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Abstract. We introduce a new non-overlapping optimized Schwarz method for fully anisotropic diffusion
problems. Optimized Schwarz methods take into account the underlying physical properties of the problem
at hand in the transmission conditions, and are thus ideally suited for solving anisotropic diffusion prob-
lems. We first study the new method at the continuous level for two subdomains, prove its convergence
for general transmission conditions of Ventcell type using energy estimates, and also derive convergence
factors to determine the optimal choice of parameters in the transmission conditions. We then derive op-
timized Robin and Ventcell parameters at the continuous level for fully anisotropic diffusion, both for the
case of unbounded and bounded domains. We next present a discretization of the algorithm using discrete
duality finite volumes, which are ideally suited for fully anisotropic diffusion on very general meshes. We
prove a new convergence result for the discretized optimized Schwarz method with two subdomains using
energy estimates for general Ventcell transmission conditions. We finally study the convergence of the new
optimized Schwarz method numerically using parameters obtained from the continuous analysis. We find
that the predicted optimized parameters work very well in practice, and that for certain anisotropies which
we characterize, our new bounded domain analysis is important.
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1. Introduction

Optimized Schwarz methods are a modern class of Schwarz methods which use instead of
the classical Dirichlet transmission conditions at the interfaces more effective transmission con-
ditions, which can take the physics of the problem at hand into account, see [18, 19] and refer-
ences therein. This property is especially important for anisotropic diffusion problems, which
behave very differently at interfaces depending on the orientation of the diffusion, see for ex-
ample [24], [14, Section 5], and the very recent reference [35]; for classical Schwarz methods ap-
plied to anisotropic diffusion, see [36, 8, 11], and for a specific earlier two level preconditioner
[32]. Similarly when discretizing anisotropic diffusion problems, the numerical scheme must
be suitable for high anisotropy, and discrete duality finite volume (DDFV) methods have this
property, even in the case of discontinuous anisotropic diffusion, see [27, 5, 26, 6, 9, 15, 2], and
in particular [16, Part II] which is dedicated especially to anisotropic diffusion. We are there-
fore interested in optimized Schwarz methods which are discretized using DDFV schemes.
DDFV schemes belong to the class of discretization methods which preserve certain geomet-
ric properties of the underlying differential operators, like mimetic finite difference methods
[28, 7], gradient methods [13], or discrete variational derivative methods [17], see also finite
element exterior calculus [3]. DDFV methods are thus part of the effort to lead the field of
geometric numerical integration, which reached a certain maturity for ordinary differential
equations [25] to the area of partial differential equations.

Our paper is organized as follows: in Section 2, we present a class of non-overlapping op-
timized Schwarz methods for fully anisotropic diffusion at the continuous level, prove well
posedness of the subdomain problems and give a convergence analysis using energy estimates
for general Ventcell transmission conditions. We use an (arbitrary) two subdomain decompo-
sition, but the generalization to the many subdomain case without cross points presents no
difficulty1. We then derive a convergence factor for the method, which is classically done for
optimized Schwarz methods in the specific case of two unbounded or rectangular subdomains
using Fourier analysis. We define the associated best approximation problem, and present
a general theory for such problems which allows us to solve it, leading to our main results
of closed form asymptotic formulas for the best choice of parameters of Robin and Ventcell
type in Corollary 2.1 for unbounded domains, and in Theorem 2.8 for the case of bounded
domains, where we used for the first time semi-asymptotic techniques. In Section 3 we then
present a Discrete Duality Finite Volume discretization of the optimized Schwarz method,
which naturally also allows the use of non-matching grids; note that this requires usually spe-
cial techniques, see for example the cement method in the finite element case in [29, 30]. We
prove well-posedness of the discrete subdomain problems, and convergence of the algorithm
using discrete energy estimates for general Ventcell transmission conditions. For simplicity of
notation, we show the results again for a two subdomain decomposition, but the generaliza-
tion to the many subdomain case for decompositions without cross points is straightforward.
In Section 4, we first test our new optimized Schwarz algorithms for anisotropic diffusion in

1Cross points need special treatment and are beyond the scope of the present analysis, see the conclusions for
more information.
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the case covered by our analysis, i.e. on a rectangle decomposed into two rectangular subdo-
mains, and investigate numerically for which kinds of anisotropic diffusion our new bounded
domain analysis is important for the choice of the optimized parameters. We then also test
the algorithm in situations not covered by the analysis, i.e. non-rectangular subdomains and
for the many subdomain case. We present our conclusions and an outlook for further work in
Section 5.

2. Analysis at the continuous level

We are interested in solving anisotropic diffusion problems of the form

Lu := −div(A∇u) + ηu = f in Ω,
u = 0 on ∂Ω, (2.1)

where A is a symmetric positive definite matrix with W1,∞ coefficients,

(x, y) ∈ Ω 7→ A(x, y) =
(

Axx(x, y) Axy(x, y)
Axy(x, y) Ayy(x, y)

)
,

and (x, y) ∈ Ω 7→ η(x, y) ≥ 0 is a given non-negative function in L∞(Ω). To solve such
problems on a computer, they have to be discretized, and we will use DDFV methods to do so
in Section 3. Schwarz algorithms are however most naturally formulated and studied at the
continuous level, and we will thus work first without discretization.

2.1. Schwarz Algorithm for anisotropic diffusion. For simplicity, we consider a decompo-
sition of the domain Ω into two non-overlapping subdomains Ωj, j = 1, 2 with a vertical
interface Γ. A parallel optimized Schwarz algorithm for the anisotropic diffusion problem
(2.1) then solves for ` = 1, 2, . . .

Lu`
j = f in Ωj,

u`
j = 0 on ∂Ωj ∩ ∂Ω,

(A∇u`
j , nj) + Λu`

j = −(A∇u`−1
i , ni) + Λu`−1

i on Γ = ∂Ω1 ∩ ∂Ω2,
(2.2)

where j = 1, 2, i = 2, 1, and nj denotes the unit outer normal in Ωj. The transverse operator Λ
depends on two optimization coefficients p and q, and is given by

Λu := pu− q∂y(Ayy∂yu), (2.3)

which represents a so called Ventcell or second order transmission condition. The coefficient p
is strictly positive, since Ventcell conditions with p = 0 would lead to less efficient transmission
conditions. In the case q = 0 we obtain a Robin transmission condition.

We first show that the subdomain problems of the form

Lu = f in Ω,
u = 0 on ∂ΩD,

(A∇u, n) + Λu = g on ∂ΩV ,
(2.4)

which appear in algorithm (2.2) are well posed. An analysis of the Ventcell problem when
∂Ω = ∂ΩV is a regular curve in R2 can be found in [31].
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Theorem 2.1 (Well-posedness of Subdomain Problems). Suppose Ω is convex, A is in W1,∞(Ω),
η ≥ 0 in L∞(Ω) and (A(x)ξ, ξ) ≥ Ā‖ξ‖2 > 0 for all x in Ω and ξ ∈ R2 non zeros, and p > 0 and
q ≥ 0. For any ( f , g) ∈ L2(Ω)× L2(∂Ω), problem (2.4) admits a unique solution u. If q = 0, u is in
H1(Ω), and if q 6= 0, u is in

W(Ω) =
{

u ∈ H2(Ω), u = 0 on ∂ΩD, γ∂ΩV u ∈ H2(∂ΩV) ∩ H1
0(∂ΩV)

}
, (2.5)

where γ∂ΩV stands for the trace of u on ∂ΩV .

Proof. The proof is based on a variational formulation in

H1
1,#(Ω) := {u ∈ H1(Ω), u = 0 on ΓD, γ∂ΩV u ∈ H1

0(∂ΩV)},

which is obtained by multiplying (2.4) by v and integrating by parts. We introduce the bilinear
forms

aΩ(u, v) :=
∫

Ω A∇u∇v dx dy +
∫

Ω ηuv dx dy,

a(u, v) := aΩ(u, v) + 〈Λu, v〉∂ΩV ,
(2.6)

where the last term must be understood as a duality product in H1
0(Γ), which can be rewritten

in variational form as

〈Λu, v〉∂ΩV = p
∫

∂ΩV

uv dy + q
∫

∂ΩV

Ayy∂yu ∂yv dy.

Λ is a self-adjoint continuous coercive operator from H1
0(∂ΩV) onto H−1(∂ΩV). It has a con-

tinuous self-adjoint inverse, defining a scalar product on H−1(∂ΩV) by

〈u, v〉Λ−1 := 〈v, Λ−1u〉∂ΩV . (2.7)

Computing

a(u, u) =
∫

Ω
A|∇u|2 dx dy +

∫
Ω

ηu2 dx dy + p
∫

∂ΩV

u2 dy + q
∫

∂ΩV

Ayy(∂yu)2 dy,

we see that a is a bilinear continuous coercive form on H1
1,#(Ω), equipped with the scalar

product

(w, v)H1
1,#(Ω) = (∇w,∇v)L2(Ω) + 〈∂yw, ∂yv〉∂ΩV . (2.8)

This gives existence and uniqueness of a weak solution in H1
1,#(Ω), i.e. a solution of

a(u, v) = ( f , v)L2(Ω) + 〈g, v〉∂ΩV .

If q = 0, the proof holds in H1(Ω).
For regularity results, u is such that ∆u ∈ L2(Ω), γ∂ΩD u = 0 and (∂x− ∂yy)γ∂ΩV u ∈ L2(∂ΩV).

Such a regularity result was proved in [37] for a regular boundary with Ventcell boundary
condition all around, but due to the convexity of the domain, the result applies here.
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2.2. Convergence analysis using energy estimates. We now prove that the optimized Schwarz
algorithm (2.2) converges when applied to the anisotropic diffusion problem (2.1).

Theorem 2.2 (Convergence of the Optimized Schwarz Algorithm). For any initial guess (u0
1, u0

2)
in W(Ω1) ×W(Ω2), (2.2) defines a sequence of iterates in W(Ω1) ×W(Ω2). If the solution u of
(2.1) is such that Λu ∈ L2(Γ), the sequence converges in H1(Ω1)× H1(Ω2) to u.

Proof. The existence of the iterates is a consequence of Theorem 2.1. The solution u of the
boundary value problem (2.1) satisfies the continuity of the trace of u and the flux F := A∇u · n
on the interface. Therefore by linearity, with the assumption stated in the theorem, only the
convergence to the zero solution of the sequences of iterates with f = 0 has to be proved.
Defining the continuous flux F`

j := −A∇u`
j · nj, the transmission condition on Γ takes the form

− F`
j + Λu`

j = F`−1
i + Λu`−1

i . (2.9)

Multiplying the PDE in (2.2) by u`
j and integrating yields

aΩj(u
`
j , u`

j ) + R`,j = 0, R`,j := 〈F`
j , u`

j 〉Γ. (2.10)

The essential step now in the proof is that, using the scalar product defined by Λ−1 in (2.7),
the boundary term R`,j can be rewritten as the difference of squares,

R`,j = 〈F`
j , Λ−1Λu`

j 〉Γ = 〈F`
j , Λu`

j 〉Λ−1 =
1
4
‖F`

j + Λu`
j‖2

Λ−1 −
1
4
‖F`

j −Λu`
j‖2

Λ−1 .

Inserting this last expression into (2.10), we obtain

aΩj(u
`
j , u`

j ) +
1
4
‖F`

j + Λu`
j‖2

Λ−1 =
1
4
‖F`

j −Λu`
j‖2

Λ−1 .

We can now replace the right hand side using the transmission condition (2.9), and get

aΩj(u
`
j , u`

j ) +
1
4
‖F`

j + Λu`
j‖2

Λ−1 =
1
4
‖F`−1

i + Λu`−1
i ‖2

Λ−1 .

Summing this equality over the subdomains and the iterations, we obtain for any `max ≥ 1,
due to the telescopic sum, that

`max

∑
`=1

2

∑
j=1

aΩj(u
`
j , u`

j ) +
1
4

2

∑
j=1
‖F`max

j + Λu`max
j ‖2

Λ−1 =
1
4

2

∑
j=1
‖F0

j + Λu0
j ‖2

Λ−1 .

Since the right hand side is a fixed quantity, the left hand side must remain bounded for all
`max, and thus the iterates u`

j tend to zero in H1(Ωj) as ` goes to infinity.

2.3. Convergence factor at the continuous level. The convergence proof by energy estimates
from Theorem 2.2 does not tell us anything about how to choose the parameters p and q to
obtain fast convergence. In order to obtain such information, a technique in optimized Schwarz
methods is to study the algorithm on specific, simpler domains with constant coefficients
using Fourier techniques [18]. We therefore choose now the domain Ω := (−L, L)×R with
subdomains Ω1 := (−L, 0) × R and Ω2 := (0, L) × R and suppose that the matrix A and
function η are constant. A Fourier transform in the y direction with Fourier parameter k of
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(2.1) then leads in the homogeneous case for the error we are interested in to solve the ordinary
differential equation

− Axx
∂2û
∂x2 − 2ikAxy

∂û
∂x

+ (η + k2Ayy)û = 0, (2.11)

where û = û(x, k) corresponds to the Fourier transformed solution of (2.1) with f = 0. The
characteristic equation of (2.11) is

Axxr2 + 2ikAxyr− (η + k2Ayy) = 0.

Since A is positive definite, there are two complex anti-conjugate roots

r±(k) =
−ikAxy ± D(k)

Axx
, D(k) :=

√
ηAxx + k2 det A > 0. (2.12)

The transmission conditions in (2.2) then take the form

(Axx∂x + ikAxy + Λ(ik))û`
1 = (Axx∂x + ikAxy + Λ(ik))û`−1

2
(−Axx∂x − ikAxy + Λ(ik))û`

2 = (−Axx∂x − ikAxy + Λ(ik))û`−1
1 .

(2.13)

In the case when the subdomains are half spaces, L = +∞, in order for the subdomain solu-
tions u`

j to be temperate distributions, we must have

û`
1(x, k) = C`

1(k)e
r+(k)x, û`

2(x, k) = C`
2(k)e

r−(k)x, (2.14)

and the transmission conditions in (2.13) give

(P(k) + D(k))C`
1(k) = (P(k)− D(k))C`−1

2 (k),
(P(k) + D(k))C`

2(k) = (P(k)− D(k))C`−1
1 (k),

with P(k) := Λ(ik). The convergence factor in this case is therefore

ρ(P, k) :=
P(k)− D(k)
P(k) + D(k)

, P(k) = p + qAyyk2, (2.15)

characterizing the contraction of the functions C`
j (k) in the subdomain solutions (2.14),

C`
j (k) = (ρ(P(k), k))2 C`−2

j (k) = (ρ(P(k), k))2b `2 c C mod (`,2)
j (k).

The smaller the convergence factor, the faster the convergence of the algorithm.
Suppose now that the subdomains are strips, and L > 0 is a fixed quantity. Then the

subdomain solutions are of the form

û`
1(x, k) = C`

1(k) er+(k)(L+x) + D`
1(k) er−(k)(L+x),

û`
2(x, k) = C`

2(k) er−(k)(−L+x) + D`
2(k) er+(k)(−L+x).

(2.16)

The outer boundary conditions for the error we consider here are û`
1(−L, k) = 0 and û`

2(L, k) =
0, which implies that D`

1(k) = −C`
1(k) and D`

2(k) = −C`
2(k), and therefore

û`
1(x, k) = C`

1(k)
(

er+(k)(L+x) − er−(k)(L+x)
)

,

û`
2(x, k) = C`

2(k)
(

er−(k)(−L+x) − er+(k)(−L+x)
)

.
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The transmission conditions in (2.13) then give(
er+(k)L(P(k) + D(k) )− er−(k)L(P(k)− D(k) )

)
C`

1(k)

=
(

e−r−(k)L(P(k)− D(k) )− e−r+(k)L(P(k) + D(k) )
)

C`−1
2 (k),(

e−r−(k)L(P(k) + D(k))− e−r+(k)L(P(k)− D(k))
)

C`
2(k)

=
(

er+(k)L(P(k)− D(k))− er−(k)L(P(k) + D(k))
)

C`−1
1 (k).

There are therefore two components forming the convergence factor, one from domain 1 to
domain 2 and one from domain 2 to domain 1,

ρ1→2 =
P(k)

(
e−r−(k)L − e−r+(k)L

)
− D(k)

(
e−r−(k)L + e−r+(k)L

)
P(k)

(
er+(k)L − er−(k)L

)
+ D(k)

(
er+(k)L + er−(k)L

) ,

ρ2→1 =
P(k)

(
er+(k)L − er−(k)L

)
− D(k)

(
er+(k)L + er−(k)L

)
P(k)

(
e−r−(k)L − e−r+(k)L

)
+ D(k)

(
e−r−(k)L + e−r+(k)L

) .

Dividing their product by the factors multiplying P(k), we obtain

ρ1→2ρ2→1 =
P(k)− D(k)

e−r−(k)L + e−r+(k)L

e−r−(k)L − e−r+(k)L

P(k) + D(k)
er+(k)L + er−(k)L

er+(k)L − er−(k)L

P(k)− D(k)
er+(k)L + er−(k)L

er+(k)L − er−(k)L

P(k) + D(k)
e−r−(k)L + e−r+(k)L

e−r−(k)L − e−r+(k)L

.

A direct calculation shows that

e−r−(k)L + e−r+(k)L

e−r−(k)L − e−r+(k)L
=

er+(k)L + er−(k)L

er+(k)L − er−(k)L
= coth(

L
Axx

D(k)),

and we therefore obtain ρ1→2ρ2→1 = ρ2
b, with the convergence factor

ρb(P, k) =
P(k)− D(k) coth( L

Axx
D(k))

P(k) + D(k) coth( L
Axx

D(k))
. (2.17)

We see that the convergence factor ρb(P, k) for the bounded domain case is very similar to the
convergence factor ρ(P, k) in (2.15) for the unbounded domain case, and converges to it for
fixed k as L goes to infinity.

We however also notice that both convergence factors tend to 1 for high frequencies for any
fixed parameter choice p and q, and convergence for high frequencies can thus be arbitrarily
slow. Fortunately, in a discrete setting, only frequencies smaller than the largest eigenvalue
of the discrete transverse operator ∂yy intervene. Therefore it is of great importance to find
coefficients p and q which minimize the maximum of the convergence factor over a set of
bounded frequencies, k ∈ [kmin, kmax], that is to find parameters p and q which minimize the
maximum norm of |ρ(P(·), ·)|, a best approximation problem we study next.
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2.4. Best approximation problem and general results. Since D(k) defined in (2.12) and P(k)
depend on k2 only, we define µ := k2, and on the unbounded domain the function

f∞(µ) := D(k) =
√

µ det A + ηAxx. (2.18)

and the corresponding function on the bounded domain,

fL(µ) := D(k) coth
(

L
Axx

D(k)
)
= f∞(µ) coth

(
L

Axx
f∞(µ)

)
. (2.19)

Then the corresponding convergence factors become with Q(µ) := p + qAyyµ

ρ(Q, µ) =
Q(µ)− f∞(µ)

Q(µ) + f∞(µ)
and ρL(Q, µ) = e2ik

Axy
Axx L Q(µ)− fL(µ)

Q(µ) + fL(µ)
.

Let M be a segment in R∗+, M := [µmin, µmax] = [k2
min, k2

max]. f∞ and fL are positive functions on

M, the term e2ik
Axy
Axx L in ρb(Q, µ) has modulus equal to 1, and can be omitted in what follows,

giving rise to two real best approximation problems which are of the form:

for F(Q, µ) := Q(µ)− f (µ)
Q(µ)+ f (µ) and G(Q) := supµ∈M |F(Q(µ), µ)|,

find Q∗n ∈ Pn such that δ∗n := G(Q∗n) = infQ∈Pn G(Q),
(2.20)

where Pn is the space of polynomials of degree smaller or equal to n.

Definition 2.1 (Alternating sequence). Let Q ∈ Pn. An alternating sequence of length m for
F(Q(·), ·) is a sequence of points (µ1 < · · · < µm) in M such that

|F(Q(µi), µi)| = ‖F(Q(·), ·)‖∞ , F(Q(µi), µi) = −F(Q(µi+1), µi+1).

Theorem 2.3. Let M be a segment in R, n ≥ 0, and f be a continuous positive function on M. Then
δ∗n < 1, and problem (2.20) has a unique solution Q∗n, for which F(Q∗n(·), ·) has an alternating sequence
of at least n + 2 points.

Proof. Existence, uniqueness and the alternation property are a consequence of a more general
analysis in C, see [4].

Theorem 2.4 (Homographic De la Vallée Poussin). Let M be a segment in R, n ≥ 0, and f be a
continuous positive function on M. Then any polynomial Q for which F(Q(·), ·) has an alternating
sequence µ1 < · · · < µn+2 of length n + 2, and δ = ‖F(Q(·), ·)‖∞ < 1, is the global minimum point
Q∗n of G.

Proof. By the uniqueness theorem it suffices to prove that δ = δ∗n. The proof is then by contra-
diction: assuming that δ > δ∗n, we write for each i

F(Q(µi), µi)︸ ︷︷ ︸
±δ

− F(Q∗n(µi), µi)︸ ︷︷ ︸
| |≤δ∗n<δ

= 2
f (µi)(Q(µi)−Q∗n(µi))

( f (µi) + Q(µi))( f (µi) + Q∗n(µi))
. (2.21)

Note first that δ < 1 if and only if Q is positive on the interval. The denominator in the
right hand side is therefore positive. Since f (µi) > 0 and since the left-hand side has the sign
of F(Q(µi), µi), Q(µi) − Q∗n(µi) has the sign of F(Q(µi), µi). Thus the polynomial Q − Q∗n
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alternates in sign at the n + 2 points µi. It must therefore have at least n + 1 roots, and being
of degree n it must vanish identically, which implies Q = Q∗n and δ = δ∗n.

We now use the general results in Theorem 2.3 and 2.4 for the concrete case of n = 0 and
n = 1, which correspond to the Robin and Ventcell transmission conditions in the optimized
Schwarz method.

Theorem 2.5 (Solution for n = 0). If f is positive and monotonic, problem (2.20) for n = 0 has a
unique solution Q∗0 . The alternation points of F(Q∗0 , ·) are the endpoints of the interval, µmin and µmax,
and

Q∗0 =
√

f (µmax) f (µmin),

δ∗0 = |F(Q∗0 , µmin)| =
∣∣∣∣√ f (µmax)−

√
f (µmin)√

f (µmax)+
√

f (µmin)

∣∣∣∣ .
(2.22)

Proof. By Theorem 2.3, there is a unique solution Q∗0 , and it alternates at least twice. Since
δ∗0 < 1, Q∗0 is positive, and since f is monotonic, µ 7→ F(Q, µ) is monotonic as well, and the
extrema can only be at the endpoints. Alternation at those points, F(Q, µmin) = −F(Q, µmax)
is equivalent to Q =

√
f (µmin) f (µmax). By uniqueness, we then obtain that Q∗0 = Q.

Theorem 2.6 (Solution for n = 1). If f is positive, problem (2.20) for n = 1 has a unique solution
Q∗1 . Furthermore, if f is twice continuously differentiable, monotonic, with f ′′ of constant sign, there
exists a unique µ̄ ∈ (µmin, µmax) solution of

g(µ̄) :=
f (µ̄)
f ′(µ̄)

− µ̄ = s, s :=
µmax f (µmin)− µmin f (µmax)

f (µmax)− f (µmin)
, (2.23)

such that F(Q∗1 , ·) alternates at µmin, µ̄ and µmax. If Q∗1(µ) = p∗1 + q̃∗1µ, then the coefficients are given
by

q̃∗1 =

√
f (µmin) f (µ̄)

(s + µmin)(s + µ̄)
, p∗1 = sq̃∗1 , (2.24)

and we obtain δ∗1 = |F(Q∗1 , µmin)|.

Proof. The assumptions in the Theorem imply that f is strictly monotonic, and hence s is
well defined, since the denominator can not vanish, and also f ′ never vanishes. By Theo-
rem 2.3, there exists a unique polynomial Q∗1 with at least three alternation points for µ →
F(Q(µ), µ), with Q(µ) = p + q̃µ. The extremum points can only be endpoints, or µ̄ such that
∂µF(Q(µ), µ) = 0. Fixing p and q̃, we compute

∂µF(Q(µ), µ) =
f (µ)q̃− f ′(µ)(p + q̃µ)

(Q(µ) + f (µ))2 = q̃ f ′(µ)
g(µ)− s

(Q(µ) + f (µ))2 . (2.25)

Since f ′ never vanishes, ∂µF(Q(µ), µ) vanishes if and only if the numerator vanishes, which
leads to the first equation in (2.23). Since

g′(µ) = − f (µ) f ′′(µ)
f ′2(µ)

,
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under the assumptions of the theorem, g is monotonic, and so is the numerator in (2.25)
which shows that the derivative in µ vanishes at most once. Therefore the alternations are at
(µmin, µ̄, µmax), and the alternation property is expressed by

Q(µmin)− f (µmin)

Q(µmin) + f (µmin)
=

Q(µmax)− f (µmax)

Q(µmax) + f (µmax)
= −Q(µ̄)− f (µ̄)

Q(µ̄) + f (µ̄)
, (2.26)

where µ̄ is defined from s by the first equation in (2.23). The system can be rewritten in the
form

Q(µmin)

f (µmin)
=

Q(µmax)

f (µmax)
=

f (µ̄)
Q(µ̄)

.

The first equality can be solved for s in (2.23), and the second equality gives a relation between
q̃ and µ̄,

q̃2(s + µmin)(s + µ̄) = f (µmin) f (µ̄).
With p∗1 , q̃∗1 and µ̄ defined in (2.23, 2.24), we thus have three alternations with ‖G(p∗1 +
q̃∗1µ)‖∞ < 1, and hence by Theorem 2.4, this is the unique solution.

2.5. Optimized parameters for the Schwarz methods. According to the definition of the con-
vergence factor in (2.15), the analysis of the best approximation problem above applies in the
case of an unbounded domain Ω with µ := k2, f (µ) := D(k), and Q(µ) = p + q̃µ = p + qAyyµ.

Theorem 2.7 (Best parameters for unbounded Ω). Let D(k) =:
√

ηAxx + k2 det A. The coefficient
leading to the best convergence for the Robin Schwarz algorithm on the unbounded domain Ω is

p∗,∞0 =
√

D(kmax)D(kmin), (2.27)

with associated optimized convergence factor

ρ∗,∞0 =

∣∣∣∣∣
√

D(kmax)−
√

D(kmin)√
D(kmax)+

√
D(kmin)

∣∣∣∣∣ . (2.28)

The coefficients leading to the best convergence for the Ventcell Schwarz algorithm are

p∗,∞1 =
√

det A k2
max D(kmin)−k2

minD(kmax)√
2(k2

max−k2
min) (D(kmax)−D(kmin)) (D(kmin)D(kmax))

1
4

,

q∗,∞1 =
√

det A
Ayy

√
D(kmax)−D(kmin)√

2(k2
max−k2

min) (D(kmin)D(kmax))
1
4

,
(2.29)

with the even smaller optimized convergence factor

ρ∗,∞1 =

∣∣∣∣∣ p∗,∞1 + q∗,∞1 Ayyk2
min − D(kmin)

p∗,∞1 + q∗,∞1 Ayyk2
min + D(kmin)

∣∣∣∣∣ .

Proof. This result has already been obtained using a different analysis and a transformation in
[14, Section 5], and has even been extended to the case of discontinuous coefficients. We use
here Theorem 2.5 and 2.6 with f = f∞ to give a different proof. First, for the case of Robin
conditions, it suffices to replace the definition of f into (2.22) from Theorem 2.5 to get (2.27)
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and (2.28). For the Ventcell conditions, let s∞ be as defined in (2.23); then the solution of (2.23)
can be obtained in closed form,

µ̄∞ = s∞ − 2
ηAxx

det A
. (2.30)

To obtain the coefficients, we compute first the terms in q∗1 defined in (2.24),

f∞(µ̄∞) =
√

s∞ det A− ηAxx, µ̄∞ + s∞ =
2

det A
(s∞det A− ηAxx), (2.31)

and a direct computation shows that the common term can be expressed as

s∞ det A− ηAxx = f∞(µmin) f∞(µmax).

Substituting this into the the terms in (2.31) and inserting them into the formula for q̃∗1 defined
in (2.24), we obtain q̃∗,∞1 in (2.29) when replacing µ by k2 and f∞ by D(k), and the corresponding
expression for q∗,∞1 = q̃∗,∞1 /Ayy in (2.29) follows. Then p∗,∞1 = s∞q̃∗,∞1 from (2.24).

As mentioned earlier, the upper bound on the frequency kmax is related to the largest eigen-
value of the discrete transverse operator ∂yy, that is kmax ∼ π

h , where h is the mesh size along
the interface [18], and we obtain the following asymptotic result.

Corollary 2.1 (Asymptotic performance on unbounded Ω). For small mesh size h, i.e. large
kmax = π

h , the best Robin parameter and associated convergence factor behaves like

p∗,∞0 =
√

D(kmin)
4
√

det A k
1
2
max +O(k

− 3
2

max),

ρ∗,∞0 = 1− 2
√

D(kmin)
4√det A

k−
1
2

max +O(k−1
max),

(2.32)

and in the Ventcell case we obtain

p∗,∞1 =
D(kmin)

3
4

√
2det A

3
8

k
1
4
max +O(k

− 3
4

max),

q∗,∞1 =
det A

5
8

√
2AyyD(kmin)

1
4

k−
3
4

max +O(k
− 7

4
max),

ρ∗,∞1 = 1− 2
√

2D(kmin)
1
4 det A

3
8 k−

1
4

max +O(k
− 1

2
max).

(2.33)

Proof. It suffices to insert D(kmax) = kmax
√

det A(1 +O(k−2
max)) into the closed form solutions

of Theorem 2.7 and to expand then for kmax large.

In the case of a bounded domain, it is unfortunately not possible to solve (2.23) in closed
form, and we first use an auxiliary asymptotic approximation of the coth term in fL to obtain
a very good approximation of the coefficients, in closed form:

Theorem 2.8 (Semi-asymptotic performance on bounded Ω). Let f∞ and fL be the functions
defined in (2.18,2.19). The best Robin parameter and associated convergence factor on a bounded domain
of size 2L are in the Robin case

p∗,L0 =
√

fL(k2
min) fL(k2

max), ρ∗,L0 =

∣∣∣∣∣∣
√

fL(k2
max)−

√
fL(k2

min)√
fL(k2

max) +
√

fL(k2
min)

∣∣∣∣∣∣ . (2.34)
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In the Ventcell case, we obtain

p∗,L1 =
√

det A(k2
max fL(k2

min)−k2
min f∞(k2

max))√
2(k2

max−k2
min)
√

f∞(k2
max) ( f∞(k2

max) fL(k2
min)− f 2

∞(k2
min)) ( f∞(k2

max)− fL(k2
min))

+O(e−k2
max),

q∗,L1 = 1
Ayy

√
det A( f∞(k2

max)− fL(k2
min))

3
4√

2(k2
max−k2

min)
√

f∞(k2
max) ( f∞(k2

max) fL(k2
min)− f 2

∞(k2
min))

+O(e−k2
max),

(2.35)

with associated convergence factor

ρ∗,L1 =

∣∣∣∣∣ p∗,L1 + q∗,L1 Ayyk2
min − fL(k2

min)

p∗,∞1 + q∗,∞1 Ayyk2
min + fL(k2

min)

∣∣∣∣∣ .

Proof. In the case of a bounded domain Ω, where fL(µ) = f∞(µ) coth
(

L
Axx

f∞(µ)
)

, Theorem
2.5 still applies, since fL is positive and strictly increasing, and we easily obtain (2.34) for the
Robin case. For the Ventcell case, to use Theorem 2.6, we need to solve equation (2.23) with f
replaced by fL, i.e. with

gL(µ) :=
fL(µ)

f ′L(µ)
− µ. (2.36)

To see that equation (2.23) still has a unique solution, we compute

f ′′L (µ) =
a2

4 f 3
L(µ)

(2Y2 cosh Y− sinh2 Y cosh Y−Y sinh Y), Y =
L

Axx
f∞(µ).

A series expansion in Y of the function in the parentheses gives

∑
n≥1

anY2n, an =
4n(n− 1) + 1

4 −
32n

4
(2n)!

,

and for n ≥ 1, all coefficients an are negative. Therefore gL is strictly increasing, and the
equation gL(µ) = s from (2.23) has a unique solution, which is however not available in closed
form. We thus use exponential asymptotics for large µmax and fixed L,

fL(µmax) = f∞(µmax)(1 +O(e−µmax)),

sL = µmax fL(µmin)−µmin f∞(µmax)
f∞(µmax)− fL(µmin)

+O(e−µmax).

Then sL = O(µ
1
2
max), and since the function gL is increasing, we can see that the solution µ̄L of

(2.23) with g = gL from (2.36) must increase at infinity as well. Furthermore for large µ

gL(µ) =
fL(µ)

f ′L(µ)
− µ =

f∞(µ)

f ′∞(µ)
(1 +O(e−µ))− µ = µ + 2

ηAxx

det A
+O(e−µ).

Therefore, we obtain instead of µ̄∞ from the unbounded domain case in (2.30)

µ̄L = sL − 2
ηAxx

det A
+O(e−µmax)
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=
µmax fL(µmin)− µmin f∞(µmax)

f∞(µmax)− fL(µmin)
− 2

ηAxx

det A
+O(e−µmax),

and for the terms in q∗1 we get instead of (2.31)

f 2
L(µ̄L) = f 2

∞(µ̄L) +O(e−µmax) = sL det A− ηAxx +O(e−µmax),

and

sL + µ̄L =
2

det A
(sL det A− ηAxx) +O(e−µmax).

We now simplify asymptotically the common term,

sL det A− ηAxx = f∞(µmax)
f∞(µmax) fL(µmin)− f 2

∞(µmin)

f∞(µmax)− fL(µmin)
+O(e−µmax),

Inserting these results into (2.24) and simplifying, we obtain (2.35).

Corollary 2.2 (Asymptotic performance on bounded Ω). For small mesh size h, i.e. large kmax =
π
h , the best Robin parameter and associated convergence factor behave like

p∗,L0 =
√

kmax
4
√

det A
√

fLmin +O(k
− 3

2
max),

ρ∗,L0 = 1− 2

√
fLmin

4
√

det A
1√
kmax

+O(k−1
max),

(2.37)

where fLmin :=
√

∆(kmin) coth
(

L
Axx

√
∆(kmin)

)
, and in the Ventcell case we obtain

p∗,L1 =
fL

3
4
min√

2det A
3
8

k
1
4
max +O(k

− 3
4

max),

q∗,L1 =
det A

5
8

√
2Ayy fL

1
4
min

k−
3
4

max +O(k
− 7

4
max),

ρ∗,L1 = 1− 2
√

2 fL
1
4
mindet A

3
8 k−

1
4

max +O(k
− 1

2
max).

(2.38)

Proof. It suffices to use in (2.35) the approximation

f∞(k2
max) = kmax

√
det A(1 +O(k−2

max)).

From our asymptotic analyses in Corollary 2.1 for the unbounded domain case and Corol-
lary 2.2 for the bounded domain case, we can see that with Robin transmission conditions,
the convergence factor behaves like 1− C

4√det A

√
h, where h is the mesh size along the inter-

face, with a slightly different constant C that has an extra dependence on the ratio L
Axx

in the
bounded domain case, and thus the ratio of the domain size compared to the diffusion in the
x-direction will influence the performance of the method on bounded domains. With Vent-
cell transmission conditions, the convergence factor behaves like 1− C det A

3
8 h

1
4 , again with
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Figure 1. The mesh T

a slightly different constant with the same extra dependence on the ratio L
Axx

as in the Robin
case. So Ventcell conditions will always lead to a much faster algorithm than Robin condi-
tions, and a large or small ratio L

Axx
will require the bounded domain analysis for accurate best

parameter prediction.

3. Analysis at the discrete level

We now present the discrete duality finite volume discretization (DDFV) for anisotropic
diffusion problems applied to the optimized Schwarz algorithms presented in Section 2. The
algorithm is built on the equation with variable diffusion matrix A.

3.1. Discrete duality finite volumes (DDFV). DDFV discretizations need a certain amount of
notation for which we follow [1]. A DDFV mesh T consists of a primal mesh M and a dual
mesh M∗ ∪ ∂M∗, see Figure 1 for an illustration. The primal mesh M is a set of disjoint open
polygonal control volumes k ⊂ Ω such that ∪k = Ω. We denote by ∂M the set of edges of the
control volumes in M included in ∂Ω, which we consider as degenerate control volumes. To
each control volume and degenerate control volume k ∈M∪ ∂M, we associate a point xk ∈ k.
This family of points is denoted by X = {xk, k ∈M∪ ∂M}.

Let X∗ denote the set of the vertices xk
∗ of the primal control volumes in M. We split this set

into X∗ = X∗int ∪ X∗ext where X∗int ∩ ∂Ω = ∅ and X∗ext ⊂ ∂Ω. For all neighbor control volumes k

and l, we assume that ∂k ∩ ∂l is an edge of the primal mesh denoted by σ = k|l. We note by
E the set of such edges.

Given the families of points X and X∗, we define the diamond cells D to be the quadrangles
whose diagonals are a primal edge σ = k|l = (xk

∗ , xl
∗) and the line (xk, xl), see Figure 2. We

call the set of diamond cells D. A diamond cell D is an interior diamond cell, D ∈ Dint, if
[xk

∗ , xl
∗ ] 6⊂ ∂Ω, and an exterior diamond cell D ∈ Dext otherwise, and we have Ω = ∪

D∈D
D. To

each diamond D ∈ D, we associate a point xD ∈ [xk
∗ , xl

∗ ]. Any interior diamond cell can thus
be split into four triangles D = TD

kk
∗ ∪ TD

kl
∗ ∪ TD

lk
∗ ∪ TD

ll
∗ , and any exterior diamond cell into

two triangles D = TD
kk
∗ ∪ TD

kl
∗ , see Figure 2. Let Dk be the set of diamonds with xk as vertices
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Figure 2. Notation in the diamond cells. Left: interior cell. Right: boundary
dual and diamond cells.

and Dk
∗ the set of diamonds with xk

∗ as vertices. We then observe that any primal cell can be
described as

k = ∪D∈Dk
(TD

kk
∗ ∪ TD

kl
∗).

To any point xk
∗ ∈ X∗, we associate in a similar way the polygon k

∗ defined by

k
∗ := ∪

D∈D
k
∗∩Dint

(TD
kk
∗ ∪ TD

lk
∗)
⋃

∪
D∈D

k
∗∩Dext

TD
kk
∗ . (3.1)

This defines the set M∗ ∪ ∂M∗ of dual control volumes that forms a partition of Ω consisting
of a family of disjoint polygonal control volumes. The dual edges are denoted by σ∗ = k

∗|l∗,
and E∗ is the set of dual edges.

For any primal control volume k ∈M∪ ∂M, we denote by mk its Lebesgue measure, and the
corresponding dual notation is mk

∗ . For a diamond cell D whose vertices are (xk, xk
∗ , xl, xl

∗),
we denote by

• mD its measure,
• mσ the length of the primal edge σ,
• mσ∗ the length of the dual edge σ∗,
• mσ

k
∗ the measure of ∂k

∗ ∩ Γ.
In DDFV, an unknown value uk is associated with all primal control volumes k ∈ M ∪ ∂M,

and an unknown value uk
∗ is associated with all dual control volumes k

∗ ∈ M∗ ∪ ∂M∗. We
denote the approximate solution on the mesh T by uT ∈ RT where

uT =
(
(uk)k∈(M∪∂M) , (uk

∗)
k
∗∈(M∗∪∂M∗)

)
.

Following [10, 27, 12], we define a consistent approximation of the gradient operator denoted
by ∇D : uT ∈ RT 7→

(
∇DuT

)
D∈D ∈ (R2)D,

∇DuT :=
1

2mD
[(ul − uk)Nkl + (ul

∗ − uk
∗)Nk

∗
l
∗ ] , ∀D ∈ D, (3.2)

with Nkl = (xl
∗ − xk

∗)⊥ and Nk
∗
l
∗ = (xl − xk)⊥ with the convention ((xl

∗ − xk
∗) ∧ (xl −

xk), ez) > 0.
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As in [27, 12], we also define a consistent approximation of the divergence operator denoted
by divT : ξD = (ξD)D∈D 7→ divT ξD ∈ RT with

divkξD :=
1

mk

∑
D∈Dk

(ξD, Nkl), ∀k ∈M, (3.3a)

divk
∗
ξD :=

1
mk
∗

∑
D∈D

k
∗

(ξD, Nk
∗
l
∗), ∀k

∗ ∈M∗. (3.3b)

The DDFV approximation uT ∈ RT of (2.1) is then solution to the linear system

− divk

(
AD∇DuT

)
+ ηkuk = fk, ∀ k ∈M, (3.4a)

− divk
∗ (

AD∇DuT
)
+ ηk

∗uk
∗ = fk

∗ , ∀ k
∗ ∈M∗, (3.4b)

uk = 0, ∀ k ∈ ∂M, uk
∗ = 0, ∀ k

∗ ∈ ∂M∗. (3.4c)
where

AD = (AD)D∈D , AD = A(xD),

fT =
(
( fk)k∈(M∪∂M) , ( fk

∗)
k
∗∈(M∗∪∂M∗)

)
, fk = f (xk), fk

∗ = f (xk
∗),

ηT =
(
(ηk)k∈(M∪∂M) , (ηk

∗)
k
∗∈(M∗∪∂M∗)

)
, ηk = η(xk), ηk

∗ = η(xk
∗)

in case of smooth functions A, f and η. Otherwise, mean values of the functions can be used.

3.2. DDFV on composite meshes. In the case of a domain decomposition into two subdo-
mains Ω = Ω1 ∪Ω2, we need to consider for each subdomain Ωj of Ω, j = 1, 2, a DDFV mesh
Tj = (Mj ∪ ∂Mj,M∗j ∪ ∂M∗j ), and the associated diamond mesh Dj. Letting Γ be the interface
between Ω1 and Ω2, we denote by

Dj,Γ := {D ∈ Dj, D∩ Γ 6= ∅} the diamond cells intersecting Γ,
∂Mj,Γ := {k ∈ ∂Mj, k∩ Γ 6= ∅} the boundary primal cells intersecting Γ,
∂M∗j,Γ := {k∗ ∈ ∂M∗j , k

∗ ∩ Γ 6= ∅} the boundary dual cells intersecting Γ,
∂Mj,D := {k ∈ ∂Mj, k∩ ∂Ω 6= ∅} the boundary primal cells intersecting ∂Ω,
∂M∗j,D := {k∗ ∈ ∂M∗j , k

∗ ∩ ∂Ω 6= ∅} the boundary dual cells intersecting ∂Ω.

For an example, see Figures 3 and 4. We will assume that the two meshes are compatible in
the following sense:

(1) The two meshes have the same vertices on Γ. This implies in particular that the two
meshes have the same degenerate control volumes on Γ, that is ∂M1,Γ = ∂M2,Γ. Let N
be the number of edges on Γ. For the sake of clarity, we sort these edges σ1, · · · , σN in
such a way that σs ∩ σs+1 6= ∅. We refer to x

k
∗
s , x

k
∗
s+1

for the vertices of σs. Note that
x

k
∗
s = σs ∩ σs−1.

(2) The edges σs, whose center is denoted by xls , can be assimilated to a primal degenerated
boundary control volume for both meshes, i.e. ls ⊂ ∂M1 ∩ ∂M2.
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Figure 3. From a DDFV mesh T of the whole domain Ω to the Tj on Ωj.
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Figure 4. From a Nonconforming DDFV mesh T of the whole domain Ω to the
Tj on Ωj.

Remark 3.1 (Non conforming meshes). In the definition of general finite volume meshes, the inter-
sections of two neighboring control volumes are called edges of the mesh. Figure 4 (left) shows in the case
of a non conforming mesh that a square volume may have more than 4 vertices. To create a compatible
composite mesh from two a priori non conformal meshes, it is thus natural to add additional vertices on
Γ as shown in Figure 4 (right) in such a way that edges of ∂M1,Γ coincide with edges of ∂M2,Γ.

We next define the DDFV discretization for the transmission conditions of Ventcell type. We
associate one unknown per interior and exterior primal and dual cell uT j ∈ RTj and one flux

unknown ψk
∗ for j = 1, 2, per interface dual cell k

∗ ∈ ∂M∗j,Γ. We denote by ψT j ∈ R
∂M∗j,Γ

the collection of all flux unknowns ψk
∗ , see Figure 5. For uT j ∈ RTj , ψT j ∈ R

∂M∗j,Γ , fT j ∈
R

Mj∪M∗j ∪∂M∗j and hT j ∈ R
∂Mj,Γ∪∂M∗j,Γ , we refer by

LT j
Ωj,Γ

(uT j , ψT j , fT j , hT j) = 0

to the linear system

− divk

(
AD∇DuT j

)
+ ηkuk = fk, ∀ k ∈Mj, (3.5a)



OPTIMIZED SCHWARZ METHODS FOR ANISOTROPIC DIFFUSION WITH DDFV 199

− divk
∗ (

AD∇DuT j

)
+ ηk

∗uk
∗ = fk

∗ , ∀ k
∗ ∈M∗j , (3.5b)

− 1
mk
∗

(
∑

D∈D
k
∗

(
AD∇DuT j , Nk

∗
l
∗

)
+mσ

k
∗ψk

∗

)
+ ηk

∗uk
∗ = fk

∗ , ∀ k
∗ ∈ ∂M∗j,Γ, (3.5c)

(
AD∇DuT j , Nkl

)
+ mσΛ

∂Mj,Γ
l

(u∂Mj,Γ) = mσhl, ∀ l ∈ ∂Mj,Γ, (3.5d)

ψk
∗ + Λ

∂M∗j,Γ
k
∗ (u∂M∗j,Γ

) = hk
∗ , ∀ k

∗ ∈ ∂M∗j,Γ, (3.5e)

uk = 0, ∀ k ∈ ∂Mj,D, uk
∗ = 0, ∀ k

∗ ∈ ∂M∗j,D, (3.5f)

with for s = 1, · · · , N

Λ
∂Mj,Γ
ls (u∂Mj,Γ) = puls −

q
mσs

(
As∗+1

yy
uls+1 − uls

mσ
k
∗
s+1

− As∗
yy

uls − uls−1

mσ
k
∗
s

)
(3.6)

and for s = 2, . . . , N

Λ
∂M∗j,Γ
k
∗
s

(u∂M∗j,Γ
) = p∗u

k
∗
s −

q∗

mσ
k
∗s

(
As

yy
u

k
∗
s+1
− u

k
∗
s

mσs

− As−1
yy

u
k
∗
s − u

k
∗
s−1

mσs−1

)
. (3.7)

where As
yy and As∗

yy are the values of Ayy at the points xls and x
k
∗
s . Note that ul0 = ulN+1 = 0

and u
k
∗
1
= u

k
∗
N+1

= 0 because of the boundary condition on ∂Ω.
Equations (3.5a)-(3.5c) correspond to an approximation of the equation after integration on

Mj, M∗j and ∂M∗j . Equations (3.5d) and (3.5e) are related to the Ventcell transmission condi-
tions on ∂Mj,Γ and ∂M∗j,Γ. Finally, equation (3.5f) corresponds to the homogeneous Dirichlet
boundary condition on ∂Ω.

3.3. DDFV Schwarz Algorithm for anisotropic diffusion. We can now present the optimized
Schwarz algorithm discretized by DDFV: for an arbitrary initial guess h0

T j
∈ R

∂Mj,Γ∪∂M∗j,Γ , j ∈
{1, 2}, the algorithm performs for iteration index ` = 0, 1, 2, . . . and i, j ∈ {1, 2}, j 6= i the two
steps:

(1) Compute (u`+1
T j

, ψ`+1
T j

) ∈ RTj ×R
∂M∗j,Γ solution to

LT j
Ωj,Γ

(u`+1
T j

, ψ`+1
T j

, fT j , h`T j
) = 0. (3.8)

(2) Compute the new values of h`+1
T j

by

h`+1
l

= − 1
mσ

(
AD∇Du`+1

T i
, Nkl

)
+ Λ∂Mi,Γ

l
(u`+1

∂Mi,Γ
), ∀l ∈ ∂Mj,Γ, (3.9a)

h`+1
k
∗ = −ψ`+1

l
∗ + Λ

∂M∗i,Γ
l
∗ (u`+1

∂M∗i,Γ
), ∀k

∗ ∈ ∂M∗j,Γ and l
∗ ∈ ∂M∗i,Γ s. t. xk

∗ = xl
∗ . (3.9b)

To prove that this algorithm is well posed, we will need the following two Lemmas:
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Lemma 3.1 (Properties of Λ∂Mj,Γ and Λ∂M∗j,Γ). The operators Λ∂Mj,Γ and Λ∂M∗j,Γ are symmetric and

positive definite. The operators Λ∂Mj,Γ
−1

and Λ∂M∗j,Γ
−1

are also symmetric and positive definite, and
induce a norm.

Proof. Using the weighted product on ∂MΓ, (u∂MΓ , v∂MΓ) = ∑N
s=1 mσs uls vls , we show using (3.6)

that

(Λ∂Mj,Γ(u∂Mj,Γ), v∂Mj,Γ) =p
N

∑
s=1

mσs uls vls

+ q
N

∑
s=0

mσ
k
∗
s+1

As∗+1
yy

uls+1 − uls

mσ
k
∗
s+1

vls+1 − vls

mσ
k
∗
s+1

,

and we see the symmetry between u and v, and this also implies the other properties of Λ∂Mj,Γ

and Λ∂Mj,Γ
−1

. Similarly, one can also obtain the properties of Λ∂M∗j,Γ and Λ∂M∗j,Γ
−1

.

Lemma 3.2 (Variational form of the DDFV scheme). The vector (uT j , ψT j) ∈ RTj × R∂Mj,Γ∪∂M∗j,Γ is
a solution of the linear system

LT j
Ωj,Γ

(uT j , ψT j , fT j , hT j) = 0

if and only if for all vT j ∈ RTj we have

2 ∑
D∈Dj

mD(AD∇DuT j ,∇
DvT j) + (Λ∂Mj,Γ(u∂Mj,Γ), v∂Mj,Γ) + (Λ∂M∗j,Γ(u∂M∗j,Γ

), v∂M∗j,Γ
)

+ ∑
k∈Mj

mkηkukvk + ∑
k
∗∈M∗j ∪∂M∗j,Γ

mk
∗ηk

∗uk
∗vk

∗

= ∑
k∈Mj

mk fkvk + ∑
k
∗∈M∗j ∪∂M∗j,Γ

mk
∗ fk

∗vk
∗

+ ∑
l∈∂Mj,Γ

mσhlvl + ∑
k
∗∈∂M∗j,Γ

mσ
k
∗hk

∗vk
∗ . (3.10)

Proof. We multiply equation (3.5a) by mkvk and equations (3.5b)-(3.5c) by mk
∗vk

∗ and sum
theses identities over all the control volumes in Mj and M∗j ∪ ∂M∗j . Reordering the different
contributions over all diamond cells, we obtain

2 ∑
D∈Dj

mD(AD∇DuT j ,∇
DvT j)− ∑

l∈∂Mj,Γ

(AD∇DuT j , Nkl)vl

− ∑
k
∗∈∂M∗j,Γ

mσ
k
∗ψk

∗vk
∗ + ∑

k∈Mj

mkηkukvk + ∑
k
∗∈M∗j ∪∂M∗j,Γ

mk
∗ηk

∗uk
∗vk

∗

= ∑
k∈Mj

mk fkvk + ∑
k
∗∈M∗j ∪∂M∗j,Γ

mk
∗ fk

∗vk
∗ . (3.11)

Introducing now the Ventcell transmission conditions (3.5d) and (3.5e), we obtain (3.10).

We can now prove that the subdomain problems discretized by DDFV are well posed:



OPTIMIZED SCHWARZ METHODS FOR ANISOTROPIC DIFFUSION WITH DDFV 201
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Figure 5. Notation around a diamond. The new unknowns needed to describe
the DDFV scheme on Ω as the limit of the Schwarz algorithm.

Theorem 3.1 (Well-posedness of the DDFV Subdomain Problems). For any fT j ∈ R
Mj∪M∗j ∪∂M∗j

and hT j ∈ R
∂Mj,Γ∪∂M∗j,Γ , there exists a unique solution (uT j , ψT j) ∈ RTj ×R

∂Mj,Γ∪∂M∗j,Γ of the linear
system

LT j
Ωj,Γ

(uT j , ψT j , fT j , hT j) = 0.

Proof. By linearity, it is sufficient to prove that if LT j
Ωj,Γ

(uT j , ψT j , 0, 0) = 0, then uT j = 0 and
ψT j = 0. We just use (3.10) with vT j = uT j , fT j = 0, hT j = 0 to obtain that

2 ∑
D∈D

mD(AD∇DuT j ,∇
DuT j) + (Λ∂Mj,Γ(u∂Mj,Γ), u∂Mj,Γ)

+ (Λ∂M∗j,Γ(u∂M∗j,Γ
), u∂M∗j,Γ

) + ∑
k∈Mj

mkηkuk

2 + ∑
k
∗∈M∗j ∪∂M∗j,Γ

mk
∗ηk

∗uk
∗2 = 0, (3.12)

which implies with Lemma 3.1 due to the non-negativity of all terms that both primal and
dual unknowns are all identically zero.

3.4. DDFV convergence analysis using energy estimates. We now show how the technique of
energy estimates we have used at the continuous level to prove convergence of the optimized
Schwarz algorithm in Theorem 2.2 can be adapted to also prove convergence of the algorithm
discretized by DDFV.

Theorem 3.2 (Convergence of the DDFV Schwarz algorithm). The iterates of the optimized Schwarz
algorithm discretized by DDFV defined by (3.8)-(3.9) converge as ` tends to infinity to the solution uT
of the DDFV scheme (3.4) on Ω.

Proof. We first rewrite the classical DDFV scheme (3.4) on Ω as the limit of the Schwarz algo-
rithm. To this end, we introduce new unknowns near the boundary Γ, see Figure 5:

• for all k ∈Mj and k
∗ ∈M∗j , we set u∞

k
= uk and u∞

k
∗ = uk

∗ ,
• for all k ∈ ∂Mj,D and k

∗ ∈ ∂M∗j,D, we set u∞
k
= 0 and u∞

k
∗ = 0,
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• for all lj ∈ ∂Mj,Γ and li ∈ ∂Mi,Γ such that lj = li, we have kj ∈ Mj such that lj ∈ ∂kj,
we define mσkj

to be the distance between xkj and xD. We also have ki ∈ Mi such that
li ∈ ∂ki and choose

u∞
lj
= u∞

li
=

mσki
ukj + mσkj

uki

mσkj
+ mσki

,

in such a way that
(

ADj∇
Dj u∞

T j
, Nkjl

)
= −

(
ADi∇Di u∞

T i
, Nkil

)
, with Dj ∈ Dj,Γ and Di,Γ ∈

Di such that xDj = xlj = xDi = xli .
• for all k

∗ ∈ M∗ such that k
∗ = k

∗
i ∪ k

∗
j with k

∗
j ∈ ∂M∗j,Γ and k

∗
i ∈ ∂M∗i,Γ, choose

u∞
k
∗
j
= u∞

k
∗
i
= uk

∗ and

ψ∞
k
∗
j
=−ψ∞

k
∗
i

= − 1
mσ

k
∗

∑
D∈D

k
∗
j

(
Ad∇Du∞

T j
, N

k
∗
j l
∗
j

)
+

m
k
∗
j

mσ
k
∗
(ηk

∗uk
∗ − fk

∗)

=
1

mσ
k
∗

∑
D∈D

k
∗
i

(
Ad∇Du∞

T i
, N

k
∗
i l
∗
i

)
−

m
k
∗
i

mσ
k
∗
(ηk

∗uk
∗ − fk

∗).

By linearity, it suffices to prove convergence of the DDFV optimized Schwarz algorithm (3.5)
to 0. We have constructed (u∞

T j
, ψ∞
T j
) from the solution uT of the DDFV scheme (3.4) on Ω such

that

LT j
Ωj,Γ

(u∞
T j

, ψ∞
T j

, fT j , h∞
T j
) = 0.

Observe that the errors e`+1
T j

= u`+1
T j
− u∞

T j
, Ψ`+1

T j
= ψ`+1

T j
− ψ∞

T j
satisfy

LT j
Ωj,Γ

(e`+1
T j

, Ψ`+1
T j

, 0, H`
T j
) = 0,

with

H`
k
∗= −Ψ`

l
∗ + Λ

∂M∗i,Γ
l
∗ (e`∂M∗i,Γ), ∀k

∗ ∈ ∂M∗j,Γ and l
∗ ∈ ∂M∗i,Γ s. t. xk

∗ = xl
∗ ,

H`
l
= − 1

mσ
(AD∇De`T i

, Nkl) + Λ∂Mi,Γ
l

(e`∂Mi,Γ
), ∀ l ∈ ∂Mi,Γ.

An a priori estimate using discrete duality leads to

2 ∑
D∈Dj

mD(AD∇De`+1
Tj

,∇De`+1
Tj

)

− ∑
l∈∂Mj,Γ

(AD∇De`+1
Tj

, Nkl)e`+1
l
−∑
k
∗∈∂M∗j,Γ

mσ
k
∗Ψ`+1

k
∗ e`+1

k
∗

+ ∑
k∈Mj

mkηk(e`+1
k

)2 + ∑
k
∗∈M∗j ∪∂M∗j,Γ

mk
∗ηk

∗(e`+1
k
∗ )2 = 0. (3.13)
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Using the scalar product defined by (Λ∂Mj,Γ)−1, we get

− ∑
l∈∂Mj,Γ

(AD∇De`+1
Tj

, Nkl)e`+1
l

=
(
(AD∇De`+1

Tj
, nj), e`+1

∂Mj,Γ

)
=
(
(AD∇De`+1

Tj
, nj), (Λ

∂Mj,Γ)−1
(

Λ∂Mj,Γ(e`+1
∂Mj,Γ

)
))

=
(
(AD∇De`+1

Tj
, nj), Λ∂Mj,Γ(e`+1

∂Mj,Γ
)
)
(Λ∂Mj,Γ )−1

.

Using the same trick as at the continuous level, the formula −ab =
1
4

(
(a− b)2 − (a + b)2

)
implies

− ∑
l∈∂Mj,Γ

(AD∇De`+1
Tj

, Nkl)e`+1
l

=
1
4

∥∥∥−(AD∇De`+1
Tj

, nj) + Λ∂Mj,Γ(e`+1
∂Mj,Γ

)
∥∥∥2

(Λ
∂Mj,Γ )−1

− 1
4

∥∥∥(AD∇De`+1
Tj

, nj) + Λ∂Mj,Γ(e`+1
∂Mj,Γ

)
∥∥∥2

(Λ
∂Mj,Γ )−1

.

We can now use the Ventcell transmission conditions to replace the last term,

− ∑
l∈∂Mj,Γ

(AD∇De`+1
Tj

, Nkl)e`+1
l

=
1
4

∥∥∥−(AD∇De`+1
Tj

, nj) + Λ∂Mj,Γ(e`+1
∂Mj,Γ

)
∥∥∥2

(Λ
∂Mj,Γ )−1

− 1
4

∥∥∥−(AD∇De`Ti
, nj) + Λ∂Mj,Γ(e`∂Mi,Γ

)
∥∥∥2

(Λ
∂Mj,Γ )−1

.

Similarly, we also obtain on the dual mesh

− ∑
k
∗∈∂M∗j,Γ

mσ
k
∗Ψ`+1

k
∗ e`+1

k
∗ =

1
4

∥∥∥∥−Ψ`+1
Tj

+ Λ∂M∗j,Γ(e`+1
∂M∗j,Γ

)

∥∥∥∥2

(Λ
∂M∗j,Γ )−1

−1
4

∥∥∥−Ψ`
Ti
+ Λ∂M∗j,Γ(e`∂M∗i,Γ)

∥∥∥2

(Λ
∂M∗j,Γ )−1

.

Summing over ` = 0, · · · , `max − 1 and j = 1, 2, we get

2
`max−1

∑
`=0

∑
j=1,2

∑
D∈Dj

mD(AD∇De`+1
Tj

,∇De`+1
Tj

)

+
`max−1

∑
`=0

∑
j=1,2

∑
k∈Mj

mkηk(e`+1
k

)2 +
`max−1

∑
`=0

∑
j=1,2

∑
k
∗∈M∗j ∪∂M∗j,Γ

mk
∗ηk

∗(e`+1
k
∗ )2

+
1
4 ∑

j=1,2

∥∥∥−(AD∇De`max
Tj

, nj) + Λ∂Mj,Γ(e`max
∂Mj,Γ

)
∥∥∥2

(Λ∂Mj,Γ )−1

+ ∑
j=1,2

1
4

∥∥∥∥−Ψ`max
Tj

+ Λ∂M∗j,Γ(e`max
∂M∗j,Γ

)

∥∥∥∥2

(Λ
∂M∗j,Γ )−1
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Figure 6. Convergence of the DDFV Schwarz algorithm for various parameter
choices p with h = 2−3 and random initial guess. Left: Axx = Ayy = 1, Axy = 0.
Middle: Axx = 16, Ayy = 1, Axy = 0. Right: Axx = 1, Ayy = 16, Axy = 0.

= ∑
j=1,2

1
4

∥∥∥−(AD∇De0
Tj

, nj) + Λ∂Mj,Γ(e0
∂Mj,Γ

)
∥∥∥2

(Λ∂Mj,Γ )−1

+ ∑
j=1,2

1
4

∥∥∥−Ψ0
Tj
+ Λ∂M∗j,Γ(e0

∂M∗j,Γ
)
∥∥∥2

(Λ
∂M∗j,Γ )−1

.

This shows that also in the discrete case, the total energy stays bounded as the iteration index
` goes to infinity, and hence the algorithm converges.

4. Numerical experiments

We now investigate the influence of the anisotropy on the optimized Schwarz algorithm dis-
cretized by DDFV (3.8,3.9) numerically. We start with numerical experiments for a rectangular
domain decomposed into two rectangular subdomains, which corresponds precisely to our
analysis, and allows us to illustrate when the bounded domain analysis is important, and why
it is essential for performance to have the appropriate optimized choice of the Robin parame-
ter in the anisotropic case. We then also investigate cases not covered by our analysis, namely
domains which are not rectangular, and also decompositions into more than two subdomains.

4.1. Rectangular domain with two subdomains. We consider the domain Ω = (−1, 1)× (0, 1)
with the two subdomains Ω1 = (−1, 0) × (0, 1) and Ω2 = (0, 1) × (0, 1). We first compare
the convergence on conforming Cartesian meshes using the mesh size h = 1

8 for η = 1 and
Axx = Ayy = 1, Axy = 0 (the Laplacian), to the anisotropic cases with Axx = 16, Ayy = 1,
Axy = 0, and Axx = 1, Ayy = 16, Axy = 0. We simulate directly the error equations, measure
the error in the discrete L2 norm over primal and dual unknowns, and start using a random
initial guess, which is important to test the algorithm using all possible frequencies in the
error, for a detailed explanation, see [19, Section 5.1, last paragraph]. We show in Figure 6
how the error decreases over the iterations for different choices of the optimization parameter
p. We see that in all cases a good choice of p leads to fast convergence, and the value of the
best p is influenced by the anisotropy. We also observe that the anisotropic case is harder to
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p∗∞ iter p∗L iter p∗num iter
Mesh A =Id
2−3 9.11 43 9.12 43 8.34 39
2−4 12.87 60 12.89 60 11.81 55
2−5 18.21 85 18.23 85 16.43 76
2−6 25.75 120 25.78 120 22.42 105

Axx = 16, Ayy = 1
2−3 36.43 28 44.26 35 35.17 27
2−4 51.50 40 62.57 49 49.62 39
2−5 72.82 59 88.48 72 69.46 56
2−6 102.99 82 125.13 100 96.33 77

Axx = 1, Ayy = 16
2−3 35.60 95 35.60 95 49.09 73
2−4 50.34 136 50.34 136 74.44 95
2−5 71.20 186 71.20 186 104.99 129
2−6 100.69 254 100.69 254 140.51 185

Table 1. Optimized Robin parameters p∗∞ and p∗L using kmin = π and kmax = π
h ,

and p∗num performing best in numerical experiments, together with the corre-
sponding number of iterations to reach an error reduction of 1e− 12.

solve for the method than the Laplacian case for the generic parameter choice p = 1, but good
convergence is restored for a well chosen parameter. We show in Table 1 a detailed comparison
of our asymptotically predicted optimized Robin parameters p∗∞ for the unbounded domain
analysis, p∗L from the bounded domain analysis, and p∗num that worked numerically best, i.e.
reaching the very small tolerance of 1e− 12 in the smallest number of iterations. We also show
the corresponding number of iterations to achieve this tolerance for each parameter choice.
There are two interesting observations: first, in the case of the Laplacian, the unbounded
domain analysis gives a Robin parameter p∗∞ which is very similar to the bounded domain
Robin parameter p∗L, and the same holds also for the anisotropic case Axx = 1 and Ayy = 16.
However, when Axx = 16 and Ayy = 1, this is not the case any more, because due to the strong
diffusion in the x direction, the homogeneous Dirichlet boundary conditions at x = −1 and
x = 1 influence the solution substantially, and thus the boundedness needs to be taken into
account to determine the optimized parameter p∗L, which is different from p∗∞. Second, in the
case of the Laplacian, the analysis also predicts well the parameter p∗num that works best, but
in the anisotropic cases, even though the asymptotic behavior of the optimized parameter is
well captured, in the case Axx = 16 and Ayy = 1 the continuous prediction is a bit too large,
and the bounded continuous analysis which should be more accurate is actually less accurate.
In the case Axx = 1 and Ayy = 16 the prediction of the continuous analysis is a bit too small.
To quantify this, one would need a fully discrete analysis, which is beyond the scope of the
present paper and will be the subject of further studies.

We show next in Table 2 the corresponding results for the optimized Ventcell parameters. We
observe again as in the case of the Robin parameters that the asymptotically best parameters
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p∗∞ q∗∞ iter p∗L q∗L iter p∗num q∗num iter
Mesh A =Id
2−3 3.6870 0.0439 19 3.6959 0.0439 19 4.0220 0.04699 18
2−4 4.4898 0.0269 20 4.4998 0.0269 20 4.5815 0.02878 20
2−5 5.4069 0.0163 24 5.4185 0.0163 24 5.3173 0.01745 24
2−6 6.4718 0.0097 29 6.4853 0.0097 29 6.1922 0.01063 27

Axx = 16, Ayy = 1
2−3 14.7479 0.1757 16 20.7545 0.1693 14 19.1678 0.18871 11
2−4 17.9591 0.1077 20 24.6158 0.1059 17 22.1708 0.1249 15
2−5 21.6275 0.0651 24 29.2925 0.0645 22 26.2975 0.07849 19
2−6 25.8870 0.0390 30 34.8627 0.0388 27 30.8763 0.04811 24

Axx = 1, Ayy = 16
2−3 14.1316 0.0111 59 14.1316 0.0111 59 35.9474 0.00699 55
2−4 17.2871 0.0068 56 17.2871 0.0068 56 42.0509 0.00542 55
2−5 20.8638 0.0041 56 20.8638 0.0041 56 44.7826 0.00330 55
2−6 24.9996 0.0025 66 24.9996 0.0025 66 44.8830 0.00184 54

Table 2. Optimized Ventcell parameters p∗∞, q∗∞, p∗L and q∗L for kmin = π and
kmax = π

h , and p∗num, q∗num performing best in numerical experiments, together
with the corresponding number of iterations to reach an error reduction of 1e−
12.

are predicted well, and the bounded domain analysis is important if Axx is large. For strong
anisotropies, as in the Robin case, there is a certain difference in the constants that could
only be explained with a fully discrete analysis, which would then however be limited to a
particular mesh.

4.2. Non-Rectangular domains with non-matching grids. We now show that the continuous
analysis allows us to determine optimized parameters that work well also in more realistic
situations, where we have non-matching grids and non-rectangular geometries and meshes,
namely the two experiments shown in Figure 7. We start with a zero initial guess. For the
problem on the left, we use a diagonal diffusion matrix with Axx = 16 and Ayy = 1 and
the source function f (x, y) = e−(x+0.5)2−(y−0.5)2

. We show in Table 3 how many iterations our
code needs to converge to an accuracy of 1% with respect to a converged solution when using
p = 1, q = 0, p = 300, q = 0, compared to using the optimized Robin parameter p∗∞ = 63.07
and Ventcell parameters p∗∞ = 20.04 and q∗∞ = 0.0803, which we obtained from our continuous
analysis using the smaller mesh size in the estimate for kmax = π/h. We clearly see that using
the parameters predicted by the continuous analysis leads to great savings in the number of
iterations needed, and this without changing the computational cost per iteration. Similar
results we obtained also for the example on the right in Figure 7, where we now used the

fully anisotropic diffusion matrix A =

[
16 0.5
0.5 1

]
and the same source function as before, see
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Figure 7. First and third iteration of the DDFV optimized Schwarz method with
Ventcell transmission conditions. Left: Nonconforming mesh with diagonal A.
Right. Irregular domain and mesh with a fully anisotropic A.

Problem p = 1, q = 0 p = 300, q = 0 p = p∗∞, q = 0 p = p∗∞, q = q∗∞
left 33 35 8 3

right 37 34 7 3
Table 3. Number of iterations needed when solving the left and right problem
in Figure 7 using the DDFV Schwarz algorithm.

Table 3. The optimized parameters predicted by our continuous analysis were p∗∞ = 51.5 for
the Robin case, and p∗∞ = 17.96 and q∗∞ = 0.1077 for the Ventcell case. Again the predicted
parameters lead to important savings.

4.3. Layered multidomain decompositions. We finally show an experiment where we decom-
pose a layer of variable anisotropic diffusion into many subdomains. The domain, together
with the source term e−1.25(0.1(x−4.0)2+(y−0.5)2), is shown in Figure 8, and we use η = 1 in the
following experiments.
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Figure 8. Layer domain for the many subdomain decomposition and source
term for our experiments.
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Figure 9. Decomposition of the layer domain into 8 subdomains, and the La-
grange interpolation polynomial φ(x).

The variable diffusion matrix A is defined as follows: we first define the Lagrange inter-
polation polynomial φ(x) of degree 8 shown in red in Figure 9, which passes through the 9
points (xi, yi), i = 0, 1, . . . , 8 on the 9 boundaries of the subdomains, xi = i, y0 = 0.5, y1 = 0.9,
y2 = 0.65, y3 = 1.05, y4 = 0.91, y5 = 0.89, y6 = 0.69, y7 = 0.99, y8 = 0.59, also shown in Figure
9. We then define for each point of the curve given by the Lagrange interpolation polynomial
the normalized gradient and tangent vector

n(x) :=
1√

1 + (φ′(x))2
(1, φ′(x))T, t(x) :=

1√
1 + (φ′(x))2

(−φ′(x), 1)T.

We also define two coefficients a1 and a2 dependent on x by

a1(x) := 1.0(0.5 tanh(12− 4x) + 0.45 tanh(4x− 20) + 1),
a2(x) := 0.9(0.5 tanh(20− 4x) + 0.45 tanh(4x− 12) + 0.1),

which are shown in Figure 10 and will be used to determine the diffusion strength in the
normal and tangential direction of the Lagrange interpolation polynomial. We now build the
diffusion matrix A such that the diffusion equals a1(x) in the direction n(x) and a2(x) in the
direction t(x) for any point x, and A is constant in y, see Figure 11. The anisotropic diffusion
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Figure 10. Coefficients a1 and a2 to determine the diffusion strength.
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Figure 11. Vector fields a1n and a2t to build the anisotropic diffusion matrix.

Figure 12. DDFV solution on the full domain: maximum solution value is 0.2958

matrix is thus given by the formula

A(x) := a1(x)n(x)n(x)T + a2(x)t(x)t(x)T.

We show the solution of this problem in Figure 12, where one can clearly see that the anisotropic
diffusion generates two maxima, even though the source had only one. The solution was ob-
tained using our new algorithm and 8 subdomains as indicated in Figure 9, with the opti-
mized parameters from our two subdomain analysis shown in Table 4, starting with a zero
initial guess. We show in Figure 13 the iterates ` = 1, 4, 6, 8, 12, 20 to illustrate how the algo-
rithm converges. We can see how the method first generates maxima in each subdomain, but
very quickly identifies the true location of the maxima of the solution, and converges rapidly,
without Krylov acceleration. We next also run our algorithm using only four subdomains,
see Figure 14, and finally only two subdomains, see Figure 15. As expected, convergence is
faster using less subdomains since we are just using a one level method, but we observe also
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interface p q
1 2.099499 5.38921E-002
2 2.301869 4.77629E-002
3 2.454977 2.06458E-002
4 1.451507 6.15922E-003
5 2.535083 1.98993E-002
6 2.160908 5.18254E-002
7 2.099499 5.38921E-002

Table 4. Optimized Ventcell parameters for the layered multidomain decompo-
sition used locally on the interfaces.

Figure 13. Iterations ` = 1, 2, 3, 4, 5, 10 for the 8 subdomain case, and maxima
attained by the iterates.

that when cutting through the fast diffusion region in the middle only, the two maxima in the
underlying solution are identified very rapidly.

5. Conclusions

We introduced a new, optimized DDFV Schwarz algorithm with general Ventcell transmis-
sion conditions for fully anisotropic diffusion, and showed that it is well posed and conver-
gent using energy estimates and two subdomain decomposition. We also determined opti-
mized Robin and Ventcell transmission conditions at the continuous level, both using the by
now classical unbounded domain analysis, and a new technique which takes into account
the boundedness of the domain. Our optimized transmission conditions lead to low iteration
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Figure 14. Iterations ` = 1, 2, 3, 4, 5, 7 for the 4 subdomain case, and maxima
attained by the iterates.

Figure 15. Iterations ` = 1, 2, 3, 4 for the 2 subdomain case, and maxima attained
by the iterates.

counts for the algorithm, and for certain types of anisotropic diffusion, we showed that the
bounded domain analysis is important. We also observed an interesting discrepancy in the
case of large anisotropies between our continuous analysis and the discrete performance of the
algorithm: while the asymptotically best parameter choice is well captured, there is a differ-
ence in the constants. We conjecture that this difference is related to the isotropic mesh size
we use for the anisotropic diffusion model problems we solved, and to gain more insight into
this phenomenon, we will have to embark on a fully discrete analysis.

While our analysis provides for the first time optimized transmission conditions for Schwarz
methods for fully anisotropic diffusion problems with an appropriate discretization for such
problems, this is only a first step in the development of scalable solvers for such problems.
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Two further main ingredients are needed for a scalable solver: the definition and analysis
of the transmission conditions at cross points, and an adapted coarse space for anisotropic
diffusion. For the simpler case of isotropic diffusion, an algorithm with Ventcell transmission
conditions and cross points has been studied at the continuous level using energy estimates for
rectangular decompositions in [34]. At the discrete level, a condition number estimate for a fi-
nite element discretizations of isotropic diffusion problems and Robin transmission conditions
can be found in [33]. Two different consistent discretizations at cross points for finite element
discretizations were derived and analyzed in [22], and optimized Robin parameters at cross
points at the algebraic level were derived in [20], but classical energy estimates can not directly
be used in the presence of cross points [21]. There is also to the best of the authors knowledge
no study so far on efficient coarse spaces for anisotropic diffusion problems. In the case of the
Poisson equation, very recently the combination of optimized transmission conditions with an
adapted coarse space for optimized Schwarz methods led in an implementation in PETSc to
substantially faster Schwarz methods than the default two level Schwarz solver in PETSc [23],
and wall clock times are comparable to the multigrid solver implemented in PETSc. We are
currently working on developing similar techniques also for the anisotropic diffusion case.
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