1.3. Actin dynamics

What is left to describe is how actin moves around inside the lamellipodium. Note that for the sake of
simplicity, we put in our model a fixed amount of total actin to separate what happens inside our lamellipodium
piece from the rest. This constant total amount of actin is noted ρtota .

We consider the “free” actin to be small molecules that have the ability to diffuse extremely fast inside the
lamellipodium. Consequently we will consider that the density of “free” actin is homogeneous in space.

We describe now the dynamics of the polymerized actin. We choose to do it via a reaction-transport-diffusion
process. The reaction term models the process of de/polymerization of the actin. The diffusion is standard at
this level of description. Finally, we say that the network itself is transported with the velocity of the medium
U . Once again we make the assumption that the velocity U describes both the cellular liquid and the actin
network for the sake of simplicity. Of course, a much refined description could be done by unravelling the effect
of the actin network with respect to the intracellular liquid.

When we use the previous dynamics on the actin density we say that we use the full model. In our first
batch of simulation however we wanted to test the purely mechanical effects on our system. To do so we use
the simplified model, where we arbitrarily set the polymerized actin density to a fixed value near the plasmic
membrane, forgetting every detail of actin dynamics. This assumption, in agreement with the results of the
experiments performed in [23], decouples the effect of the protrusion at the membrane from other mechanisms.
In the end, this will allow to calibrate the intensity of the protrusion in the complete model.

2. Mathematical framework

Our main interest being the deformation of the lamellipodium, one major goal of this paper is to translate
the proposed biophysical ingredients of Section 1 into mathematical equations that are able to efficiently treat
the problem of the movement of the membrane.

In order to describe the interaction between the external fluid and the lamellipodium, a purely eulerian
formulation is used [8, 9]. To achieve this, the interface is captured thanks to a level set approach.

We first present an overview of the level set method. Then, we introduce the proposed model with a careful
description of the polymerization of the actin filaments, the adhesion of the lamellipodium to the walls and the
membrane surface tension. Finally, we present the hypothesis made to obtain the simplified model we use to
perform numerical simulations.

2.1. Outline of the level set method

Introduced in [19] to treat problems involving interfaces, the level set approach is an efficient tool to capture
the interface which presents several advantages: it is easy to implement, and topological changes are directly
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handled. The general idea of the level set method is to define a scalar function that takes the value zero at the
location of the interface to capture.
Let Ω be a bounded domain in Rd (d = 2 or d = 3) partitioned into two subdomains Ω1(t) and Ω2(t), and let
Γ(t) be the interface between Ω1(t) and Ω2(t). The aim is to follow the evolution of the interface Γ(t) that is
defined as the zero value of a level set function φ(·, t):

Γ(t) = {x ∈ Ω, φ(x, t) = 0}.

The level set function φ(·, t) has to be Lipschitz continuous in x on the whole domain Ω (for all time t). The
displacement of the interface is deduced from the evolution of the level set function φ. More precisely, consider
that the interface is transported with the velocity V of the flow in the whole domain Ω. Then, the level set
function is the solution of the scalar transport equation:

∂tφ(t, x) + V (t, x) · ∇xφ(t, x) = 0. (1)

We usually define the level set function as a signed distance function that is regular in each corresponding
domain,

φ(x) =

{
−d(x,Γ(t)) x ∈ Ω1(t),

d(x,Γ(t)) x ∈ Ω2(t),
(2)

where
d(x,Γ(t)) = min

y∈Γ(t)
‖x− y‖.

Using this level set function we can define a regularized “Heaviside function Hε” that is to say a function with
value ≈ 1 in Ω2(t) and ≈ 0 in Ω1(t) and transition from 0 to 1 in a zone of size ≈ ε around Γ(t): first define

hε(s) =


0 s ≤ −ε,
1
2

(
1 + s

ε +
sin(πsε )

π

)
|s| ≤ ε,

1 s ≥ ε,

(3)

and then let Hε(t, x) = hε(φ(t, x)). We will also use a regularized “Dirac” function by setting

zε(s) =


0 s ≤ −ε,
1
2ε (1 + cos(πsε )) |s| ≤ ε,
0 s ≥ ε,

(4)

so that ζε(t, x) = zε(φ(t, x)) is a regularized “Dirac” function with support at the interface. In this case, ε
represents half of the interface thickness.

Moreover geometrical characteristics of the curve Γ(t) such as normal vectors n and curvature κ are obtained
explicitly using the level set function:

n =
∇φ
|∇φ|

, κ = ∇ · n.

2.2. Equations of the models

The spatial domain of interest is noted Ω, and is taken rectangular to model a portion of the micro-canal.
The upper and lower boundaries of the rectangular Ω, called Γd and resp. Γb, are the physical boundaries of the
micro-canal, while the left and right boundaries of Ω, called Γa and resp. Γc, are artificial/numerical boundaries
(see Figure 3). We study the evolution up to a time T > 0.

As previously said, both the lamellipodium and the external fluids are Stokes fluid with respective viscosities
µ1 and µf . They do not mix and they occupy the full domain Ω. To treat their interaction in a level-set method,
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we define the velocity field U(x, t) and the pressure field P (x, t) in the whole ΩT = Ω× [0, T ] to be the velocity
and pressure of the lamellipodium fluid when x is in the space occupied by the lamellipodium and those of the
external fluid elsewhere. This allows to write a single equation in the whole domain rather than equations on
separate moving domains. Defining µ(φ(x, t)) = µ1 + (µf − µ1)hε(φ(x, t)) one can then write{

−∇ · (2µ(φ)D(U)) +∇P = Fext in ΩT ,

∇ · U = 0 in ΩT ,

where D(U) = ∇U+(∇U)T

2 is the symmetrized strain rate tensor and Fext is the sum of the external forces acting
on the lamellipodium and the external fluid. Since the lamellipodium/external fluid interaction is already taken
into account, Fext is the sum of two contributions that we describe now.

Polymerization of the actin network.
The first contribution is the effect of actin polymerization. Following [23] we describe this effect by a

stress tensor which is localized on the membrane and pushing towards the exterior of the lamellipodium with an
intensity proportional to the polymerization activity, measured in our model through the density of polymerized
actin. Generally speaking, the stress tensor would be given by

σpoly = −η0
aρaδ∂Ω1,tn⊗ n (5)

where n is the outer normal at the membrane and δ is the Dirac function. In the context of level-sets methods,
it can be extended to the whole domain via a regularization of the Dirac function through

σpoly = −η0
aρazε(φ)n(φ)⊗ n(φ), in ΩT . (6)

Here η0
a is the actin protrusion coefficient and n(φ) is the normal to the membrane pointing outward. The

actin density ρa is also defined on the whole ΩT even if their is no meaning to nonzero values of ρa outside of
the lamellipodium. Note that the force is the divergence of the tensor ∇ · σpoly.

The membrane force
The second contribution to the external forces is the membrane force. We denote as Fmem the surface tension

at the membrane, which can be expressed directly by using the level set function:

Fmem = γκ(φ)n(φ), in ΩT , (7)

where γ is the tension coefficient.

The displacement of the membrane
The displacement of the membrane is specified by the transport of the level set function with the flow velocity

U .
∂tφ+ U · ∇φ = 0, in ΩT . (8)

Reaction-transport-diffusion equation for the actin network
In our “simplified” model, ρa is prescribed so we do not need more equations. It is given by

ρa = Cζε2(φ),

where C > 0. In this manner, ρa is positive near the interface at a distance of ≈ ε2. There is no particular
reason why ε and ε2 should be the same and in numerical simulations we take we take ε2 = 3× ε.
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On the other hand, for the “full” model, we have to write an equation for the reaction-transport-diffusion
process. We use the model of [23]:

∂tρa = −∇ · (ρaU) +∇ · (Da∇ρa) + f(ρa, ρ
cyt
a ), in Ω1,T = {(x, t), t ∈ [0, T ], x ∈ Ω1(t)}. (9)

Here Da is an effective diffusion coefficient of the actin network. This constant effective diffusion arises from
random events related to various chemical processes. The function f(ρa, ρ

cyt
a ) describes the reaction kinetics

of the actin filaments : polymerization and depolymerization. The specific form of f we use is again taken
from [23] and is classical in the modelling of positive feedback reactions see [18]:

f(ρa, ρ
cyt
a ) = kb

(
ρ2
a

K2
a + ρ2

a

+ ka

)
ρcyta − kcρa.

The second term is a simple depolymerization term with constant rate kc. The first term models polymerization,
which is taken proportional to the cytosolic actin monomer concentration ρcyta , and is increasing in ρa with
saturation. Here, ka is the base polymerization rate, kb is the actin polymerization rate, Ka is a positive
feedback threshold.

Note that given the hypotheses we made on the dynamics of “free” actin monomers, we can also write

ρcyta (t) =

(
ρtota −

∫
Ω1
ρa

)
A(t)

.

Recall that ρtota is the total amount of actin. The term A(t) is the total area of the lamellipodium.

Boundary conditions

Figure 3. Computational domain Ω

To complete our system we have to provide boundary conditions on each of the four sides of the rectangular
Ω and initial conditions.
On the inner and outer boundary Γa and Γc (see Figure 3 for the definition of these) we disregard the phenomena
happening outside the domain, in the sense that, in this prospective toy model, we pretend that the behaviour of
the quantity U is locally (close to the boundary) homogeneous in the horizontal variable, and equal to its value
at the (inner) boundary. Therefore, no new force is input in the model at the boundary. For this we choose
the homogeneous Neumann boundary conditions. Of course more sophisticated boundary conditions could be
considered, such as (4) in [19]. Here our choice is driven by simplicity of formulation and implementation.
Therefore, we have for the flow velocity:

∇U · n = 0 on Γa ∪ Γc.

The lamellipodium is in contact with the bottom wall Γb and the top wall Γd and adheres to these walls. We
assume non permeability at the walls. For the “simplified” model, we assume the adhesion to be very strong, so
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that we chose to model both lamellipodium/wall and external fluid/wall interaction by perfect adhesion. This
thus reads:

U = 0 on Γd ∪ Γb.

For the “full” model, we model the adhesion by a friction force. What we call adhesion here is therefore a
force which is specifically tangent to the wall of contact. We could argue that adhesion may also involve normal
forces. Here, for the sake of simplicity, we consider the polymerization force as the main active mechanism in the
direction normal to the boundary. If we denote as U = (Ux, Uy)t the velocity and as σ(U,P ) = 2µD(U)− P Id
we obtain the following boundary conditions:

{
U · n = 0 on Γd ∪ Γb,

[(σ(U,P ) + σpoly(φ))n]tan = σxy = µ(φ)(∂xUy + ∂yUx) = −λ(φ)Utan = −λ(φ)Ux on Γd ∪ Γb.

Denoting by λf and λ1 the friction coefficients inside the external fluid and the lamellipodium, the friction field
λ in the whole domain Ω is given by:

λ(φ) = λ1 + (λf − λ1)Hε(φ). (10)

For the density of actin, for the same reasons as for the flow velocity U , we also take the homogeneous
Neumann boundary conditions:

∇ρa · n = 0, on Γa ∪ Γb ∪ Γc ∪ Γd.

Again, note that this assumption is not meant to be realistic, since there may be significant exchanges at the
(fictive) boundary Γa. One should rather see this assumption as an artificial way to theoretically isolate the
mechanisms happening at the edge of the lamellipodium from the rest. Alternatively said, all mechanisms not
happening in the fictive domain are neglected.

The two models
Let us sum up the equations considered. Firstly the Complete model writes : find (U,P, ρa, φ) satisfying



−∇ · (2µ(φ)D(U)) +∇P = Fmem +∇ · σpoly, in ΩT ,

∇ · U = 0, in ΩT ,

U · n = 0, µ(φ)(∂xUy + ∂yUx) = −λ(φ)Ux, on Γd ∪ Γb × [0, T ],

∇U · n = 0, on Γa ∪ Γb × [0, T ],

∂tρa = −∇ · (ρaU) +Da∆ρa + f(ρa, ρ
cyt
a ), in Ω1,T ,

∇ρa · n = 0, on Γa ∪ Γb ∪ Γc ∪ Γd × [0, T ],

ρcyta (t) =

(
ρtota −

∫
Ω1
ρa
)

A(t) in [0, T ],

∂tφ+ U · ∇φ = 0, in ΩT ,

(U · n)+φ prescribed on Γa ∪ Γc.

(11)
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Secondly, the Simplified model writes: find (U,P, φ) solution of the system

−∇ · (2µ(φ)D(U)) +∇P = ∇ · σpoly + Fmem(φ) in ΩT ,

∇ · U = 0 in ΩT ,

U = 0 on Γb ∪ Γd × [0, T ],

∇U · n = 0 on Γa ∪ Γd × [0, T ],

ρa = Cζε2(φ) in ΩT ,

∂tφ+ U · ∇φ = 0 in ΩT ,

(U · n)+φ prescribed on Γa ∪ Γc.

(12)

Both these systems are complemented with initial conditions.

3. Numerical implementation of system (12)

This section is devoted to the numerical implementation of the system (12).
The system is discretized by a finite difference method on a staggered grid where the pressure and the level set
function are located at the center of the mesh cells and the velocity at the center of the sides (see figure 4). The
divergence free is computed at the pressure point which enforces the volume constraint accurately. Following
the ideas introduced in [5,6], we solve the steady Stokes equations by using a variant of the projection method
of Chorin [7] and a fixed point method.

Figure 4. Staggered grid

3.1. General algorithm

Given a time step ∆t, we set tn = n∆t, Un ≈ U(., tn), and φn ≈ φ(., tn).
At each time step, the general algorithm performs the following steps:

(1) Using a projection method of Chorin type and fixed point method we resolve the Stationnary Stokes
equation on U .

(2) Resolution of the transport equation on the level set field using a WENO 5 scheme and an Euler explicit
scheme in time:

φn+1 = φn −∆t× U · ∇φn

(3) Perform a fast marching method by resolving the following eikonal equation in the entire computational
domain Ω:

| ∇φn |= 1, in Ω
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using a first order numerical scheme [20] with an horizontal and a vertical space steps ∆x and ∆y in
two-dimensions we solve:

max(max(D−x φ
n
ij , 0)2,min(D+

x φ
n
ij , 0)2) + max(max(D−y φ

n
ij , 0)2,min(D+

y φ
n
ij , 0)2) = 1 (13)

where D−x φnij =
φn
ij−φ

n
i−1,j

∆x , D+
x φ

n
ij =

φn
i+1,j−φ

n
i,j

∆x , D−y φnij =
φn
ij−φ

n
i,j−1

∆y , D+
y φ

n
ij =

φn
i,j+1−φ

n
i,j

∆y .

3.2. Resolution of the stationnary Stokes equation

We use an adapted projection method of Chorin type and a fixed point method to solve the Steady Stokes
equations. This method is taken from [5, 6]. The idea of the projection method is to solve the conservation
of momentum without the pressure term for an intermediate state U∗. Then, this solution is projected on the
space free-divergence fields P :

U = P(U∗) = U∗ −∇ξ. (14)
where the projector ξ is solution of the problem:{

∆ξ = div(U∗) in Ω,
∂nξ = 0 on Γa ∪ Γb,∪Γc ∪ Γd.

To treat the non homogeneous viscosity term we decompose it as follows:

∇ · (2µD(U)) = µ∆U + 2D(U)∇µ+ µ∇ divU.

Combining with the incompressibility condition divU = 0 and U = U∗ −∇ξ, it comes:

∇ · (2µD(U)) = µ∆U∗ − µ∇∆ξ + 2D(U)∇µ.

Then, setting p = −µ(φ)∆ξ, the intermediate state U∗ is solution of (15) where U∗ = (u∗, v∗)t.

−µ∆U∗ = −div(U∗)∇µ− 2D(u)∇µ+ Fmem(φ) +∇ · σpoly in Ω,

∂xu
∗ = ∂xxξ on Γa ∪ Γc,

∂xv
∗ = 0 on Γa ∪ Γc,

u∗ = ∂xξ on Γb ∪ Γd,

v∗ = 0 on Γa ∪ Γc.

(15)

The term depending on U∗ in the right hand side of (15) is treated explicitly. In fact, 15 is transformed into
the fixed point problem:

−µ∆U∗k+1 = − (2D(Uk) + div(U∗k )Id)∇µ+ Fmem(φ) +∇ · σpoly in ΩT ,

+U∗k+1 = ∇ξk on Γb ∪ Γd,

u∗k+1 = ∂xxξk on Γa ∪ Γc,

v∗k+1 = 0 on Γa ∪ Γc.

(16)

If one wants to apply friction boundary condition then the boundary conditions of U∗k+1 on Γb ∪Γd are changed
by: {

u∗k+1 = −∂xξk + µ
λ∂yuk on Γb ∪ Γd,

v∗k+1 = 0 on Γb ∪ Γd.

The last step of the projection method is the correction of the velocity U :

U = U∗ −∇ξ.



158 ESAIM: PROCEEDINGS AND SURVEYS

For the numerical simulations, the error parameter εm of the fixed point algorithm (see algorithm 1) is fixed to
10−2 min(∆x,∆y). The proposed algorithm is very fast as all the equations are solved using the fast Poisson
solver FISHPACK.

Algorithm 1 Fixed point procedure
u∗0 = u0 is known at initialisation k = 0
while ((|| D(Uk)−D(Uk−1) ||≥ εm) OR (|| Uk ||Γb∪Γd

≥ εm) OR (|| ∂nUk ||Γa∪Γc
≥ εm))) do

U∗k , Uk = P(U∗k ) and ∇ξk = U∗k − P(U∗k ) are known
Find U∗k+1 solution of the following system:

−µ∆U∗k+1 = − (2D(Uk) + div(U∗k )Id)∇µ+ Fmem(φ) +∇ · σpoly, in ΩT ,

+U∗k+1 = ∇ξk on Γb ∪ Γd,

u∗k+1 = ∂xxξk on Γa ∪ Γc,

v∗k+1 = 0 on Γa ∪ Γc.

(17)

Resolve the equation on ξk+1:{
∆ξk+1 = divU∗k+1 in Ω,

∂nξk+1 = 0 on Γa ∪ Γb,∪Γc ∪ Γd.
(18)

Correct the velocity:
Uk+1 = U∗k+1 −∇ξk+1.

k = k + 1
end while

4. Numerical illustrations

In this section, we present the numerical results obtained with the proposed models. We first present the
simulations obtained with the simplified model (12) for two different configurations of the lamellipodium, using
the algorithm described in Section 3.
Then a Freefem++ implementation of the full model (11) is performed.

4.1. Choice of the parameters

Our choice of parameters mainly relies on the parameters used in [23]. In [23], the following quantities
measured by experiments are given: η0

a, ka, kb, Ka, kc, Da, γ. Then, the total density of actin ρtot
a is simply

computed as the ratio of the total amount of actin mtot
a (also taken from [23]) and the average area of the cell

Acell, that is, ρtot
a = mtot

a /Acell = 800/200 = 4µm−2. The viscosity of the surrounding fluid, mainly composed
of water, is taken equal to the viscosity of water. To simplify, we first consider (in the simplified model) that
the viscosity of the actin flow and the viscosity of the surrounding fluid are the same, while in the full model,
we consider that the actin flow is less viscous than the surrounding fluid: µ1 = 0.5µf .

In the case where our model prescribes the actin density close to the membrane, we take the value from [2]
(see Table 1).

Finally, in the simplified model, we model the adhesion of the membrane at the contact with the channel by
homogenous Dirichlet boundary conditions. In the full model, the adhesion is modeled by a friction force. Up
to our knowledge, there is no data available for the (adhesion) friction coefficient in this context. However, what
is known is an effective friction coefficient (eg. [23]), which does not take into account the adhesion process.
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Description Value
µ1 effective viscosity of actin flow 0.5.103–103 pN.s/µm
µf viscosity of the surrounding fluid 103 pN.s/µm
η0
a F-actin protrusion coefficient 560 pN.µm2

ka base polymerization rate 0.01 s−1

kb F-actin polymerization rate 10 s−1

Ka positive feedback threshold 1 µm−2

kc F-actin depolymerization rate 10 s−1

Da actin network diffusion coefficient 0.8 µm2/ s
γ tension coefficient 20 pN
ρtot
a total density of actin 4 µm−2

ρa density of polymerized actin at the membrane 0.28 µm−2

λ effective (adhesion) friction coefficient 1–100 Pa. s/µm

Table 1. Numerical values of the parameters for the model (12)

Our (adhesion) friction coefficient should therefore be higher than this effective (pure) friction coefficient. We
tried different orders of magnitude, and kept the most significant ones.

We end up with the parameters described in Table 1.

4.2. Choice of the initial shape

To run the simulations, we have to decide an initial shape for the membrane. Recall that we want to observe
the duality of the shape of the lamellipodium, that is, we expect the shape to evolve into a compact shape which
fulfills the micro-channel.

We first choose a simple initial shape, where the free membrane (the membrane which is not in contact
with the walls) is a semi-ellipse. In addition to its simple implementation, this shape has the advantage of
being already quite compact, therefore it is a good departure to observe whether compact shapes are stable, or
whether the system will evolve to a less compact shape.

The second initial shape we choose is more realistic: it models the lamellipodium at its entrance in the
micro-channel. A long part of the thin lamellipodium has already progressed on one wall (say, the lower wall
Γb), dragging the cell body behind itself. The situation represented is when the cell body has just attained the
entrance, and a tiny portion of the membrane has just adhered to the upper wall Γd. Therefore, the membrane
has the shape of a stiff stair (or a letter "L"): the lower, long and thin stair is the thin lamellipodium, and the
upper, short stair is the point where the membrane has newly adhered.

4.3. Numerical results for the simplified model (12)

We present in figures 5 and 6 six snapshots of the results of the simulations. What is represented is the value
of the level set function, and the white line is its zero-value, that is, the membrane.

The first simulation represented in figure 5, deals with the movement of the lamellipodium into the micro
channel with an initial shape corresponding to the first configuration (semi-ellipse). The associated computa-
tional domain Ω is a rectangle of size [0, 4µm]×[0, 1µm]. The simulation is performed on a grid of size (512×128)
corresponding to a space step ∆x = 7.8125.10−3µm.

The second simulation, illustrated in figure 6, represents the movement of the lamellipodium which just
entered into the channel (as described in the last paragraph of Subsection 4.2). The computational domain
is a rectangle of size [0, 2µm] × [0, 1µm], and the corresponding grid resolution is (256 × 128). The interface
thickness ε is set to 2∆x .
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The first image of each sequence is the initial datum. In both cases, we observe that the cytoplasm tends
to fulfill the micro-channels. For the first case, we observe an immediate progression of the membrane in the
micro-channel. For the second case, the process can be decomposed in two phases: the cytoplasm first tends to
change its shape into a convex shape, as compact as possible, then it starts to progress in the micro-channel.
From what we observed of the numerical simulations performed for different sets of data (initial conditions and
parameters), we can argue that this behaviour in two phases is quite typical of our model. For the case of the
semi-circular initial datum, the initial shape being already compact, it is natural to expect that the system
directly starts with the second phase.

Note that no progression is observed precisely at the wall: this is a direct consequence of the assumption of
perfect adhesion, which prevents the fluid from any displacement at the contact with the wall. In particular,
the membrane in contact with the wall cannot progress (or deadhere). However, the general movement of the
free membrane indicates its tendency to progress in the micro-channel. Therefore, on one hand, we seem to
observe a tendency to progress; on the other hand, one of the main limitations of our model is the assumption
of perfect adhesion. In conclusion, we expect that removing the assumption of perfect adhesion would lead to
observe exactly what is aimed, that is, a tendency of the membrane to remodel in a compact shape, followed
by a progression of the cytoplasm in the micro-channel, including at the contact with the wall.

(a) t = 0.0s (b) t = 0.1s (c) t = 0.2s

(d) t = 0.4s (e) t = 0.6s (f) t = 0.88s

Figure 5. Behaviour of the lamellipodium with having an initial shape of semi-ellipse. The
background color shows the level set amplitude.
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(a) t = 0.0s (b) t = 0.05s (c) t = 0.11s

(d) t = 0.24s (e) t = 0.38s (f) t = 0.52s

Figure 6. Behaviour of the lamellipodium having an initial shape of a letter "L". The back-
ground color shows the level set amplitude.

4.4. Numerical simulations for the full model

We implement the model (11) with the finite element solver Freefem++. We chose the FE-spaces P1 for the
pressure and P1-bubble for all the other functions. These spaces are classical in the implementation of Stokes
equations in Finite Elements methods [3].
Firstly the friction boundary condition is classically taken into account in the variational formula of the Stokes
problem.

Secondly, we now have to treat the reaction-transport-diffusion equation on ρa on the moving domain Ω1,T .
To circumvent this difficulty we approximate the equation (9) by an equation defined on the whole domain ΩT
while penalizing the Neumann boundary condition ∇ρa · n = 0 on the free membrane Γ1. We still note ρa the
solution of this new equation:

∂tρa = −∇ · (ρaU)−∇ · (Da∇ρa) + f(ρa, ρ
cyt
a ) +∇ ·

(
hε(φ)

∇φ⊗∇φ
ε|∇φ|2

∇ρa
)
.

For the numerical simulations, we consider the test case of the lamellipodium which just enter into the
channel (having an initial shape of a letter "L") and we test our model for two different friction values λ1 = 1
and λ1 = 100. The friction forces exerced by the wall on the surrounding fluid are neglected (λf = 0), giving
the following friction coefficient :

λ(φ) = λ1(1−Hε(φ)).

The computational domain Ω is a rectangle of size [0, 1µm] × [0, 4µm]. We use the parameters of Table 1,
except for the parameters Da and ηa which are taken as follow: Da = 1, ηa = 100. In these simulations, the
space steps are ∆x = ∆y = 6.25.10−2µm, and the time step is ∆t = 10−3s. We also chose the regularization
parameter ε to be 3∆x.

For completeness, the initial shape is obtained by the following FreeFem++ instructions so as to encode the
“L” shape:
func real heav0(real t){

real out=0.5*(1+tanh(t));
return out;

}
func real heavy(real t){

real out=heav0(t/e);
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return out;
}
func real hauty(real t){

real out=0.25*(heavy(1-t)-0.5)+0.375*(heavy(0.2-t));
return out;

}
func phi0=tanh(hauty(x)-abs(y-hauty(x)));
Note that the variable e stands here for ε. These instructions will project onto the finite element space a func-
tion that is theoretically equal to 0 on the segments [(0, 1), (0.2, 1)], [(0.2, 1), (0.2, 0.25)], [(0.2, 0.25), (1, 0.25)],
[(1, 0.25), (1, 0)] and [(1, 0), (0, 0)]. The actual shape is regularized by the use of regularized Heaviside functions
heav0 and hauty so as to give in the end the shape that can be seen on Figures 7 and 8.

Figure 7 shows the simulations obtained in the case of a small friction force λ1 = 1. As expected, the mem-
brane slips along, attaches to and breaks away from the wall while moving forward into the channel. As the
friction coefficient is small, the adhesion is quite weak. Consequently, the progression in the channel is quite fast.

Figure 8 shows the simulations obtained in the case of a large friction force λ1 = 100, which is to be more
realistic. Again, we observe a progression of the lamellipodium in the channel, including at the contact with
the wall (through sliding and adhesion/de-adhesion). As the friction coefficient is high, the adhesion is strong.
Consequently, in comparaison with the previous case, the progression in the channel is slowed down. Notice
indeed that the lengths of time required to fulfill the channel are not the same in the two cases.

The simulations obtained here are quite promising: as in the case with perfect adhesion we observe that the
lamellipodium tends to remodel in a compact shape and to progress into the channel; but contrarily to the case
with perfect adhesion, in this more realistic case the cell progresses also along the wall. These results motivate
the enrichment of the main code we developed with realistic boundary conditions.

(a) t = 0.0s (b) t = 0.08s (c) t = 0.013s

(d) t = 0.033s (e) t = 0.067s (f) t = 0.106s

Figure 7. Behaviour of the lamellipodium having an initial shape of a letter "L". The friction
coefficient λ1 is set to 1. The background color represents the values of the regularized heaviside
function Hε applied to the level-set function: the red color corresponds to the lamellipodium
and the blue object represents the surrounding fluid.

4.5. Comparison with an unconfined case

In order to test the biological hypothesis that the shape of the lamellipodium is prescribed by the confinment,
it is interesting to test our model in the case of a non confined domain. To do so, we use the full model
implemented in FreeFem with a larger height for the computational domain Ω. This models the situation
where the lamellipodium moves in an evironment whose dimensions are wider than its own size. We take
Ω = [0, 4µm]× [0, 4µm]. All other parameters are the same as in the previous subsection (with λ1 = 100). The
initial shape for this case is given by the following set of instructions:
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(a) t = 0.0s (b) t = 0.035s (c) t = 0.055s

(d) t = 0.077s (e) t = 0.090s (f) t = 0.225s

Figure 8. Behaviour of the lamellipodium having an initial shape of a letter "L". The fric-
tion coefficient λ1 is set to 100. The background color represents the values of the regularized
heaviside function Hε applied to the level-set function: the red color corresponds to the lamel-
lipodium and the blue object represents the surrounding fluid.

real x0=1;
real x1=0.25;
func prof=x1+(x0-x1)*(1-y);
func phi0=heav0((prof-x)/(hx))*(-100*(x+1)*(prof-x)*y*(1-y))+2*(1-heav0((prof-x)/(hx)));

See Figure 9. This initial condition is an analog of the "L" shape of the confined case in the sense that it also
models the instant where the body of the cell has just started to enter the canal. While in the confined case the
simulations start when the body has just touched both walls of the narrow canal, this situation is unlikely to
happen in the wide canal. Note that for simulations we carried on with an initial "L" shape in this unconfined
domain, the cell quickly moves back out of the canal, therefore we can not observe the cell deformation during
a meaningful time.

We observe that the lamellipodium mainly displaces in the horizontal direction, going forward and backward.
Even though after a long time, the lamellipodium has a light tendency to grow in the vertical direction, this
growth cannot be considered as significant and may be a numerical artefact. Indeed, the vertical growth is
around 15%, while the horizontal expansion reaches far above 100%. This is definetly not comparable to the
clear and immediate tendency of fullfilling the domain that we observe in the confined case. However, its shape
is ambiguous: on one hand, it does not fullfill the canal; but on the other hand, it does not reach the expected
flat shape.

Therefore, while these tests tend to confirm our hypothesis that the ingredients chosen allow to recover
the compact shape in a confined domain, the model does not seem to be adapted to represent an unconfined
situation.

It is also interesting to notice that, as observed in some biological experiments, see [15], the lamellipodium
may reach higher velocities under some experimental conditions in a confined environment.

5. Conclusion and outlook

This proceeding is a report on a point of entry to study the effect of confinement on cell motility. It presents
two prospective toy-models and associated numerical simulations that show that to understand the shape taken
by the lamellipodium in a micro channel is a highly complex and challenging question. In this work, we wish
to report that a few ingredients can lead, at least at the numerical level, to a behaviour resembling the “plug”
form of cells in microchannels, reported in the experimental literature [24, 26]. This minimal model allows
to recover qualitatively two main properties of the confined cell: its tendency to reshape compactly, and its
actual progression inside the domain. It therefore suggests that the specificities of the cell motility in confined
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(a) t = 0.0s (b) t = 0.2s (c) t = 0.25s

(d) t = 0.350s (e) t = 0.5s (f) t = 0.650s

Figure 9. Behaviour of the lamellipodium in the unconfined case. The background color
represents the values of the regularized heaviside function Hε applied to the level-set function:
the red color corresponds to the lamellipodium and the blue object represents the surrounding
fluid.

environment could originate from the same active mechanisms than the cell motility on a flat substrate, and
not necessarily mechanisms that are specific to the confined domain.

However, the ambiguous behaviour observed for the model in an unconfined domain does not allow to conclude
that the model in its present form explains the duality between flat and "plug" form. Therefore, it seems that
at this stage the model is not appropriate to model unconfined situations. There are many possible reasons for
that, lying in the several approximations we made in this extremely simplified model. We discuss some of them
below.

As we wanted to keep the description at a macroscopic level, we chose to describe the lamellipodium as
essentially its cellular liquid. The effect of the actin polymerization thus appears only in a protrusive force
acting on this liquid. However it is a subject of debate (we have given a few of of its terms in Section 1) whether
this is a relevant assumption or whether the effect of the elasticity of the actin network should be taken a lot
more into account in a more detailed mechanical model of the lamellipodium (again see for instance [21]). This
is a really difficult question even for “passive” material (like soil for instance) and it leads to intricate models.
As further developments, it will be crucial to determine if this description is sufficient to see the duality of
flatness/“plugness” we wish to show.

The description of “adhesion” as being a friction of the water molecules on the solid boundaries can largely
be discussed. In particular, the impact of adhesion in terms of normal forces (to the boundary) was here
deliberately neglected. Of course, more sophisticated modelling will be investigated in further work. Overall,
boundary conditions at the walls or at the back of the lamellipodium can also be discussed and rework in general
to accomplish a finer description of the system.

Finally, remark that the well-posedness of both systems (complete or simplified) is a non trivial issue that
has to be adressed in the future. Similarly, more relevant numerical methods should be tested for the complete
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model. This would allow to test a larger set of boundary conditions. Even at the level of the current code, the
(numerical) stability would need to be studied in depth to check what is the domain of parameters (numerical
or from modelling) that can be used, and also the stability of our preliminary results with respect to initial
shape.
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