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Aeroacoustic signals, as typically returned by recordings of pressure fluctuations generated by rotating machines,

often exhibit a strong contribution of broadband components. Separate analysis of the various sources of broadband

noise is important from an engineering point of view, as they relate to different physical mechanisms. It is yet

technicallydifficult to achieve, as the corresponding signals overlap inboth time and frequency.A solution is proposed

based on the angle–time cyclostationary property of broadband noise produced by rotating sources. Cyclostationary

broadband components can thus be extracted, resynthesized in the time domain, and analyzed individually as if they

weremeasuredalonewith all other interfering sources switchedoff.A special effort ismade to render themethodology

as stand-alone as possible by providing criteria for automatically setting up the leading parameters. Themethodology

is illustrated in counter-rotating open rotor data, where cyclostationary broadband contributions from the rear and

front rotors and their interaction are individually extracted.

Nomenclature

A = set of discrete cyclic orders
A� = set A with zero order removed
f = frequency, Hz
I = number of time instants in short-time (angular)

Fourier transform
j = imaginary unit
K = cardinal of set A� (i.e., number of cyclic orders

used in cyclic regression)
L = signal length (samples)
M = number of sensors
N = matrix of short-time Fourier coefficients of signals

nm�t�, where m is equal to 1; : : : ;M
Nw = kernel length (samples)
n�t� = stationary part of aeroacoustic signal
p�t� = tonal part of aeroacoustic signal
R = matrix of short-time Fourier coefficients of signals

rm�t�, where m is equal to1; : : : ;M
Rmi�fk� = short-time Fourier transform of signal r�t�
Rrr 0 �θ; t� = angle–time cross-correlation function between

signals r�t� and r 0�t�
r�t� = angle–time cyclostationary part of aeroacoustic

signal

Srr 0 �α; f� = order-frequency spectral cross correlation between
signals r�t� and r 0�t�

t = time, s
vk = kth eigenvector
w�t� = kernel of short-time (angular) Fourier transform
X = matrix of short-time Fourier coefficients of signals

xm�t�, wherem is equal to 1; : : : ;M
Xmi�fk� = short-time Fourier transform of signal x�t�
Xmi�fk; α� = short-time angular Fourier transform of signal x�t�
x�t� = broadband part of aeroacoustic signal
y�t� = measured aeroacoustic signal
α = cyclic order (counts per revolution)
γ = spectral bandwidth of kernel

γ2xx�α; f� = order-frequency spectral coherence of signal x�t�
Δ = time shift in short-time (angular) Fourier transform
Θ = angular period, rad
θ = reference angle, rad
λk = kth eigenvalue
τ = time lag, s

χ2 = chi-square distribution

Subscripts

i = time index in short-time (angular) Fourier trans-
form

k = frequency index in short-time (angular) Fourier
transform

m = sensor number

I. Introduction

I N THE presence of rotating machines (e.g., turbomachines),
aeroacoustic measurements often comprise a complex mixture

of tonal and broadband components. Separate analysis of these
components is of importance for engineers, as they carry different
elements of information. Such information is crucial for better under-
standing the physics of the phenomena, for diagnosis, or for updating
numerical models. Extraction of tonal components is the first step
toward the separation of sound sources in aeroacoustic signals.
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Because of their marked properties [high spatial coherence and
pointwise power spectral density (PSD)], they are the easiest com-
ponents to be extracted as opposed to broadband components. Sev-
eral methods have been proposed in the literature to do so, with
various degrees of refinement [1–3]. Once removed from the signals,
they leave the place to the broadband content of the signals [4–7]. Far
fewer works have attempted to further decompose broadband signals
into more constituents that originate from distinct physical phenom-
ena or sound sources, at least without explicit knowledge of the
propagation mechanisms. (This remark is to exclude a large family
ofmethods, which amount to invert a physical model.) The aim of the
present work was to propose a method that, as a complement to the
extraction of tones, also enables the decomposition of aeroacoustic
signals into nonstationary broadband components attached to rotors
and a residual stationary component that contains the background
noise. The usefulness of such a decomposition is manifold. It is apt to
provide more insight into noise-generating mechanisms to better
quantify the contribution of broadband noise attached to specific
rotors to the overall noise level or with respect to the tonal part, or
it can be used as a preprocessing step to denoise the signals before
subsequent analyses, for instance in acoustic imaging. It is note-
worthy that the proposedmethodworks at a higher level than phased-
array imaging techniques. It is independent of any wave propagation
model and, as such, neither its aim nor its principle is to localize
sources in space. (The proposed method is disconnected from beam-
forming both in the objectives and in the principles. It primarily aims
at extracting the contribution of cyclostationary broadband compo-
nents at the sensors, whereas beamforming aims at localizing sources
in space. It is model free, whereas beamforming relies on the inver-
sion of a wave propagation model. It potentially works with only one
sensor, whereas beamforming requires an array of microphones.)
The broadband part of aeroacoustic signals has a rich informative

content. It typically encompasses unsteady flow, the turbulence
produced by bodies moving at high speed, the interaction of these
bodies with turbulent flows, the diffraction of waves in turbulent
shear layers, etc. [8,9]. The relative contribution of broadband noise
as compared to tonal noise actually tends to increase in modern
designs of turbomachines [10,11].
Contrary to tones, broadband components are characterized by

continuous PSDs. They are modeled as random processes, with finite
power but unpredictable (i.e., nondeterministic) trajectories in time.
On the one hand, phenomena that globally contribute to background
noise arewellmodeled by stationary stochastic processes (i.e., whose
statistics are time invariant). On the other hand, phenomena that are
produced by or that interact with rotating parts of the machine are
likely to be periodically modulated in phase (Doppler effect) and in
amplitude (time-varying intensity). The corresponding stochastic
processes are well modeled as cyclostationary (i.e., with periodically
varying statistics; see [12] for an early introduction to cyclostationary
processes and [13] for a general introduction to some of their appli-
cations in vibrations and acoustics). The cyclostationary property of
aeroacoustic signals has been recognized in some early references
[14–16]; yet, it has rarely been exploited [17,18].
Just as with tones, it should be reminded that the periodicity of the

modulations of broadband noise is with respect to the angle of
rotation of the rotor. However, because aeroacoustic phenomena
are described by partial differential equations that involve time, the
carrier takes time as its descriptive variable. This class of processes
has been defined as angle–time cyclostationary (AT-CS) [19]. It asks
for some specific treatments, according to two descriptive variables
or their dual variables in the Fourier domain, the frequency in hertz
(the dual variable of time), and the cyclic order (the dual variable of
angle, as a fraction of the reference rotation) in “counts per revolu-
tion.” Besides, if only second-order statistics are of concern (i.e.,
autocorrelation function or related spectral quantities) as is the case in
this paper, the stochastic processes are said second-order angle–time
cyclostationary (AT-CS2). By comparison, tonal components are
referred to as first-order angle–time cyclostationary, as their first-
order statistics (i.e., expected value) are angle periodic.
The aim of this paper was to propose amethod that can decompose

broadband aeroacoustic signals into an AT-CS2 part attached to the

rotation of a rotor and a residual stationary part that embodies all other
sources and background noise. The method typically applies on the
residual signals obtained after removal of the tonal components using
a dedicated technique, such as the one in Ref. [1] or in Ref. [3]. As far
as the authors know, this topic has rarely been reported in the
literature. The aforementionedworks [1,2,4–7] have contented them-
selves with the total broadband part left after removal of tonal
components, yetwithout further decomposing it. A notable exception
is Ref. [20], which attempts to fit a model to the periodically time-
varying autocorrelation function of a cyclostationary signal produced
by a rotating monopole. However, the method is not validated on real
experimental data. The approach proposed in the present paper is a
continuation of previous works by the authors [21,22]. As compared
to the latter references, it proposes a generalization, within the
framework AT-CS2 processes, that applies to rotating machines in
the presence of moderated speed fluctuations. This is of importance
from a practical point of view, because such speed fluctuations often
exist and are likely to jeopardize cyclostationary-based processing, as
will be illustrated in Sec. V. In addition, an important effort has been
made to provide amethod that is as automated as possible to relieve as
much as possible the user of the difficult choice of setting up
parameters. Because the method is computationally demanding,
the corresponding time saved by the user, as compared to a trial-
and-error approach, can be substantial. A unique outcome of the
proposed method is to make possible the resynthesis of the extracted
AT-CS2 component in the time domain. According to the authors’
knowledge, there is no such equivalent in the literature.
The principle of the proposed approach is to use the property that

AT cyclostationarity produces correlations between order-shifted
spectral components that do not exist for stationary processes. By
building a regression model based on these correlations, the AT-CS2
components can be predicted to some extent and extracted from
stationary noise. When several signals are measured simultaneously,
as in the case of an array of microphones, the regression may be
augmented by including order-shifted spectral components of other
signals as well. There are several issues to be investigated in this
approach. A first one relates to the number of order-shifted spectral
components to include in the regressionmodel. A second issue arises
with the consideration of multiple channels, a configuration that
might increase the number of regressors to a point where estimation
errors may predominate. As well known in regression analysis, the
dimension of the model has to achieve a balance between bias and
estimation errors. This is solved by forcing a reduced rank in the
model [23,24], which corresponds to the number of virtual sources
that can reproduce an equivalent acoustical field.
The paper is organized as follows. Section II introduces the signal

model and briefly summarizes the theory of AT-CS2 signals. It then
introduces the short-time angular Fourier transform (STAFT), an
order-shifted version of the short-time Fourier transform (STFT),
which plays a key role in the proposed method. The principles of the
extraction of AT-CS2 broadband noise are discussed in Sec. III. The
monochannel case is first investigated for its simplicity before
addressing the multichannel case. Section IV strives to make the
method as stand-alone as possible by providing rules for automatic
settings of the parameters. Section V validates the method on syn-
thetic data. Finally, Sec. VI illustrates the extraction of AT-CS2
broadband components on counter-rotating open rotor (CROR) data.
The following notations are used throughout the documents. Bold

lowercase letters are used to denote vectors. Bold uppercase letters
are used to denote matrices. The imaginary number is noted j. In
addition, kak stands for the l2 norm of vector a and kAk for the

Frobenius norm of matrix A. AH is the Hermitian transpose (i.e.,
conjugate transpose) of matrix A; tracefAg stands for the trace of
matrix A. E is the expectation operator, and δ stands for Dirac
distribution. In general, the symbol ^ over a quantity will indicate

that this quantity is estimated, for example, θ̂ is an estimate of θ.

II. Theoretical Background

This section introduces the notations and the main tools that
are used to achieve the extraction of cyclostationary broadband
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components. The signal model related to the broadband part is first
revisited and the concept of AT-CS2 is discussed. Next, the order-
frequency spectral correlation (OF-SC) is introduced, as required to
calculate the correlation due to angle-periodic modulations, together
with the STAFT on which all estimates are rooted.

A. Signal Model and Angle–Time Cyclostationarity

The signal model is hereafter given in the discrete time setting, in
the general case where multiple measurements are simultaneously
available (e.g., as returned by an array of microphones). The signal
measured by themth sensor at time instant t is denoted by xm�t�. It is
composed of the superposition of the signal of interest (SOI), say
rm�t�, and of the background noise, say nm�t�, such that

xm�t� � rm�t� � nm�t�; m � 1; : : : ;M; t ∈ R (1)

[The notation rm�t� is to reflect that the SOI in the paper is
assumed purely random.] the SOI and the noise are assumed to
be broadband random processes, with continuous but unspecified
PSDs. {The measurements xm�t� are, for instance, the residual sig-
nals obtained after subtraction of tonal components, in a preprocess-
ing step, as demonstrated in [5, 13, 25].} So far, no assumption is
required concerning the probability density functions of the SOI
and of the background noise, except some mild conditions for the
short-time Fourier coefficients to tend to Gaussianity [23]. The two
components rm�t� and nm�t� are, however, characterized by different
statistical properties, hereafter denoted as H1 and H2, which will
make their separation possible:
1) H1: the SOI rm�t�,m � 1; : : : ;M jointly exhibit second-order

angle–time cyclostationarity (AT-CS2), with cyclic orders listed in a
nonempty set A (see next section for a formal definition of the
concept of AT-CS2).
2) H2: the noise terms nm�t�,m � 1; : : : ;M are jointly stationary.
Although the aforementioned model allows spatial correlation

between sensors for both the SOI and the noise, it is not a necessary
condition. However, when true for the SOI, this propertywill result in
better separation of the two components bymeans of spatial filtering,
as explained in Sec. III.

B. Second-Order Angle–Time Cyclostationarity

Angle–time cyclostationarity, as introduced in assumption H1, is a
specific form of nonstationarity for random processes that undergo
angle-periodic modulations, as imposed by the rotating components
of a machine. When restricted to second order, AT-CS is formally
defined by means of the angle–time (AT) cross-correlation function,
�R;R� → R:

�θ; τ� ↦ Rrmrm 0 �θ; τ� ≐ Efrm�t�θ� � τ�rm 0 �t�θ��g (2)

between two processes rm�t� and rm 0 �t�. In the preceding definition,
E stands for the expected value, θ for the angle of rotation (e.g., of the
rotor; a continuous variable in radian), t�θ� for the time instant
corresponding to the value of θ, and τ for a time lag. A one-to-one
relation is assumed between t and θ, which is equivalent to assuming

that the speed of rotation _θ � dθ∕dt does not change its sign. The two
processes rm�t� and rm 0 �t� are said jointly AT-CS2 with cyclic order
α � 1∕Θ if their AT cross-correlation function is a periodic function
of angle θ, that is

Rrmrm 0 �θ; τ� � Rrmrm 0 �θ� Θ; τ� (3)

for some angular periodΘ. A typical example of an AT-CS2 signal is
provided by random processes whose cross-correlation function has
the separable form:

Rrmrm 0 �θ; τ� � A�θ�Tm;m 0 �τ� (4)

with A�θ� � A�θ� Θ� an angle-periodic function.
More generally, two processes rm�t� and rm 0 �t� will be said to

jointly exhibit AT-CS2 if their cross-correlation function contains an

angle-periodic component. A typical example of a process that
exhibits AT-CS2 is given by the periodically amplitude-modulated
process rm�t� � νm�t�p�t�, with p�t�θ�� � p�t�θ� Θ�� a periodic
function of θ and νm�t� and νm 0 �t�, two jointly stationary random
processes with cross-correlation function Tm;m 0 �τ�. Therefore

Rrmrm 0 �θ; τ� � Tm;m 0 �τ�p�t�θ� � τ�p�t�θ��
� Tm;m 0 �τ�jp�t�θ��j2|����{z����}

A�θ�
� τTm;m 0 �τ� _p�ζ�;

ζ ∈ �t�θ�; t�θ� � τ� (5)

where the last equality results from Taylor–Lagrange expansion
and evidences the presence of the angle-periodic term A�θ� �
A�θ� Θ�.
The PSD of an AT-CS2 random process cannot be distinguished

from the PSD of a stationary process, because it averages out any
form of nonstationarity. To preserve the evidence of the presence of
periodic modulation, the PSD must be generalized, as explained in
the next subsection.

C. Order-Frequency Cross-Spectral Correlation

A useful spectral tool for analyzing jointly AT-CS2 processes is
the order-frequency spectral cross correlation (OF-SCC) [19],
defined as the double Fourier transform (a Fourier transform in τ
followed by a Fourier transform in θ) of the AT cross-correlation
function, �R;R� → C:

Srmrm 0 �α; f� � lim
Φ→∞

1

Φ

Z
Φ

Z
R
Rrmrm 0 �θ; τ�e−j2πfτe−j2παθ

Θdθ (6)

where the “carrier frequency” f is dual of time and the “cyclic order”
α (also referred to as the “modulation order”) is the dual of angle. [In
practice, the continuous variables τ and θ will be sampled, and the
continuous Fourier transforms will be replaced by their discrete
versions (see [19]); the continuous form is here momentarily consid-
ered to simplify the presentation.] A nonzero value of the OF-SCC at
a couple of frequencies (α, f) means that the processes rm�t� and
rm 0 �t� jointly exhibitAT-CS2 in the formof a common randomcarrier
with spectral content at frequency f and modulated by an angle-
periodic function with cyclic order α. Note that the OF-SCC at cyclic
order α � 0 returns the classical cross spectrum of processes rm and
rm 0 . When m � m 0, the quantity Srmrm �α; f� will be simply referred

to as the OF-SC of process rm�t�. Consequently, Srmrm �0; f� reduces
to the classical PSD.
In general, the OF-SCC of jointly AT-CS2 processes will be non-

zero for a continuum of values of f over a set of discrete values of α.
For instance, in the case of the cross-correlation function (4)

Srmrm 0 �α; f� � Sm;m 0 �f�
X
k∈Z

ckδα;k (7)

where δα;k � 1 if α � k and 0 otherwise; Sm;m 0 �f� is the discrete

Fourier transform of Tm;m 0 �τ�, and fck; k ∈ Zg is the set of Fourier
coefficients ofA�θ�. The corresponding set of cyclic orders isA � Z.
The set of nonzero values of the OF-SCC forms the signature of an

AT-CS2 component and makes possible its extraction from other,
non-AT-CS2 components, in particular from stationary noise. In
other words, the exploitation of nonzero values of the OF-SCC at
specific cyclic orders inA will allow the extraction of the SOI rm�t�
from the measurement xm�t� in model (1). This process is explained
in the next subsections.

D. Short-Time Angular Fourier Transform

In practice, theOF-SCCneeds to be replaced by an estimator based
on finite length measurements. At the same time, the proposed
method will require an invertible transform from the time to the
frequency domain. The two requirements are achieved by the STFT.
Consider the sampled version at time instants n∕Fs, n ∈ Z, of a
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signal xm�t�, with Fs the sampling frequency; the STFT is defined as

Xmi�fk��
X
n∈Z

xm�n∕Fs�w�γ��n−iΔ�∕Fs��e−j2πnfk∕Fs ; j2�−1 (8)

where w�γt� is a smooth, nonnegative, and symmetric kernel with
finite support of length Nw and spectral bandwidth γ, and Xmi�fk� is
the STFT coefficient calculated at frequency fk � kFs∕Nw,
k � 0; : : : ; Nw − 1 and time datum iΔ∕Fs,Δ ∈ N�, i � 0; : : : ; I −
1 with I � b�L − �Nw − Δ��∕Δc. It is noteworthy that the STFT is
invertible, at any time instant t possibly different from n∕Fs, accord-
ing to the formula

xm�t� � κ
XI−1
i�0

XNw−1

k�0

Xmi�fk�w�γ�t − iΔ∕Fs��e−j2πtfk (9)

with κ � P
n∈Zw�γn∕Fs�, provided that the strideΔ is small enough

so that
P

i∈Zw�iΔ∕Fs� sums up to a constant.
Similarly, let us define the STAFT:

Xmi�fk; α� �
X
n∈Z

xm�n∕Fs�w�γ��n

− iΔ�∕Fs��e−j�2πnfk∕Fs�αθ�n∕Fs�� _θ�n∕Fs� (10)

which is a version of the STFT shifted in frequency by some cyclic
order α. Then, it can be shown that an estimator of the OF-SCC of
processes xm�t� and xm 0 �t� is returned by

Ŝxmxm 0 �α; f� �
1

kwγk2I�L�Φ�L�
XI�L�−1
i�0

Xmi�fk�Xm 0i�fk; α�� (11)

where kwγk2 �
P

n∈Zjw�γn∕Fs�j2, I�L� is the number of snapshots

given as an explicit function of the signal length L [as indicated after

Eq. (8)], and Φ�L� � P
L−1
n�0 θ�n∕Fs� is the angular sector covered

during the observation of L samples of the signal. One has

lim
γ→0

lim
L→∞

Ŝxmxm 0 �α; f� � Sxmxm 0 �α; f� (12)

in the mean square sense [19]. It is noteworthy that the signal trans-
formations introduced in this section are synchronized to angle, yet
performed in the time domain, thanks to the knowledge of angle θ�t�
as a function of time t. This approach has been found extremely
convenient for processing AT-CS2 signals, which, by definition,
involve dependencies on both the time and the angular variables, as
explained in Sec. II.B. As demonstrated in Sec. V, this can make a
definite difference in the presence of speed fluctuations.

III. Methodology for Broadband Noise Extraction

This section describes the methodology for extracting an AT-CS2
signal from stationary background noise [i.e., rm�t� from xm�t�
according to model (1)] under the assumptions discussed in Sec. II.
The idea is to predict the STFT of the SOI by building a regression
model on the STAFT coefficients introduced in the previous section.
This is first explained in themonochannel case [M � 1 inmodel (1)],
and then extended to the multichannel case (M > 1).

A. Principle of the Extraction: The Monochannel Case

Let us denote A� � fαl:α ≠ 0; l � 1; : : : ; Kg the set of nonzero
cyclic orders of the SOI rm�t� (e.g.,A� � A∕f0gwithA as defined in
assumption H1). On the one hand, because the SOI is AT-CS2, it
follows from Sec. II.D that Rmi�fk� is correlated with Rmi�fk;αl�,
l � 1; : : : ; K. On the other hand, since nm�t� is stationary, the
correlation between Nmi�fk� and Nmi�fk; αl� is theoretically nil for
any αl ∈ A�. Therefore, a prediction ofRmi�fk� can be obtained from
a linear combination of the STAFT coefficients Xmi�fk; αl�, αl ∈ A�
of themeasured signal. This means that there exists a set of frequency

gains Cl�fk� such that

Rmi�fk� ≃
XK
l�1

Cl�fk�Xmi�fk; αl� (13)

The preceding coefficients may be estimated by least squares:

fĈl�fk�; l � 1; : : : ; Kg � Argmin
Cl�fk�

��Xmi�fk�

−
XK
l�1

Cl�fk�Xmi�fk; αl�
��2 (14)

such that, finally, an estimate of the STFT of the SOI is returned by
the cyclic regression

R̂mi�fk� �
XK
l�1

Ĉl�fk�Xmi�fk; αl� (15)

In turn, an estimate of the SOI in the time domain, r̂mi�t�, is
obtained from the inverse STFT (9) applied to the Fourier coefficients

R̂mi�fk�. This explains how the time signals corresponding to AT-
CS2 components can be ultimately resynthesized. As a by-product,
an estimate of the stationary residue is returned by the differ-
ence n̂mi�t� � xmi�t� − r̂mi�t�.

B. The Multichannel Case

The principle of the extraction is now generalized to the multiple-
channel case. The multichannel case has the capability to account for
the spatial coherence between the sensors, and therefore to better
extract the SOI when the latter occupies a subspace of low dimension
as compared to the number of channels M.

1. Principle

Let X ∈ CM×I denote the matrix of STFT coefficients for all
sensors and all time indices {i.e., �X�mi � Xmi�fk�}. Hence, the
matrix equivalent of model (1) reads

X � R�N (16)

Similarly, let us introduce Xl ∈ CM×I , the matrix of STAFT coef-
ficients for all sensors and all time indices, such that
�Xl�mi � Xmi�fk; αl�. Therefore, the aim is to find a set of matrix

gains Cl ∈ CM×M such that

R ≃
XK
l�1

ClXl � CXA; with C ≐ �C1 · · · CK � ∈ CM×MK

and XA ≐ �XT
1 · · · XT

K �T ∈ CMK×I (17)

Thus, the product CXA is expected to return an estimate ofR. It is
noted that the factorsC andXA have no physicalmeaningwhen taken
independently; in particular, they are not expected to return any
information on the localization of the sources, as opposed to beam-
forming, for instance.
Although the matrix gains Cl can be estimated by least squares as

in Eq. (14), a major limitation of this approach is to involve a large

number,KM2, of (complex-valued) unknowns. This is likely tomake
it impracticable due to the production of large estimation errors. A
solution is hereafter introduced based on a reduced-rank model to
squeeze the number of unknowns and, therefore, better condition the
regression problem. The idea is to search for an optimal linear
combination (i.e., whichminimizes themean square prediction error)
of the STAFT coefficients Xmi�fk; αl� of all sensors m � 1; : : : ;M
and all cyclic order l � 1; : : : ; K that provides a small number S ≪
M of explanatory variables on which to regress Xmi�fk�. These
variables are expressed as

P
K
l�1 b

H
slXl, s � 1; : : : ; S, with bsl ∈

CM, and may be interpreted as S virtual sources that are apt to
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reproduce an equivalent acoustical field. The estimate of R is then
returned by the cyclic regression:

R̂ � A
XK
l�1

BH
l Xl (18)

where A ∈ CM×S and Bl � �b1;l : : : bS;l� ∈ CM×S such that Cl �
ABH

l and C � �C1 · · · CK � are matrices of rank S. The problem

now involves MS�1� K� complex-valued unknowns instead

of KM2.

2. Identifiability

This subsection briefly investigates the identifiability of the pro-
posed model to establish the number of degrees of freedom (i.e., of
independent unknowns) to infer. The model involves 2S2 indetermi-

nate parameters (real and imaginary parts counted independently)

since ABH
l � AZZ−1BH

l for any invertible matrix Z ∈ ZS×S.

(Although the product ABH
k is unique, this is not the case for the

elements ofA andBk.) Therefore, themodel counts only 2S�M�K �
1� − S� degrees of freedom (real and imaginary parts). The indeter-

minacy is fixed if 2S2 different elements inA and/orBl are imposed.

The constraint used in the present work is to impose AHΓ−1A � I
for some M ×M Hermitian positive-definite matrix Γ.

3. Estimation

Following the direction given in the monochannel case, the iden-

tification of the multivariate regression model (18) is carried out by
least squares. The estimation of the regression coefficients under
constraint of reduced rank is by itself a nontrivial task that can be

undertaken in several ways [26]. Let BH � �BH
1 · · · BH

K � ∈ CS×MK

andXA be defined as in Eq. (17). The aim is thus to estimate matrices
A andB that minimize the sum of the square differences between the

observationX and the predictionABHXA. For the sake of generality,
the sum of the square differences will be calculated with theweighted

Frobenius norm kX −ABHXAkΓ, where the convention jjXjj2Γ ≐
tracefXHΓ−1Xg is used with some M ×M positive-definite weight-

ing matrix Γ. To regularize the problem, a penalization is also put on

the Frobenius norm ofABH to force the prediction X̂ to remain small

when the variance of ABH is high. Therefore, the penalized least-
squares estimate of A and B reads

�Â B̂� � Arg min
A∈CM×S

B∈CMK×S

S≤M

kX −ABHXAk2Γ � ηkABHk2Γ (19)

with η ≥ 0 a regularization parameter.
Now, let us introduce the spectral matrices SXX � �XXH�∕I ∈

CM×M and SXXA
� �XXH

A�∕I ∈ CM×MK whose elements are propor-

tional to the cross spectra Ŝxmxm 0 �0; fk� and OF-SCC Ŝxmxm 0 �αl; fk�
[see Eq. (11)], respectively, and SXAXA

� �XAX
H
A�∕I theMK ×MK

augmented spectral matrix. The solution to problem (19) subject to

constraint AHΓ−1A � I is then returned by (see [23,24])8>><
>>:
VS � �v1 · · · vS�
Â � Γ1∕2VS

B̂ � �SXAXA
� ηI�−1SH

XXA
Γ−1Â

(20)

where VS is the modal matrix in the eigenvalue decomposition

Γ−1∕2SXXA
�SXAXA

� ηI�−1SH
XXA

Γ−1∕2 �
XM
s�1

λsvlv
H
l ;

λ1 ≤ : : : ≤ λM (21)

Equation (20) shows that the reduced-rank regressor Ĉ � ÂB̂H
is

the cascade of the classical least-squares solution and a projection on

a subspace of reduced dimension S. It can be shown that the first
column of CAA in Eq. (17), associated to first virtual source, is the
linear combination maximally correlated with X; then, the second
column, associated to second “source,” is the next one maximally
correlated with X, but uncorrelated with the first one, etc. The
eigenvalues λs, s � 1; : : : ; S may be interpreted as the strengths of
the S virtual sources entering in model (18). As a consequence, the S

strongest eigenvalues are selected in forming the projector Â.
The prediction error is thus returned by

kX − Â B̂HXAk2Γ � ηkÂ B̂Hk2Γ

� trfΓ−1SXAXA
g − trfΓ−1SXXA

�SXAXA
� ηI�−1SH

XXA
g �

XM
s�S�1

λs

(22)

which clearly shows that the closer the fraction
P

S
s�1 λs∕

P
M
s�1 λs

(the relative strength of theS first virtual sources) is to unity, the better
is the estimation of the SOI.

IV. Toward Automated Extraction

The proposedmethodology involves several transformations, each
with its parameters. Properly setting these parameters is essential for
successfully extracting the AT-CS2 components. This section
addresses this issue. It makes the difference between those parame-
ters that can be safely fixed beforehand according to general guide-
lines and those parameters that are highly data dependent. In the latter
case, data-based criteria are proposed for automatically setting the
value of the parameters.

A. General Guidelines for Parameter Settings

All the parameters involved in the algorithms of Sec. III are now
listed and discussed.
1) The spectral bandwidth γ: while the window shape and the

fraction of overlap in the STFT and STAFT can be safely set up a
priori, the spectral bandwidth γ is a crucial parameter that controls the
desired frequency resolution of the analysis. It is obviously data
dependent and care should be taken to take it small enough so as to
capture the smallest spectral details. At the same time, it is the main
lever to reduce the overall computational cost of the algorithms,
because a broad bandwidth will limit the number Nw of frequencies
to be scanned. The recommendation is therefore to set γ as large as
possible without sacrificing too much the frequency resolution. This
compromise can surely be found by visual inspection of the signal
spectra. It is noteworthy that γ controls the resolution of the carrier
frequency f independently of the resolution of the cyclic order α, the
latter being typically set much finer than the former. Therefore, the
setting of the spectral bandwidth does not have to account for the time
characteristics of the modulations imposed on the signals.
2) The weighting matrix Γ: from a practical point of view, the

simplest choice is here to takeΓ � I. Nevertheless, from a theoretical
point of view, the optimal weighting matrix is Γ � SXX because
it minimizes the prediction error. In practice, the feasibility of the
latter choice will strongly depend on the conditioning of the spectral
matrix SXX . A safe compromise might be to take Γ � DiagfSXXg
(i.e., a diagonal matrix composed of the diagonal elements of SXX).
It is equivalent to systematically prewhitening all signals before
processing.
3) The set of cyclic ordersA�: the setA� of cyclic orders is used to

construct the explanatory variables in the regressionmodel. In theory,
the larger the set is, the more accurate is the prediction. Nevertheless,
a large set of regressors also accumulates estimation errors and is
therefore detrimental to precision. Selecting the right number of
cyclic orders to include in A� is therefore a bias–variance tradeoff.
A simple approach is to identify the cyclic orders with the most
prominent AT-CS2 signature, as identified by visual inspection of
the square magnitude of the (estimated) order-frequency spectral
coherence (OF-SCoh) of each measurement xm�t�, that is
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γ̂2xmxm �αl; f� �
jPI−1

i�0 Xmi�fk�Xmi�fk; αl��j2P
I−1
i�0 jXmi�fk�j2

P
I−1
i�0 jXmi�fk;αl�j2

(23)

The OF-SCoh is a normalized version of the OF-SC introduced in
Sec. II.C, with values in the range [0; 1]: a zero value indicates that
the cyclic order α does not contribute to explain Xmi�fk�, whereas a
unitary value means that the explanatory Xmi�fk; αl� is perfectly
correlated with Xmi�fk�, and thus provides a perfect prediction of
the latter. In practice, the �1 − p� level of significance

γ21−p � 1 − e
−

χ2
2;p

2Ieff (24)

returns an approximated threshold below which values of the
OF-SCoh are deemed statistically nil (see the Appendix). In the

preceding equation, χ22;p is the p quantile of the chi-square with

two degrees of freedom, and Ieff is the effective number of snapshots
(as given in the Appendix).
If there is strong presumption that the explanatory variables

Xmi�fk; αl� are themselves correlated for different values of
αl ∈ A�, the OF-SCoh may be advantageously replaced by its
“partial” versions.
Another strategy is to rely on an automated statistical test that

incrementally includes a new cyclic order until it does no longer
reduce the prediction error. This test is described in Sec. IV.B.1.
4) The number of AT-CS2 sources S: in theory, this parameter can

be inferred from the number of dominant eigenvalues λl in Eq. (21).
However, in practice, it is often observed that the eigenvalues have
a gradually decreasing spectrum without clear distinction of the
“signal” zone. The selection of S places a similar bias–variance
tradeoff as the selection of A�. An automated statistical test is
discussed in Sec. IV.B.2.

B. Automatic Settings

As discussed previously, the selection of the number of cyclic

orders and ofAT-CS2 sources is an important issue that conditions the

success of the proposed algorithms. To alleviate the user’s respon-

sibility in this difficult choice, two statistical tests are introduced that

intend to automate this task. They are both based on an incremental

inclusion of cyclic orders and AT-CS2 sources as long as they

significantly reduce the prediction error.

1. Automatic Selection of Cyclic Orders

Let us first rank the candidate cyclic orders in a set A0 from the a

priori most significant one to the least significant one. (For instance,

the cyclic orders αk � k may be ranked according to the har-

monic number, i.e., A0 � fα1; α−1; α2; α−2; : : : ; αK 0 ; α−K 0 g.) Next,
suppose that amodel based onK (1 ≤ K < K 0� cyclic orders has been
accepted, denoted asMK � �fCl; l � 1; : : : ; Kg�. The test consists
in checking if the inclusion of an �K� 1� th order will significantly
reduce the prediction error of the model. If it does not, then K cyclic

orders are retained, which eventually constitute set A�. If it does,
then modelMK�1 � �MK

SfCK�1g� is accepted and tested for the
inclusion of an �K � 2�th cyclic order. Hence, each iteration amounts

to testing the hypothesis:

H0:CK�1 � 0 inMK�1 (25)

It is proved in the Appendix that hypothesisH0 is to be rejected, at

the level of significance �1 − p�, if

ln

�
σ̂2K
σ̂2K�1

�
>

1

2IeffM
χ2ν;1−p (26)

with

σ̂2K � 1

Ieff

�����X −
XK
l�1

ClXl

�����
2

(27)

and χ2ν;1−p the �1 − p� quantile of the chi-square with ν � 2SM

degrees of freedom.

2. Automatic Selection of AT-CS2 Sources

The selection of the number of AT-CS2 sources can be selected in
exactly the same way as the number of cyclic orders, with σ̂2k (with
index k referring to the number of cyclic orders) then replaced by σ̂2S
(with index S referring to the number of sources) in Eq. (26). The
number of degrees of freedom to be used in the chi-square quantile on
the right-hand side of Eq. (26) is then ν � 2�M�K� 1� − S − 1�.

V. Numerical Experiments

This section aims at validating the proposed methodology by
means of numerical experiments. An AT-CS2 signal is synthesized
by simulating the radiation of a rotating monopole to an array of
microphones. The signal length is 105 samples, and the sampling
frequency is Fs � 20 kHz. The radius of gyration is r0 � 0.25 m,
and the distance of the center of rotation to the center of the array is 1
m. The speed of sound is c0 � 340 m/s, and the angular speed of

rotation is defined as _θ�t� � 2πf0 � ε�t�, where f0 � 90 Hz is the
mean frequency and ε�t� is a first-order autoregressive process,
ε�t� � 0.999ε�t − 1∕Fs� � ν�t�, driven by stationary white Gaus-

sian noise ν�t�. The standard deviation of _θ�t� is about one per mil,
which is enough to invalidate methods that do not explicitly consider
angle rather than time as the descriptive variable, even though the
method proposed in this paper could handle much larger speed
fluctuations. The monopole strength is driven by a stationary sto-
chastic process q�t� � 0.8q�t − 1∕Fs� � ε�t�, where ε�t� is a sta-
tionary white Gaussian noise independent of ν�t�. Therefore q�t� is a
colored signal with a steadily decreasing PSD. The pressure signal
received at a sensor m, a distance dm from the center of rotation, is
then expressed as

rm�t� �
q�t�m�

4πdm�ρm�t�m� − �r0∕c0�_θ�t�m� sin θ�t�m��
� q�t�m�

4πdm
pm�t�m�

(28)

with dmρ�t�m��dm
���������������������������������������������������������������������������������������������
�1��r0∕dm�cosθ�t�m��2���r0∕dm�sinθ�t�m��2

p
the instantaneous distance between the source and the
sensor, and t�m the retarded time such that t � t�m��������������������������������������������������������
d2m � r20 � 2dmr0 cos θ�t�m�

p
∕c0. As reflected by Eq. (28), the rota-

tion of the source produces strong amplitude modulation at the
receiver, owing to the product with the angle-periodic function
pm�t�m�, and frequency modulation (Doppler effect) owing to the
angle-periodic variations of the retarded time t�m, with an angular
period of 2π radians. This corresponds to a mean period of 11 ms,
yet with slight fluctuations in time due to the nonconstant speed of
rotation. With the aforementioned settings, the observed modulation
depth, defined as �Amax − Amin�∕�Amax � Amin� with Amax and Amin

the maximum and minimum values of the modulation function
rm�t�m� of the signal, is close to 50%. Because the source signal is
random, the resulting pressure signal rm�t� is AT-CS2. Its cyclic
orders are αk � k, k ∈ Z, and the number of AT-CS2 sources is
S � 1 (here, the number of independent point sources). Following
model (1), the SOI is finally obscured with stationary white Gaussian
noise nm�t� according to a specified signal-to-noise ratio (SNR),
leading to the “measured” signal xm�t� � rm�t� � nm�t�.
Figure 1a displays the square magnitude of the OF-SCoh,

γ̂2x1x1�αk; f�, as defined in Eq. (23), computed at the center of the

array (say m � 1) for αk � k, k � 1; : : : ; 10 (note the symmetry

γ̂2x1x1�αk; f� � γ̂2x1x1�−αk; f�), under an SNR of 0 dB. The OF-SCoh

is well able to evidence the presence ofAT-CS2 even in this high level
of noise; there are at least five cyclic orders that protrude in a large
frequency range above the 95% level of significance computed
according to formula (24). Bymeans of comparison, Fig. 1b displays
the same OF-SCoh under the assumption of a constant speed of
rotation [i.e., when the STAFT entering in Eq. (23) is computed

according to Eq. (10) with θ�t� (respectively, _θ�t�) replaced by
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2πf0t (respectively, 2πf0)]. It is seen that almost all values of the
coherence fall below the statistical threshold, a situation that would
clearly jeopardize the subsequent use of cyclic regression for
extracting the AT-CS2 components, including the methods proposed
by the authors in Refs. [21,22]. This illustrates well the necessity to
properly account for even small speed fluctuations in the present
context.
The first experiment investigates the capability of the proposed

method to reconstruct the AT-CS2 component in the absence of
additive noise (infinite SNR). The configuration is with M � 20
microphones randomly positioned in a hemisphere of radius 1 m
from the center of the array and at least 1 m away from the center of
rotation of the source. Based on the former analysis of the OF-SCoh,
the set A� � f	1;	2; : : : 	 5g is selected for building the cyclic
regression model of Sec. III.B. In the first step, the modulation
function rm�t�m� of Eq. (28) is clipped before multiplication with
q�t�m� so as to impose a maximum modulation depth of 100% (i.e.,
Amin � 0). As shown in Fig. 2a, a perfect reconstruction of the SOI is
obtained, with a residual stationary part that is virtually nil (see
Fig. 2c). This result was found independent of the number of sensors.
In the second step, the same experiment is repeated without clipping
the modulation function. (As mentioned previously, this corresponds
to a modulation depth of about 50%.) It must be understood that part
of this signal can now be interpreted as stationary, even though it is
produced by the rotating source. This must be so because there exists
a continuous transition from an AT-CS2 signal with 100% modula-
tion depth to a stationary signal, that is, an AT-CS2 signal with 0%
modulation depth. Such a transition is, for instance, observed when
decreasing the radius of gyration r0 toward zero in Eq. (28). There-
fore, in the presence of a moderate modulation depth, part of the
source contribution will not be extracted, but left in the stationary
residual part. This is illustrated in Fig. 2b, where the reconstructed
AT-CS2 signal truly corresponds to the modulated part, but slightly
differs from the actual signal; as expected, the difference shown in
Fig. 2d is purely stationary and accounts for about 50% of the total
signal. It is emphasized that this difference does not result from a
default of the proposed method, but rather indicates how to interpret
the broadband AT-CS2 components that it is able to extract. Indeed,

the quantity rm�t� inmodel (1) should really be interpreted as that part

in signal xm�t� that can be unambiguously interpreted asAT-CS2 (i.e.,

the orange curve in Figs. 2a and 2b) and nm�t� as the stationary

residual (in Figs. 2c and 2d).
The next experiment investigates the capability of the method to

extract AT-CS2 components under an unfavorable SNR of 0 dB for

different values of the numberM of microphones and of the number

K of cyclic orders used in cyclic regression. The AT-CS2 signal with

100% modulation depth of Fig. 2a is selected for its ease of inter-

pretation. (In this case, the stationary residual is expected to be nil.)

The results are displayed in Fig. 3 by means of the normalized rms

error (NRMSE):

NRMSE � �PM
m�1

��r̂m�t� − rm�t�
��2�1∕2

�PM
m�1 krm�t�k2�1∕2

(29)

where r̂m�t� stands for the estimate of rm�t�.
Several remarks are in order. First, the smallest NRMSE that can

be reached is now 0.215. Although this is still acceptable, it clearly

demonstrates that the presence of additive noise places a funda-

mental limit to the recovery. Second, it is seen that the number of

sensorsM has a strong effect on the extraction capability. Whereas

the NRMSE is particularly high when only one microphone is used,

it is lowered from 0.80 to 0.38 when the number of microphones is

increased toM � 5. A notable improvement is still observed up to

at least M � 25. Third, the NRMSE decreases with the number of

cyclic orders up to a certain point where no more gain is expected.

As seen in Fig. 4 and in accordancewith the discussion of Sec. IV.A,

including too many cyclic orders can actually increase the estima-

tion errors. This illustrates the importance of correctly setting this

parameter according to the criteria introduced in Sec. IV. In the

present case, the statistical test performed on the OF-SCoh of Fig. 1

already indicated that no more than 10 cyclic orders (five positive

values plus their opposite) are required in the cyclic regression

model. A similar conclusion was also returned by the criterion of

Sec. IV.B.1 (not detailed here, yet to be illustrated in the next

section). Fourth, for all runs in the experiment, the number of

0 500 1000

frequency (Hz)

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

a)

0 500 1000

frequency (Hz)
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10 -2

10 -1

10 0

b)

α = ±1

α = ±3
α = ±2

α = ±4

α = ±1

α = ±5
α = ±6

Fig. 1 Square magnitude of the OF-SCoh computed at the center of the array for αk � k, k � 1; : : : ;10 together with the 95% statistical threshold
(dotted horizontal line) for SNR � 0 dB: a) accounting for the presence of speed fluctuations; b) assuming constant rotation speed (Δf � 94 Hz,
Δα � 0.02 Hz).
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AT-CS2 sources was automatically selected according to the cri-

terion of Sec. IV.B.2. The estimate was always 1 or 2, close to the

theoretical value S � 1. Further experiments not reported here have

investigated the configuration with several rotating monopoles

driven by independent stationary stochastic processes so as to

simulate the case with S > 1. The results indicated that overesti-

mating the actual number of AT-CS2 sources only slightly increased

the NRMSE, while underestimating it led to much larger errors.

Fortunately, the criterion of Sec. IV.B.2 seemed to be conservative

in this respect.

The last experiment consists in attempting to extract AT-CS2

components from purely stationary noise [i.e., when the pressure

signal rm�t� is set to zero]. As illustrated by the red curves in Fig. 3,
the method correctly returns a nil estimate (i.e., an NRMSE nearly

equal to one) in this case, even when a large number of microphones

are used.
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Fig. 2 Actual (black) and reconstructed (orange) signal on the first microphone in the case of a) 100%modulation depth and b) 50%modulation depth;
c–d) residual stationary parts corresponding to cases a–b); the vertical dotted lines show the succession of periods (infinite SNR,M � 20).
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Fig. 3 Normalized rms error as a function of the number M of microphones and of the number K of cyclic orders when extracting an AT-CS2 signal
with 100% modulation depth (black curves); the red curves show the error when the SOI is purely stationary.
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VI. Experimental Validation on CROR Data

The extraction of AT-CS2 components is now illustrated on aero-

acoustic signals recorded on an CROR engine in a wind tunnel. The

CROR data typically comprise a mixture of tonal and broadband

components [7,11]. Denoting by ym�t� the signal measured by the

mth sensor, by pm�t� the tonal contribution, and by xm�t� the broad-
band contribution, the signal model reads

(
ym�t� � pm�t� � xm�t�
xm�t� � rm�t� � nm�t�;

m � 1; : : : ;M (30)

The tonal contribution pm�t� was extracted in a first step by

following the approach described in the companion paper [3] to leave

alone the broadband residual xm�t�. [The method introduced in

Ref. [3] consists in tracking the tones in the angular domain so as

to accommodate small speed fluctuations while at the same time

recovering to some extent slow randommodulations (e.g., due to the

effect of turbulence on the propagation of thewaves.] The next step is

to decompose xm�t� into an AT-CS2 part rm�t� attached to the rotors
and a stationary part nm�t� assigned in particular to background

noise. It is noted that the AT-CS2 part can be further decomposed

into three contributions, say

rm�t� � r1;m�t� � r2;m�t� � r12;m�t� (31)

attached to the rear and front rotors and their interactions, respec-

tively. These components can be theoretically extracted individually,

provided that the rotors operate with asynchronous speeds.

A. Presentation of the Data

The data were collected by a linear array of flush-mounted micro-

phones, placed parallel to the CROR in the wind tunnel (see Figs. 5

and 6). All results are presented hereafter for Mach speed 0.78 and

desynchronized rotor speeds, say f1 and f2, for the rear and front

rotors, respectively. The instantaneous angles of rotation of the rear

and front rotors were measured by two encoders. In what follows, all

frequency axes are normalized by the sampling frequency Fs.

B. Preliminary Analyses

The specification of the cyclic regression model (18) requires the
list of cyclic orders and the list of neighboring sensors that will act as
regressors. Before attempting to answer this question with the help of
statistical tests, some physical considerations are first of concern.
Because both the front and rear rotors contribute to the radiated

acoustical field, the two families of harmonics fk ⋅ f1; k � 	1;
	2; : : : g and fk ⋅ f2; k � 	1;	2; : : : g must be taken into account
in the separation. Because interactions due tomodulation of one rotor
by the other one exist, it seems at first sight that harmonic combina-
tions of the form fm ⋅ f1 � n ⋅ f2; m; n � 	1;	2; : : : g are also
expected. However, it should be kept in mind that cyclic orders are
modulation frequencies, and do not include carrier frequencies, and
therefore boil down to the same lists fk ⋅ f1; k � 	1;	2; : : : g and
fk ⋅ f2; k � 	1;	2; : : : g. This is well confirmed by the inspec-
tion of the OF-SCoh (see Fig. 7), where the first harmonics in the
families of f1 and f2 essentially dominate in a wide frequency range.
Taking into account all the harmonics in the families of f1 and f2

still represents a huge amount of regressors, which is too large to
guarantee statistical significance of the separation. Because many of
these regressors are likely to be strongly cross correlated, the list can
be reduced to only a few of them,which are themost representative. It
seems natural to truncate the lists to the first harmonics only (i.e., fk ⋅
f1; k � 	1;	2; : : : ;	K∕4g and fk ⋅f2; k�	1;	2; : : : ;	K∕4g
with K to be specified). These K potential cyclic orders are to be
multiplied by the number of neighboring sensors, sayP, participating
in the regression, thus leading to a regression model with PK regres-
sors of the form:

R̂m�f� �
XK
k�1

X
n∈Nm

ckln�f�Xn�f; αk� (32)

where fα1; α2; α3; α4; : : : g � ff1; −f1; f2; −f2; 2f1; −2f1; 2f2;
−2f2; : : : g∕Fs, and Nm is a set of indices corresponding to P
sensors in the neighborhood of sensorm. It is important to understand
that, according to Sec. III, the regressionmodel (32) intends to extract
from measurement Xm�f� all spectral components correlated with
Xn�f; αk�; when the cyclic orders αk’s pertain to the union set of both
rotors, the spectral components that are potentially extracted include
not only the direct contributions of the front and rear rotors, but also
their interactions. This is surely different from the approach that

0 5 10 15 20 25 30 35 40

K

0.2145

0.2150

0.2155

0.2160

0.2165

0.2170

N
R

M
SE

Fig. 4 Zoom of the normalized rms error as a function of the numberK of cyclic orders when extracting an AT-CS2 signal with 100%modulation depth
(black curves) andM � 25 of microphones; the star indicates the optimal number of cyclic orders found by the criteria proposed in Sec. IV.B.1.
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would consist in regressingXm�f� independently on the cyclic orders
of each rotor, which would not be able to extract all interactions.
Figure 8 displays the coherence between the spectral component

Xm�f� and the regressors Xn�f; αk� for K � 8 and all sensors
(Nm � f1; : : : ;Mg with M � 17). It is seen that the coherence is
significant only for closely spaced sensors,which reflects the fact that
the residual broadband pressure field obtained after subtraction of
tones has limited spatial coherence. The spatial correlation length is
estimated to be no more than about 3d (with d the spacing between
microphones). Moreover, strong coherence exists between cyclic
orders within and between groups of spatially close sensors.

These observations are further supported by some statistical tests
introduced in Fig. 9 with Nm � fmg (one and same sensor in the
regression model). In Fig. 9a, the multiple coherence function
between Xm�f� and fXm�f; α1�; : : : ; Xm�f;αk�g is displayed for
increasing values of k and compared to its level of significance at
95% for sensor 10. (Similar figures have been drawn for the other
sensors, but not shown here.) It is seen that the coherence is highly
significant below 0.08Fs. A similar observation holds for the other
sensors (not shown), some of them evidencing coherence over a
much larger frequency range. Figure 9b leads to a similar conclusion
with different statistics that measures how the group of regressors

Fr
eq

ue
nc

y 
f

0.48

0.32

0.16

0

0.080.04 0.0640.0320.016 0.0480.024 0.056 0.072

Frequency α
0.0080

Fig. 7 Order-frequency spectral coherence of sensor 10 (Δf � 6 × 10−3Fs; Δα � 10−5Fs); distribution over frequency f reveals the carrier spectrum,

whereas distribution over α (cyclic order) reveals the modulation spectrum; the color bar grades linearly from 0 (light blue) to 0.1 (dark blue).

Fig. 5 Schematic of the CROR with the acoustic array; sensors used in the analysis are numbered from 1 to 17.

Fig. 6 a) picture of the CROR (rearview) with the acoustic array; b) flush-mounted microphones.
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fXm�f; α1�; : : : ; Xm�f;αk�g improves the prediction of Xm�f�,
as opposed to using no regressors. Finally, Fig. 9c shows how
the addition of Xm�f; αk� improves the prediction based on
fXm�f; α1�; : : : ; Xm�f;αk−1�g. Interestingly, harmonics of family
f1 are more important for sensors 1 and 12 (not shown), whereas
harmonics of family f2 are more important for sensor 6 (not shown).
This illustrates that the relative roles of cyclic orders in the separation
are highly dependent on the position of the sensor with respect to the
engine.
A last statistical test is provided by the number of significant

sources S found in cyclic regression as returned by the model
selection criterion of Sec. IV.B.2. The criterion is displayed in
Fig. 10 for all the frequency bins in the full frequency range, with
Nm � f1; : : : ;Mg, M � 17, and K � 8. The criterion regularly
decreases with the number of sources and arrives very close to the

significance level, even though it does not cross it except for the very
first frequencies. Note that, by construction, the number of sources S
cannot exceed the number of sensorsM. This indicates that out of the
PK � 136 regressors, there are at least S � 17 independent linear
combinations of them that can be extracted by cyclic regressions.Yet,
because the criterion ends up very close to the significance level, it is
likely that much fewer sources could equivalently be used in cyclic
regression.
Based on these findings, a second investigation was carried on

groups of neighbor sensors only. It was checked that the spatial
coherence was well captured within groups consisting of approxi-
mately three adjacent sensors. At the same time, reducing the number
of sensors in the list of regressors makes possible to increase the
number of cyclic orders. A significant correlation was found up to
K � 20, thus leading to a model with PK � 60 regressors.
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Fig. 8 Coherence between groups of 17 sensors (marked by boxes) at different cyclic orders fα1;α2; : : : ;α8g � f�f1; − f1;� f2; − f2;�
2f1; − 2f1;� 2f2; − 2f2g; the ordinates of the axes are the values of 17�k − 1� �m, with m � 1; : : : ;17 the sensor index and k � 1; : : : ;8 the index

of the cyclic order αk; the main diagonal is removed; carrier frequency is a) 0.035Fs, b) 0.074Fs, c) 0.152Fs, and d) 0.309Fs (Δf � 6 × 10−3Fs;

Δα � 10−5Fs).
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Fig. 9 Analysis of the effect of cyclic orders in the regression model (17) for sensor 10: a) overall coherence function based on the first k cyclic orders

in the set f�f1; − f1;� f2; − f2;� 2f1; − 2f1;� 2f2; − 2f2g; b) statistical contribution of the first k cyclic orders ; c) statistical effect of adding the
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C. Analysis of Separation Results

The extraction of the AT-CS2 components is now undertaken with

the settings found in the previous subsection (i.e., with subgroups of

three adjacent sensors withK � 5). A kernel bandwidth of 10−3Fs is

chosen for the STAFT. With these settings, the computation of the

spectral matrices, the most demanding task of the method, took

approximately 1 h with an Intel Core i7-4810MQ processor.
The cyclic regression model (32) makes it possible to return an

estimation of the total contribution of the AT-CS2 components

attached to the front and rear rotors, including their interactions.

Once the regression coefficients ckln�f� have been estimated, it is

also possible to use the same regression model to extract only the

contribution due to the rear or front rotor. Upon defining the reduced

set K1 � f1; 2; 5; 6; 9; 10; : : : g [these indices correspond to the

set of cyclic orders ff1;−f1; 2f1;−2f1; 3f1;−3f1; : : : g∕Fs in

Eq. (32)]

R̂1;m�f� �
X
k∈K1

X
n∈Nm

ckln�f�Xn�f; αk� (33)

is then an estimate of the acoustical contribution of the rear rotor only.

Similarly, with K2 � f3; 4; 7; 8; 11; 12; : : : g [set of cyclic orders

ff2;−f2; 2f2;−2f2; 3f2;−3f2 : : : g∕Fs in Eq. (32)]

R̂2;m�f� �
X
k∈K2

X
n∈Nm

ckln�f�Xn�f;αk� (34)

is an estimate of the acoustical contribution of the front rotor only. By

difference, an estimate of the interactions between the two rotors is

returned by

R̂12;m�f� � R̂m�f� − R̂1;m�f� − R̂2;m�f� (35)

Eventually, an estimate of the residual stationary noise is obtained

from N̂m�f� � Xm�f� − R̂m�f�.
By means of an example, Figs. 11 and 12 illustrate the separation

results for sensors 10 and 11, respectively. These are obtained as

follows. First, the tonal part (gray line) is extracted by the method-

ology introduced in Ref. [3]. This leaves a broadband signal (not

shown in the figures), comprising AT-CS2 and stationary compo-

nents, which is then processed with the algorithm introduced in

Sec. III. In the first step, the total AT-CS2 part due to both rotors

(green line) is extracted on the basis of Eq. (32). Next, this is further

decomposed into AT-CS2 part stemming from the front (orange line)

and rear rotors (brown dashed line) on the basis of Eqs. (33) and (34).

The difference between the total AT-CS2 part and the sum of the

individual AT-CS2 parts of each rotor is due to the presence of
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Fig. 11 Power spectral density (arbitrary units) of sensor 10 (Δf � 4 × 10−4Fs); black line, total signal; gray line, extracted tonal part; green line,
extractedAT-CS2part due to front and rear rotors (including interactions); orange line, extractedAT-CS2part due to rear rotor only; browndashed line,
extracted AT-CS2 part due to front rotor only; blue line, residual stationary noise; blue dotted line, noise reference.
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Fig. 10 Ratio ofmean square errorswith k and �k� 1� sources compared to the statistical threshold at risk 5%; right panel (b) is an excerpt of left panel.

12 Article in Advance / ANTONI ETAL.

D
ow

nl
oa

de
d 

by
 J

er
om

e 
A

nt
on

i o
n 

Se
pt

em
be

r 
22

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

06
02

89
 



interactions between the rotors, as indicated by Eq. (35). Finally, the
residual of the decomposition amounts for stationary components
(blue line). This is compared to the PSD of the noise reference
measured in the wind tunnel, under the same flow conditions, with
blades removed and without rotation of the rotors (blue dotted line).

Several observations are in order based on Figs. 11 and 12 and on
Fig. 13, which collect the PSDs of the separated broadband parts for
all sensors as a function of frequency and space.
The total power of the AT-CS2 components is not negligible

as compared to that of the tonal component, an observation in
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Fig. 13 Power spectral densities (arbitrary units) of AT-CS2 components as a function of frequency and space: a) total broadband part, b) AT-CS2 part

due to rear and front rotors (including interactions), c) part due to front rotor only, d) part due to rear rotor only, and e) residual stationary noise
(Δf � 4 × 10−3Fs).
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Fig. 12 Power spectral density (arbitrary units) of sensor 11 (Δf � 4 × 10−4Fs); black line, total signal; gray line, extracted tonal part; green line,

extractedAT-CS2part due to front and rear rotors (including interactions); orange line, extractedAT-CS2part due to rear rotor only; browndashed line,
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accordance with the literature on CROR [27]. On sensors with the

smallest viewing angle with respect to the rotors, the two types of

contributions are of comparable level; this is particularly present on

sensor 10 (see Fig. 11), which is located right in front of the rotors.

As for AT-CS2 components, it is seen in Fig. 13 that they are the

strongest on sensors close to the planes that contain the rotors.

Although an exact localization of the corresponding sources is yet

not possible without further processing (e.g., with beamforming),

it is likely that sensors 10 and 12 are in the main regions of radiation

of the sources stemming from the front and rear rotors, respec-

tively (accounting for the spatial shift due to the convection of

waves) [28].

It is noteworthy that the totalAT-CS2 part due to both rotors largely

dominates the individual parts of each rotor; for some sensors and in

some frequency ranges, the difference is greater than the 3 dBgap that

would correspond to the simple addition of two independent contri-

butions (e.g., on sensor 10, after 0.06Fs; see Fig. 11). According to

Eq. (35), this indicates the presence of interactions between the two

rotors, at frequencies mf1 � nf2, �m; n� ∈ Z2, especially in the

high-frequency range, where the corresponding set of cyclic orders

becomes very dense. The proposed cyclic regression scheme is well

able to extract them, thanks to the high correlation they produce

between frequency components.

Moreover, a close inspection of the PSD of the AT-CS2 compo-

nents in Figs. 11 and 12 shows concentration of energy near groups of

tones, even though the spectrum is truly continuous as opposed to the

spectrum of tones. This reflects the presence of spreading of the tone

power, likely due to modulation with turbulence (i.e., hay stacking

and shear-layer effects), which could not be completely removed in

the preliminary tonal extraction step. Whether these narrowband

components actually pertain to the tonal part or to the “broadband”

random part is an open question, as there exists a continuous tran-

sition from one to the other. What truly matters here is that they are

correctly recovered in the form of AT-CS2 components if not com-

pletely removed with the tonal part. (It is reminded here that the aim

of the study is primarily the extraction of contributions; an accurate
localization of sources in space would require a subsequent analysis
based on dedicated acoustic imaging techniques.)
Finally, the PSD of the residual stationary noise is seen to remain

the dominant contribution above all. It follows quite closely the PSD
of the reference noise, yet overestimates it by 3–10 dB above
0.016Fs. (The experimental configuration is here characterized by
a high level of background noise due to the flow speed and to the
presence of a reverberant environment.) The difference is expected to
contain the residual stationary contributions of the CROR noise (i.e.,
the part not extracted as AT-CS2), yet due to the rotations of the rotors
as explained in Sec. V, but also reflects irreduciblemismatch between
the experimental configurations with and without rotation of the
rotors. [The turbulent boundary layer (TBL) level is probably higher
when the CROR is operating.] Because the PSDs of the residual
stationary parts are fairly constant in space (see Fig. 13), they are
likely to be dominated by background noise due to the inflow
and TBL.
Fig. 14 displays the separation results reconstructed in the time

domain after application of the inverse STFT (9). The total broad-
band signal is compared to the AT-CS2 part due to two rotors, the
front and rear rotors alone, and the stationary residual part. The time
derivatives of the signals are shown in order to mitigate the strong
contribution of the low-frequency components. The separated
signals clearly reveal the AT-CS2 property imposed by the rotors;
this takes the form of repetitive, but not periodic, waveforms, which
tend to be quite impulsive on sensors close to the rotors. Sensor 11
shows that the strongest impulses are due to interactions between
the two rotors.

VII. Conclusions

Amethod has been proposed to decompose broadband noise into a
cyclostationary part, typically attached to the operation of a rotor, and
a stationary part related to background noise. As many cyclosta-
tionary contributions can be separated, as there are mechanical
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Fig. 14 Extracted time signals (time derivatives, arbitrary units) for sensor 11with the same code of colors as in Figs. 11 and 12: a) total broadband part,
b) AT-CS2 part due to rear and front rotors (including interactions), c) AT-CS2 part due to front rotor only (note the change of scale), d) AT-CS2 part due
to rear rotor only (note the change of scale), and e) residual stationary noise.

14 Article in Advance / ANTONI ETAL.

D
ow

nl
oa

de
d 

by
 J

er
om

e 
A

nt
on

i o
n 

Se
pt

em
be

r 
22

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

06
02

89
 



components rotating at different asynchronous speeds. Specific
sources of noise can thus be extracted and analyzed individually as
if theyweremeasured alonewith all other interfering sources of noise
switched off. The method also makes possible the resynthesis of the
signals in the time domain. Among other aims, this allows ranking
sources according to their respective contributions to the global
acoustical field. Because it is not based on a propagation model,
themethod does not aim at localizing sources in space; yet, it could be
used as a preprocessing step before application of acoustic imaging
techniques to separate sources, a topic that is left for future work. An
important goal of this work is to illustrate the successive steps
involved in the separation process, as well as provide guidelines as
how to set up parameters in the algorithms.Criteria have been devised
for allowing automatic selection of critical parameters, so as to relieve
asmuch as possible the user intervention. The methodology has been
illustrated on aeroacoustic signals recorded on a CROR engine in a
wind tunnel. The broadband signals obtained after removing the tonal
components have been further decomposed into cyclostationary
contributions due to rotation of the rear and front propellers, their
interactions, and the stationary background noise due to inflow and
TBL. As far as the authors know, there is no equivalent decomposi-
tion in the literature.

Appendix A: Model Selection

The selection of the model order is here addressed as a test of
hypothesis between two competing models. LetMk denote a model
with k parameters arranged in a vector Θk. Based on the observation

of dataX ∈ CM×I , the aim is to test whether the latter originate from
model Mk or Mk�1. This is akin to testing the two alternative
hypotheses: (

H0:X ∼ p�XjMk;Θk�
H1:X ∼ p�XjMk�1;Θk�1�

(A1)

where p�XjMk;Θk� stands for the probability density function of X
parameterized by Θk in modelMk. Because the vector of parameters

Θk is unknown, it is substituted by itsmaximum likelihood estimate Θ̂k

[i.e., the vector that maximizesp�XjMk;Θk�]. Thus, the decision is to
reject the null hypothesis if the generalized likelihood ratio (GLR)

GLR � ln

�
p�XjMk�1; Θ̂k�1�
p�XjMk; Θ̂k�

�
(A2)

is found greater than a certain threshold. Assuming that X follows a

multivariate complex Gaussian with mean
P

k
l�1 ClXl and covariance

matrix σ2I, one has

lnp�XjMk;Θk� � −
kX −

P
k
l�1 ClXlk2
σ2

− IM ln σ2 (A3)

Replacing σ2 by its maximum likelihood estimate σ̂2 given in
Eq. (27), it comes

lnp�XjMk; Θ̂k� � −I − IM ln σ̂2 � −I�1�M ln σ̂2� (A4)

Finally, substituting the latter result into Eq. (37) gives the left-
hand side of Eq. (26). The right-hand side is obtained by invoking the
result that, asymptotically

−2 lnGLR ∼ χ2jΘk�1 j−jΘkj (A5)

with jΘkj the dimension of (i.e., the number of independent
unknowns in) Θ. As discussed in Sec. III.B.2, jΘkj � 2S�M�k� 1�
−S�. Therefore, jΘk�1j − jΘkj � 2SM.
The preceding results assume that all columns inX are statistically

independent. In practice, this assumption is violated by the use of

overlap in the short-time Fourier transform (STFT). Therefore, I
should be replaced by the effective number of snapshots:

Ieff �
I

ρ�0�2 � 2
P

I−1
i�1�1 − i

I�ρ�iΔ�2
≤ I with

ρ�iΔ� �
P

nw�n∕Fs�w��n − iΔ�∕Fs�P
nw

2�n∕Fs�
(A6)

which reflects the number of independent STFT coefficients in X.

Appendix B: Statistical Threshold of the Order-
Frequency Spectral Coherence

The statistical threshold (24) arrives as a particular case of the
statistical test (37) when M � 1 [i.e., X � �Xm1�f�; : : : ; XmI�f��,
X1 � �Xm1�f; αl�; : : : ; XmI�f; αl��), C1 � c1, and k � 1. Therefore,

Θ1 � σ20,Θ2 � �σ21; c1�, and Eq. (A5) becomes 2Ieff ln�σ̂21∕σ̂20� ∼ χ22.
The last step is to recognize that γ̂2�αl; f� � 1 − σ̂21∕σ̂20, from which

Eq. (24) immediately follows.
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