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Experimental and Simulation Platforms for Anonymous Robots
Self-Localization

Olivier Poulet1 and François Guérin2 and Frédéric Guinand1,3

Abstract— This paper presents an experimental platform and
a simulation-based one for the implementation of a method en-
abling mobile anonymous robots self-localization. The proposed
method, theoretically validated in a previous work, is based on
the comparison between global information obtained through
periodical aerial pictures and local information stemmed from
odometry. The process analyzes robots’ coordinates evolu-
tion between two consecutive pictures and compares these
changes with odometric measures. On each picture, robots
are anonymous and their identification is impossible without
extra information. In this work, measures obtained with actual
robots on the experimental platform are compared with the
ones obtained on the simulation-based platform reproducing
experimental conditions. We show that success rates, defined as
the percentage of time robots successfully localize themselves,
obtained on both platforms are qualitatively similar while
quantitatively different in regard with algorithm performances.
Sources responsible for this gap are identified and analyzed. It
leads to the conclusion that, in the context of our study, using a
simulation-based platform is a valid alternative to actual robots
experiments.

I. INTRODUCTION

Global Navigation Satellite Systems (GNSS) enable global
positioning of one or several robots based on trilateration.
They can also be used for correcting drifts during robots’
movements [1]. Indoor, such systems can no longer be
used and, when initial position is unknown, sensor fusion
approaches propose interesting alternative solutions for lo-
calizing robots [11]. Position tracking principle consists in
recording odometric measures during robot’s movement in
order to determine its current position (a.k.a. dead reckoning)
[20]. However, this approach is prone to errors and several
methods can be used for minimizing them, associating an Ex-
tended Kalman Filter to a distance sensor [18], or performing
a Monte-Carlo localization (a.k.a. particle filter localization)
[19]. There also exist other localization methods based on
the knowledge of coordinates of beacons [7] or based on
vision [16].

When several robots are considered simultaneously, most
works deal with cooperative localization. The accuracy of
one robot’s position depends on the knowledge of peer’s
position. In [12], the authors consider a group of robots
that uses another group of robots as beacons for updating
their coordinates. In order to improve calculation time and
accuracy, probabilistic methods have been deployed [5], as
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well as 2D trilateration as in [14]. In every case, localization
information is updated in each robot’s reference frame. Much
less works have been dedicated to the case of anonymous
robots. Some of these works deal with multi-robots control
[17] and more recent advanced works were focusing on
mutual localization of anonymous robots [6]. Anonymous
robots do not have any proper tag or identifier that could
be used for any computation and they all execute the same
algorithm [4]. They are not able to distinguish each other
[3].

Our work focuses on global localization of anonymous
robots. However, the proposed method could also be de-
ployed on autonomous vehicles [13], for instance within a
car park. This work brings a solution for silencious local-
ization for a group of ground robots. A high altitude drone
periodically takes pictures of an area enabling ground robots
to localize themselves within the group without the need
of exchanging information with each other. In addition to
anonymity, robots cannot communicate with each other, since
exteroceptive sensors (infrared) are only used for avoiding
obstacles. For the experiments, a camera was fixed on the
ceiling of the room and defines the origin of the global
reference frame. Periodically, it takes pictures of the floor
on which robots are moving and a computer determines the
non indexed coordinates of all robots within each picture.
Each robot then receives the whole set of non indexed
coordinates and aims at identifying its own coordinates
among all the ones received, in order to determine its
position. This algorithm, based on the fusion of odometric
data with the two sets of coordinates stemmed from two
consecutive pictures, was theoretically validated and fully
described in [15]. It was, to the best of our knowledge, the
first proposed method for enabling robots to self-localize
using these sources of data. However, in order to enhance the
method, new versions of the algorithm should be tested and
the number of considered robots should also be increased.
But implementing new ideas on an experimental platform
with actual robots is time-consuming and requires additional
financial and human resources. One alternative is simulation.

The main objective of this work was first to validate
experimentally the method on a platform operating actual
robots and then to verify if simulation can produce confident
results with respect to real experiments. For that purpose we
measure, on the experimental platform, the success rate of
the method as well as its sensitivity to some parameters.
A success is obtained when robots successfully localize
themselves. By reproducing some experiments on the sim-
ulation platform, we show that similar results are obtained



qualitatively. However differences in performances are ob-
served. A careful identification and analysis of the sources of
inaccuracy of measures, for the experimental platform using
actual robots, leads us to consider the simulation platform
reliable for driving new experiments. For illustrating that
we’ve tested a new scenario using four mobile robots and
two lures and show that results are in line with what was
expected.

Section II is devoted to problem formulation and to the
description of the experimental apparatus. The experimental
validity of the method together with the measure of the
impact of changes on algorithm’s performances are investi-
gated in Section III. The four robots scenario is analyzed in
Section IV, and measures accuracy is discussed in Section V,
followed by a short conclusion and some open perspectives.

II. PROBLEM FORMULATION AND EXPERIMENTAL
APPARATUS

A. Problem formulation

The system is composed of a group of N mobile robots
among which M are not moving. All robots are located
indoor and moving robots evolve within a fixed area. A
camera, fixed at the ceiling of the room, takes pictures of
the whole area every T units of time. We denote λ the
distance ratio between the focal length of the camera and
the distance measured on the ground (a scale factor). Each
robot receives at regular time interval the coordinates of all
the robots: {(x1, y1), (x2, y2), . . . , (xn, yn)}. Between two
emissions, the coordinates (xi, yi) may not refer to the same
robot, thus, upon reception, each robot processes coordinates
disregarding the order. Between two receptions, every δt
units of time, each robot records its own linear speed v and
rotational speed r. In [15], it has been shown that it was
possible to determine the coordinates (xf , yf ) of a robot
at a final position f , from the knowledge of its starting
coordinates (xs, ys) (at position s), its initial angle θs and the
information related to v and r, periodically recorded during
the movement between the two positions.
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From equation 1, if t0 corresponds to the first picture, the

equation in the temporal domain becomes:

(
x(t0 + T )
y(t0 + T )

)
=

(
x(t0)
y(t0)

)
+

λ.

(∫ T
t0+δt

cos(θ(t0) +
∫ T
t0+δt

r(t)dt).v(t)dt∫ T
t0+δt

sin(θ(t0) +
∫ T
t0+δt

r(t)dt).v(t)dt

)
(2)

From Equation 2 it is possible to estimate the minimum
value of δt.
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Fig. 1. Left: Simulation platform. Right: Actual Experimental platform

Fig. 2. The mobile robot used for the experiments.

B. Experimental Apparatus and Simulation Environment

Two platforms have been used for comparing actual data
with simulated ones (Figure 1). The experimental platform is
composed of two robots, a camera, a computer for processing
images from the camera and for communicating information
to robots and of a router for wireless network. The robots
(Figure 2), of size: l=180xL=290xH=150 mm, were built in
our lab. They have two driving wheels (diameter: 97mm)
animated by two DC motors. Quadrature encoders provides
odometric measures (linear and angular speeds and positions
used with an inverse kinematic model). Each robot is also
equipped with six infrared distance sensors for obstacle
avoidance, a wifi dongle, and all processing tasks are per-
formed by the companion computer, a PcDuino board (1GHz
ARM Cortex A7 Dual Core CPU). The camera is directly
connected to the computer which is connected to the robots
through the access point. Robots are thus connected to the
access point, but they do not communicate with each other,
they only receive information from the computer for taking
their movement decisions.

Within the pictures, obtained from the fixed camera and
analyzed by the computer, robots are detected thanks to



patterns fixed on top of them. The computer extracts robots
coordinates within the images using Artoolkit (as it was done
in [8]). Then coordinates are sent to robots and each of them
determines its position.

The simulation platform is composed of the same camera
and the same computer running Player/Stage. The com-
puter simulates the robots, identified by patterns, and their
movements and enable the visualization of the scene on a
screen. The camera periodically takes pictures of the screen,
and, as in the experimental platform, Artoolkit is used for
extracting robots’s coordinates which are sent to the robots.
The simulated area and the actual one are identical as
illustrated on Figure 3.

Fig. 3. Area where actual (on the right) and simulated (on the left) robots
are moving (N = 4,M = 2).

Actual and simulated robots execute the same control al-
gorithm, described by Algorithm 1. Without obstacles, robots
move linearly. However for challenging the method, if after
K iterations no obstacle is detected, the robot changes its
direction by turning slightly on the right. When an obstacle
is detected, the robot turns in place (v = 0 and r 6= 0) in the
opposite direction of the obstacle. Finally every δt period of
time, both values of v and r are recorded.

The values considered for the experiments were:

vmin vmax rmin rmax δrmin δrmax δt K
0.1 0.2 0.2 0.4 0 0.05 100 30

m.s−1 rad.s−1 ms

III. IMPACT OF PARAMETERS CHANGES

Every experiment lasts 20± 1 minutes.

A. Variation of T

T denotes the sampling period between two consecutive
pictures. For this first set of experiments, we study the impact
of the variation of T between 2 and 9 seconds. We consider
4 robots, among which only two are moving (illustrated on
Figure 3).

For the experiments with actual robots (represented in
Figure 4), the self-localization algorithm executed by each
robot takes into account the odometric measures. These
measures are prone to error and are often inaccurate. For the
smaller values of T , values of v are often equal to zero while
recorded odometry measures show a linear shift in the robot
position. For larger values of T , these values are not null
but odometric measures accuracy decreases as T increases.
These differences are related to robot’s imperfections as it

Algorithm 1 Control algorithm executed by every robot
1 . iterationNumber ← 0
2 . lastTime ← getTime()
3 . while (mission not finished) do
4 . if (obstacle detected) then
5 . state ← obstacle
6 . else
7 . state ← free
8 . endIf
9 . if (state = free) then

10 . if (iterationNumber = 0) then
11 . choose v ∈ [vmin, vmax]
12 . r ← 0
13 . else if (iterationNumber = K) then
14 . choose δr ∈ [δrmin, δrmax]
15 . r ← r + δr
16 . iterationNumber ← 0
17 . endIf
18 . else
19 . v = 0
20 . compute r (opposite direction to the obstacle)
21 . iterationNumber ← 0
22 . endIf
23 . iterationNumber ← iterationNumber+1
24 . move according to (v, r)
25 . currentTime ← getTime()
26 . if (currentTime-lastTime ≥ δt) then
27 . record both v and r values
28 . lastTime ← currentTime
29 . endIf
30 . endWhile

will be discussed in Section V and explains the shape of
the graphics (top of Figure 4) where the best success rate is
obtained for T = 6s.

In order to compare experimental and simulation mea-
sures, a second series of measures has been conducted.
When, between two consecutive pictures, the linear distance
performed by the robot is smaller than a given threshold,
corresponding measures are not considered for the computa-
tion. This allow to not take into account odometric measures
of pure-rotation movements. The corresponding results are
reported on Figure 5. The comparison of Figures 4 and 5
highlights that removing non relevant odometric measures
(when linear speed is null) results in a better self-localization
of robots. Not surprisingly, in both cases, when the period
T increases, the performances decrease.

As showed on Figure 6, the same tendency is observed
in the simulation context. Instead of odometry, during the
simulation the algorithm uses robots’ commands. Inaccurate
and imprecise values are minimized in simulation which ex-
plains the better success rates obtained. On average algorithm
reaches success rates 10% better in simulation than for exper-
iments with actual robots. However, when period T increases
up to 15 seconds, small errors, alignment of the camera with



Fig. 4. Measures for actual experiments: success rate with respect to
variation of T between 2 seconds and 9 seconds.

Fig. 5. Second series of experiments.

the screen, imprecise λ value, are magnified, which leads to
the degradation of the algorithm performances.
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Fig. 6. Simulation measures

B. Adding Lures

In addition to the value of T , another element can impact
the performances of the algorithm: the number of detected
robots in the pictures. For that, we add lures in the area. We
do that by adding some patterns that will be identified as
robots by the computer, leading to larger sets of coordinates
sent to actual robots. We still keep two mobile robots in the
area and the lures are added between the two sub-areas as
illustrated on Figure 7.

Fig. 7. Observed Area: 5 lures and 2 mobile robots (N = 7,M = 5)
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Fig. 8. Success rates when lures (M ) are added. Results obtained from
experiments with actual robots (top) and by simulation (bottom). Period
between two pictures: T = 7 seconds

Figure 8 illustrates results for both experiments with actual
robots and simulations. For both graphics T = 7. Graphics
are very similar in both cases (experiments and simulations).
We observe a linear decrease of the success rates with respect
to the number of lures. The 10% difference noted previously
between actual experiments and simulations is still observed
for this configuration, however when the number of lures
is greater than 4 it seems that actual robots have more
difficulties to localize themselves. Additional experiments
should be conducted to confirm or infirm these observations.

C. From actual experiments to simulation

The results obtained in the previous sections for both
experiments with actual robots and simulation are very
similar. The gap between results is close to 10% and has
been confirmed by two series of experiments. This differ-



ence very likely comes from the imprecise nature of actual
experimental measures, and for that reason, the maximum
success rates of 75% with actual robots seem difficult to
improve.

IV. FOUR MOBILE ROBOTS SCENARIO

In experimental robotics, the larger the number of robots,
the trickier and time-consuming the problems related to
the construction, the configuration and the maintenance of
them. Simulation platform offers an acceptable alternative.
It enables the implementation of situations difficult to set up
on the experimental platform with actual robots. Despite the
differences in the self-localization algorithm performances
between the experimental platform and the simulation one, as
described in the previous section, we are however very con-
fident in the validity of the simulation approach. Indeed, if
there exist numerical differences between results provided by
both platforms, these results are consistent with each other.
The main difference between actual robots and simulated
ones is the addition of sonar sensors on the virtual ones,
as illustrated (Figure 9). The general movement algorithm
remains the same (Algorithm 1). As previously, some lures
have been added in order to increase the combinatorics.

Fig. 9. Four mobile robots and two lures (N = 6,M = 2)

In line with previous results, the smaller the period
between two consecutive pictures, the better the obtained
success rates for the self-localization algorithm, as illustrated
by Figure 10. In addition when the number of mobile
robots increases we observe a degradation of the results.
Such decrease in the success rate is likely to happen when
both the number of robots increases as well as the delay
between two pictures. Indeed, odometry accuracy is not
perfect and is not continuously measured. So, the larger the
time between two updates, the larger the area where the
robot is supposed to located in, based on odometric measures.
Thus, when the period between two pictures increases, the
previous mentioned area increases too. As a consequence the
localization is less accurate, since the association between
available coordinates sets and estimated localization becomes
more and more approximate and the method error prone.
However, the degradation of the success rate seems to be
linear in both the increase of T and N −M .

Fig. 10. Success rates with respect to T (period between two consecutive
pictures).

TABLE I
WIRELESS NETWORK: PACKET LOSSES

distance AP #emissions #receptions
Static 0.3m 100 99
Static 1m 100 96
Static 2m 100 95

Moving ... 100 95

V. ANALYSIS OF SOURCES OF INACCURACY OF
MEASURES

This section focuses on the analysis of inaccuracy of
measures for the experimental platform with actual robots.
Several sources of errors have been identified and analyzed.

The floor on which the robots were moving was not perfect
and an average of 2% of error was recorded for a linear
movement of a robot starting from one side of the area to
the other side. Of course, during the experiment, these errors
are cumulative.

For the wireless network, we have noted some packet
losses during the experiment (Table I). These losses occurred
between the computer and the robots. When a robot does
not receive the set of coordinates from the computer, this is
equivalent to doubling the period T for this robot. Based
on the measures, we have estimated that a 5% of lost
transmissions has an impact of 2.5% on the success rate for
the involved robot.

Another source of error is due to the delay between the
time at which a picture is taken and the date at which robots
are processing coordinates sets, a delay during which robots
are still moving and odometry measures continue. But the
impact of this delay is difficult to evaluate since we do not
have a global clock for the system.

However, the most important source of error stems from
odometry inaccuracy which concerns both linear and angular
measures. They are recurrent and impact each processing.
They are related to robots’s structural imperfections, to
defects of odometric sensors with their own accuracy, to the
weight of robots, mainly due to the batteries weight that
provides a good stability for linear movements but presents
drawbacks for angular movements. They are also related
to the adhesion properties between wheels and the ground
and to the choice of the parameters that are considered as
identical to every robot while some small differences may



occur between them. In order to have an idea of these
differences, some measures have been performed for linear
and angular movements. We observed an average linear
deviation of 1.3% and an average angular deviation of 2.5%,
which results in a deviation of 14cm for a 2π rotation.

VI. CONCLUSION AND PERSPECTIVES

The main problem addressed in this work is self-
localization of anonymous robots using periodically available
pictures, images of the area in which robots are moving,
together with odometric measures.

The method, proposed in [15], has been implemented on
actual robots and was validated through real experiments.
The sensitivity of the method was also investigated by
making varying two critical parameters, the period between
two pictures and the number of lures in the scene, for the
different tests.

But, in this work we also wanted to verify if results,
obtained from a simulation platform reproducing actual
experimental conditions, are reliable in regard with measures
performed on an experimental platform operating actual
robots. Thus, after driving some experiments with actual
robots we’ve conducted the same experiments on the simu-
lation platform. We have shown that results are qualitatively
similar on both platforms but that some differences for the
algorithm’s performances are observed. The existence of
various sources of inaccuracy of measures explains much
of this difference, but the simulation-based approach can
be considered as reliable. The experiments led for a four
mobile robots scenario confirm that. Indeed, results obtained
are in line with what could be expected in reality: the
performances of the algorithm are degraded when the number
of lures is growing but mainly when the period between two
consecutive pictures increases.

We now plan to add error terms, modeled as random
values within the error range, to the robot’s commands in
the simulation platform. Simulated results, with and without
added error terms, will then be compared for an increasing
number of mobile robots. We hope this will provide insights
about the potential impact of observed inaccuracies during
scale up.

This work opens many perspectives, some are improve-
ments of the current method but others open new horizons
in the domain of the control of fleets of robots. In particular
we envision the possibility of using pictures obtained from
a drone’s camera, flying above a set of ground robots or
a set of UAVs in order to provide them some more global
information. This new direction would enable us to merge
our different contributions to the domain of swarms of drones
[2], [10], [9].
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[3] Xavier Défago and Akihiko Konagaya. Circle formation for oblivious
anonymous mobile robots with no common sense of orientation. In
Proceedings of the second ACM international workshop on Principles
of mobile computing, pages 97–104, 2002.

[4] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Wid-
mayer. Arbitrary pattern formation by asynchronous, anonymous,
oblivious robots. Theoretical Computer Science, 407(1-3):412–447,
2008.

[5] Dieter Fox, Wolfram Burgard, Hannes Kruppa, and Sebastian Thrun.
A probabilistic approach to collaborative multi-robot localization.
Autonomous robots, 8(3):325–344, 2000.

[6] Antonio Franchi, Giuseppe Oriolo, and Paolo Stegagno. Probabilistic
mutual localization in multi-agent systems from anonymous position
measures. In 49th IEEE Conference on Decision and Control (CDC),
pages 6534–6540. IEEE, 2010.

[7] Nuwan Ganganath and Henry Leung. Mobile robot localization using
odometry and kinect sensor. In 2012 IEEE International Conference
on Emerging Signal Processing Applications, pages 91–94. IEEE,
2012.
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