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Aeroacoustic signals, as typically returned by recordings of pressure fluctuations generated by rotating machines,
often exhibit rich mixtures of tonal and broadband components. The separate analysis of these constituents is
important from an engineering point of view, as they relate to different physical mechanisms. This paper is
concerned with the extraction of tonal components. The characteristics of aeroacoustic signals can make this task
challenging, because tones are numerous, nonharmonically related, and subjected to random modulations. A solution
is proposed based on the theory of angle-time cyclostationarity, which seems flexible enough to deal with these
constraints. A special effort is made to render the methodology as standalone as possible. This is achieved by
automatically setting up the leading parameters with data-driven strategies. The methodology is illustrated on
counter-rotating open rotor data that are known to be challenging.

Nomenclature
A = set of tone frequencies
C(y) = cost function for selecting kernel bandwidth y
ci () = time-varying Fourier coefficient
Chi = short-time Fourier coefficient
e(t) = residual signal after removal of estimated tonal part
F = robust smoothing filter
f = frequency, Hz
1 = number of time instants in short-time angular Fourier
series
J = imaginary unit
L = signal length (samples)
M = number of sensors
N, = kernel length (samples)
p(1) = tonal part of aeroacoustic signal
SpL = spectral baseline of signal y
S,(f) = power spectral density of signal y
t = time index
vy = kth eigenvector
w(f) = kernel of short-time (angular) Fourier transform
x(1) = broadband part of aeroacoustic signal

Y(f) = matrix of short-time Fourier coefficients of signals
v (1), misequalto 1,..., M at frequency f

y(1) = measured aeroacoustic signal
a = tone order (counts per revolution)
A = time shift in short-time angular Fourier series

Received 30 October 2020; revision received 1 July 2021; accepted for
publication 8 July 2021; published online 20 September 2021. Copyright ©
2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights
reserved. All requests for copying and permission to reprint should be submitted
to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your
request. See also AIAA Rights and Permissions www.aiaa.org/randp.

*Professor, Laboratoire Vibrations Acoustique (LVA), EA677; jerome
.antoni @insa-lyon.fr.

fAssistant Professor, Laboratoire Vibrations Acoustique (LVA), EA677.

*Research Engineer, Laboratoire Vibrations Acoustique (LVA), EA677.

$Acoustic Engineer, Acoustics Department.

IPh.D., Acoustic Engineer.

**Deputy Director.

Director.

y = spectral bandwidth of kernel
n =  kth eigenvalue

S} = angular period, rad

[ = reference angle, rad

7> = chi-squared distribution

Subscripts

i = time index in short-time angular Fourier series
k = order index in short-time angular Fourier series
m = sensor humber

1. Introduction

EROACOUSTIC signals, as typically returned by recordings of

pressure fluctuations generated by rotating machines, often
have a complex structure. They show combination of tonal compo-
nents, with deterministic characteristics, and broadband components,
which are fundamentally random [1]. The separate analysis of the two
types of components is of importance for the experimenter as they
carry different elements of information [2].

For example, in the case of a turbomachine—which is the appli-
cation that originally motivated the present work—tonal components
are produced by various mechanisms linked to the rotation of the fan
or propeller. Tones are seen as deterministic because their frequencies
and, to some extent, their magnitudes, can be determined a priori
from first principles of physics. In the most typical case, the dominant
tones are located at the blade-passing frequency (BPF) and its har-
monics. The BPF and its harmonics are themselves likely to be
surrounded by sidebands of the rotor frequency. Even in this con-
figuration, the resulting line spectrum may evidence several tens or
hundreds of harmonics in the audible range. More complex configu-
rations exist, for instance, when two or more rotors interact. The
counter-rotating open rotor (CROR) is one such example, which is
analyzed in Sec. VI of this paper.

Contrary to tones, broadband components are characterized by
continuous power spectral densities (PSDs). They are modeled as
random processes, with persistent (i.e., with infinite support) but
unpredictable (i.e., nondeterministic) trajectories in time. This ran-
dom nature is also reflected by the difficulty to construct physical
models. Broadband components are due to numerous phenomena,
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which can be roughly divided into those linked to interactions with
the external medium and those involving interaction with the rotation
of the propeller. The first instance typically includes turbulent flows
and external sources that globally participate to background noise.
The corresponding random processes can be modeled as stationary.
The second instance includes all phenomena due to the rotation of the
blades, other than those leading to tones. The corresponding random
processes are thus likely to be modulated by the BPF and, therefore,
are better modeled as cyclostationary, i.e., with periodic statistics (see
[3] for an early introduction to cyclostationary processes, [4] for a
general introduction to some of their applications in vibrations and
acoustics, and [3] for one of the first applications in aeroacoustics).

A third type of component, namely, narrowband random compo-
nents, may exist in aeroacoustic signals. Narrowband random com-
ponents may either originate from a tone that undergoes random
fluctuation, or from a broadband random source that passes through a
sharp bandpass filter. As such, they illustrate a continuous transition
from tonal to broadband components and they are often assigned to
one of these two categories.

Because tonal and broadband components correspond to different
noise generating mechanisms, it is useful to analyze them separately.
The present work proposes solutions to achieve this separation in
experimental data, as returned by an array of microphones.

The model adopted throughout the document is

YD) = pu(®) +x,(),  m=1,....M 1)

where y,, (¢) stands for the pressure signal measured by the mth sensor
in an array of M elements, p,,(¢) for its tonal part, and x,,(¢) for its
broadband part. The aim is to extract the tonal part p,, () from the
simultaneous measurements y,, (), m = 1,..., M, on each sensor m.
As a byproduct, the broadband part x,, () is obtained by subtraction.

The issue is not as easy as it first appears. Because a tonal component
is modeled by a phasor that rotates synchronously with the rotor, it is
periodic with respect to an angle of rotation. Aeroacoustic signals being
sampled in time, periodicity is preserved if and only if the rotor speed is
perfectly constant. This is rarely the case in practice, even when the
measurements are taken under steady conditions. Experimental signals
show that, even under controlled configurations, speed variations of at
least a few per mille are commonplace, which is yet noticeable on long
records. As a consequence, tones do not produce exact lines in the
spectrum, but tend to be spread in frequency. This phenomenon can be
easily fixed by resampling the signal in the angular domain, i.e., chang-
ing time, as the descriptive variable of the signals, for the angle of
rotation of the rotor. This practice is, for instance, commonplace in
machine health monitoring [6]. One difficulty arises, however, when the
signals contain families of tones related to different and independent—
incommensurable—rotation frequencies (e.g., as with the CROR),
because there is no common angular variable that allows simultaneous
resynchronization of all components. Another issue is that, even under
perfectly constant speed, the acoustical wave fronts get distorted
by random fluctuations in the medium of propagation (convection,
chopping by blade rotation, etc.). It can be shown that this effect is
similar to clock noise, for which a first model is additive Brownian noise
in the phase. The corresponding shape of the tones is then a Lorentzian
distribution in the frequency spectrum, the extent of which is
unbounded (the Lorentzian distribution decreases asymptotically like
the inverse of the square frequency around the central frequency). This
kind of fluctuation cannot be fixed with angular resampling.

The problem of extracting a set of tones with known frequencies
from additive broadband noise has been approached from several
angles in the literature. The simplest technique consists in clipping or
erasing the peaks in the Fourier spectrum of the signal. This approach
only applies to tonal components that protrude from the spectrum,
i.e., whose power is greater than the power of surrounding noise—a
situation that awkwardly depends on the frequency resolution set by
the user.Z In practice, this condition is rarely met for higher-order

HIf A denotes the amplitude of the tone, 6> the power spectral density in its
vicinity, and A f the user-defined frequency resolution, then the requirement
for a tone to be detected and thus possibly clipped is A% > 26>Af.

harmonics, which rapidly decrease below the noise level. Another
drawback of the peak clipping technique is that the tonal signal can
hardly be reconstructed in the time domain. Another popular
approach is the time-synchronous average, which consists in averag-
ing periods of the signal [7,8]. If correctly synchronized to the true
period, the average is therefore constructive for the underlying peri-
odic components and destructive for random (or other asynchronous)
components. When processing discrete-time signals, the synchro-
nous average requires the signal to be coded with an integer number
of samples per period. In practice, this is forced by resampling in the
angular domain. Under these conditions, the synchronous average
can be shown to be optimal in the least square sense; i.e., it is the filter
that minimizes the sum of the squared difference with the actual
periodic signal. Generalizations of the synchronous average that
accept slow modulations, as often encountered with rotating
machines, have been proposed in [9,10]. A rather similar method
has been independently proposed in [11], with the additional advan-
tage of being free of a tachymetric signal. The main drawback of the
synchronous average and its extensions is the requirement of resam-
pling (or resynchronizing) in the angular domain as many times as
there are incommensurable periods in the signal. As demonstrated in
Sec. VI, this makes the synchronous average impracticable on the
CROR data that involve numerous tonal interactions at incommen-
surable frequencies. An almost equivalent formulation of the syn-
chronous average is by means of a Fourier series (equivalence is exact
when the measured signal contains an integer number of periods), yet
without the aforementioned restriction [12]. The tonal components
are then reconstructed from their estimated Fourier coefficients on an
arbitrary set of frequencies [13]. Besides, this may be advantageous
when only a limited number of tonal components are of interest. The
frequency domain interpretation of the synchronous average is a
frequency gain in the form of a Dirichlet kernel, i.e., with equispaced
peaks that extracts the harmonics of the periodic signal [14]. More
generally, tonal components can be directly removed from the fre-
quency domain by designing a combfilter that sharply encloses the
harmonics with unit gain and zeroes all other components. This can
be easily generalized to quasi-periodic signals, i.e., signals that are
not periodic but that are still described by a Fourier series (e.g., which
contains tones with incommensurate frequencies). Combfilters are
quite flexible because they can be implemented in various ways [15].
They also generalize most of the other techniques dedicated to tone
extraction. Another popular class of methods is based on the use
of references to design conditioned filters [16]. The references must
be perfectly correlated with the signal to be extracted, as ideally
returned by a linearly filtered version; this implies that no harmonic is
missing. Unfortunately, when the reference is provided by a tachy-
metric signal, there is no guarantee that this condition is actually met.
The estimation of the conditioned filter also requires the signals to be
stationary, which ideally requires resampling in the angular domain.
An adaptive estimation of the filter is surely possible, yet this is at the
detriment of the estimation performance and of the frequency reso-
lution. If the tonal components were perfectly stable in time (constant
rotor speed and absence of clock noiseX), they could be easily
extracted by one of the aforementioned methods. As previously
discussed, this ideal situation is not necessarily met in practice. In
that context, many authors have designed tracking algorithms that are
apt to extract tonal components with slow time variations in their
amplitude and phase. Tracking algorithms can be seen as generaliza-
tions of the combfilters [17] and conditioned filters that adapt them-
selves to nonstationary evolutions of the signal. The Kalman filter
[18,19], the RLS filter, the Vold—Kalman filter [20,21], etc., are
popular examples. They pertain to model-based methods, where
the dynamics of the tones is explicitly modeled. Although model-
based methods are theoretically able to return extremely accurate
results, the main drawback encountered by several of them is to be
limited in the number of tones that they can extract simultaneously
(technically, they involve the solution of a system of equations with
dimension equal to the number of tones to track, and this at each time
step). The Vold—Kalman stands as a particular case as it can be

$Clock noise refers to random fluctuations of the tone frequency.
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applied sequentially to each tone (or subset of tones), as demonstrated
in [21-23], a practice that might be otherwise hazardous with those
model-based methods that explicitly assume the residual signal to be
a stationary white noise (see, e.g., [24]). Even when tracking tones
sequentially, the Vold—Kalman filter mathematically involves an
algebraic system of equations of dimension equal to the signal length.
Its sparse banded structure is, however, exploited in an efficient
implementation. A shown in Sec. II.C, the complexity of the method
introduced in this paper is comparable to that of the Vold—Kalman
filter. Therefore it offers a valid alternative. First, because it solves the
same problem from a different approach, yet with similar perfor-
mance. This is valuable from both a theoretical and a practical point
of view. Second, because it is easily amenable to automated process-
ing, as shown in Sec. III. Third, because it is easily combined with
spatial filtering when multiple sensors are available, as demonstrated
in Sec. IV.

To summarize, the extraction of tones from aeronautics measure-
ments is faced with four constraints. First, the signals are periodic in
angle although recorded in time. Second, they contain clock noise.
Third, the number of tonal components may be large (note that the
case of coincident or crossing orders is not of concern in this paper).
Fourth, they have a finite duration. These four constraints constitute
the main challenges considered in this work. None of the techniques
listed in the previous paragraph can easily deal with them altogether.

The present paper introduces an approach rooted in the theory of
angle-time cyclostationary (AT-CS) processes, which specifically
accounts for the particularity of aeroacoustic signals. It elaborates
on the material first presented in Ref. [25].

The first challenge is solved by introducing an angle-time formu-
lation of the Fourier series, which involves time-varying Fourier
coefficients paired with angle-varying phasors synchronized to the
rotor speed [26,27]. The advantages of this formulation are that 1) it
does not need to resample the signal in the angular domain (an
operation that always introduces some errors in the form of spectral
alias) and 2) it can easily accommodate synchronization to several
incommensurable frequencies.

The second constraint relates to the fact that the tones undergo
uncontrolled random modulations of their amplitude and phase. By
“uncontrolled,” it is meant that they cannot be synchronized to any
measured rotor speed in the system. A short-time version of the
angular Fourier series is proposed that leads to time-varying Fourier
coefficients apt to track slow (as compared with the tone frequency)
phase and amplitude modulations. Conditions for the invertibility of
the short-time angular Fourier series (STAFS) are also established.

The third constraint implies that the signal-to-noise ratio (SNR,
defined as the ratio of the tone power to the noise PSD evaluated at the
tone frequency) is upper bounded. Consequently, only tones that
emerge from background noise can be reasonably estimated, the
other ones being statistically indistinguishable from noise. This
becomes an issue when the number of candidate tones to be removed
is large—the fourth constraint—because it involves unnecessary
computations of tones that are below the critical SNR, but also
because it involves numerous Fourier coefficients whose values are
dominated by estimation errors. The signal reconstructed from the
Fourier series based on these Fourier coefficients thus accumulates
estimation errors (whose energy is proportional to the number of
Fourier coefficients) to a point that may become unacceptable. This is
solved by setting up a test of hypothesis, which keeps only the Fourier
coefficients that are statistically significant and implicitly zeroes all
other coefficients.

Another aim of the present work is to make the above processing as
autonomous as possible. This is already partly achieved thanks to the
aforementioned test of hypothesis that automatically selects the
significant Fourier coefficients in a list of candidates. Another crucial
step that has to be automated is the selection of the kernel bandwidth
used in the STAFS. A statistical test is designed for this purpose,
which consists in selecting the optimal bandwidth as the one that
achieves the closest fit between the PSD of the residual signal (after
extraction of the tones in the time domain by using the aforemen-
tioned method) and the spectral baseline (estimated by robust
smoothing the PSD of the original signal). Special attention has been

given to make the test reasonably fast in order to keep it realistic for
practical purposes.

The proposed methodology is able to extract common tones from a
set of signals measured in an array of microphones (M > 1inmodel 1).
Although this configuration could be handled by processing each
signal independently, it would not take advantage of the fact that the
same tones are likely to be shared by several signals. The SNR of the
extracted tones can be potentially increased by a proportion equal to the
number of sensors in the array. One way to deal with this scenario is to
apply the above algorithm on the eigenspectra of the signals—i.e., the
eigenvalues displayed as functions of order of the cross-spectral
matrix. The latter is the correlation matrix of the short-time Fourier
coefficients of the signals, calculated for each order of interest. The
tonal components of each signal can then be reconstructed by projec-
ting the retained coefficients on the signal subspace.

This paper is organized as follows. Section II first introduces a
description of the statistical properties of the signals within the
framework and AT-CS processes. It then proposes a solution to the
extraction of tones based on the STAFS. For simplicity, the solution is
first given in the single sensor case (M = 1). Next, Sec. III inves-
tigates how to make the extraction of tones standalone through
automatic setting of parameters. Section IV extends the method to
multiple simultaneous measurements (M > 1). Section V validates
the method on synthetic data. Finally, Sec. VI provides an experi-
mental validation by illustrating the method on CROR data, which
introduce several practical challenges.

The following notations are used throughout the documents. Bold-
italic lower case letters are used to denote vectors. Bold upper case
letters are used to denote matrices. The imaginary number is noted j.
||a] stands for the £, norm of a vector and || A || for the Frobenius of a
matrix A. A is the Hermitian transpose—i.e., conjugate transpose—
of matrix A. In general, the symbol » over a quantity will indicate that

this quantity is estimated; e.g., 8 is an estimate of 6.

II. Problem Statement

This section introduces the principles that are used to achieve the
extraction of tonal components. The short-time angular Fourier series
(STAFS) is then introduced as the basic tool for extracting and
resynthesizing tonal components.

A. Signal Model

The signal model is first resumed in the case of one measurement,
asreturned by a single sensor. The extension to multiple simultaneous
measurements will be addressed in Sec. IV. As stated in model (1), let
y(¢) denote the measured time record, at discrete time instants
indexed by t = 0,1,2,..., L — 1. The measurements comprise the
superposition of a tonal part p(¢) and a broadband part x(¢), such that

y(@) = p(@) + x(1) ()

These two parts are characterized by different statistical properties,
hereafter described in assumptions H1 and H2.

H1) p(¢) embodies all the tonal components, which are listed by a
set of frequencies .A. Each tonal component in the list is a sinusoidal
function of the reference angle 6, for instance, the angle of rotation of
a rotor, propeller, or fan. It is therefore, strictly speaking, an angle-
periodic function. In addition, a tonal component may undergo slow
and unpredictable modulations that are functions of time, which
make it quasi-angle-periodic, i.e., seemingly angle-periodic on a
short-time basis, but random on the long-term. Such a process is
referred to as AT-CS. It reads

p() = er(eiad®, 2= 3)

keA

where a; stands for the order of the kth tone. Note that the orders
are allowed to take arbitrary values and, in particular, they are
not constrained to be harmonically related. The time-dependent
Fourier coefficients c;(f) are assumed stationary and narrow band.
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The later assumption is obviously required for the model to remain
identifiable.

The model can be easily extended to accept sets of tonal compo-
nents with different reference angles (for instance, in the case of the
CROR engine with rear and front rotors; see Sec. VI). It then takes the
general form

PO =Y pi) =Y ep(t)eransi @

leB leB ke,

with {6,(r)} a set of angles of rotation that are not synchronously
related; i.e., there does not exist any constant k;,, such that 6,(r) /6,,
() =k}, ¥ (I, m) € B.

H?2) x(¢) is broadband random, i.e., with a “continuous” PSD and
bandwidth much larger than that of the time-dependent Fourier
coefficients c,(¢). So far, no other assumption is necessary concern-
ing its probability density function (PDF), except some mild con-
ditions for the short-time Fourier coefficients to tend to Gaussianity.
In particular, it is allowed to be purely AT-CS on the second-order
(AT-CS2), i.e., zero-mean (in the ensemble average sense) and non-
stationary with angle-periodic statistics [28].

B. Solution Based on the Short-Time Angular Fourier Series

This subsection explains how to estimate the time-varying Fourier
coefficients c;(f) of Eq. (3) from the measured signal y(f) and,
subsequently, how to reconstruct the tonal part p(z).

1. Principle of the Extraction

Based on assumptions H1 and H2, the signal model embodied by
Eqgs. (2) and (3) or its generalization (4) provides a complete descrip-
tion of tonal components immersed in background noise. Therefore,
given the reference angle 6, the extraction of the tones is fully solved
by identifying the time-varying coefficients c;(z) assigned to each
phasor in the decomposition. The feasibility of the approach relies on
two questions: Can the time-varying Fourier coefficients be uniquely
identified? If so, how to identify them? The first question is con-
ceptual and relates to the identifiability of the model. The other one is
technical and relates to methodology.

Identifiability is guaranteed if the angle-time Fourier series (2)
uniquely defines the tonal part on the one hand, and cannot model part
of the broadband part on the other hand. The first condition is satisfied
if the bandwidths of the time-varying coefficients are narrow enough.
At nearly constant rotation speed, this means that they should be
smaller than the spacing between the tones. The second condition is
more difficult to satisfy because, as soon as the Fourier coefficients
are made time-varying, they are apt to capture part of the broadband
noise. However, if the time variations are slow enough—which again
means narrow bandwidths—this effect can be neglected.

Assuming that the model is identifiable, the next question con-
cerns the estimation of the time-varying Fourier coefficients.
Although least square estimation is conceivable [20,21,29], it
would rapidly become intractable as the number of tones becomes
large. Besides, the classical Fourier transform cannot be used
because the Fourier coefficients are functions of time, whereas
the phasors are functions of angle. A solution based on the STAFS,
a generalization of the Fourier series to AT-CS processes, is intro-
duced hereafter.

2. Time-Varying Fourier Coefficients

The estimation of the Fourier coefficients c;(¢) has to take two
specificities into account. The first one is that they relate to angle-
periodic phasors ¢/%%" which means that Fourier integrals have to
be calculated with respect to angle. Because the position of the
present work is to keep all processings in the time domain in order
to avoid cumbersome resampling in the angular domain, the angle
6(1) has to be considered as an explicit function of time. The second
specificity is to compute the Fourier coefficients on a short-time basis
in order to track their time variations. Therefore, an estimate of c;(¢),

the Fourier coefficient of the kth harmonic at time datum iA, A € Z+,
i=0,...,1—1,is

= %Zy(’) =IOy (y (1 — iA))O(1),

te’

¢ = Y wy(t—iA)0) )

te’Z

where w(yt) is a smooth, nonnegative, and symmetric kernel (sym-
metry is assumed for simplicity, although not strictly necessary) with
finite support and spectral bandwidth y. It is noteworthy that the
summation in Eq. (5) is actually finite, on the interval t = iA, ..., iA
+N, —1, with N, the kernel length, which is a function of y
(for instance, with a Hann window w(r) = (1/2)(1 — cos(2 myt)),
N, = 1/y). For arecord y() of length L, a window length N, and
a stride A, there are

I'=[(L~-(N,—-4))/A] (6)

time instants where to compute the Fourier coefficients, hereafter
denoted as snapshots.

Besides, the following assumption (H3) will be made from now on:

H3) In order for the instantaneous Fourier coefficients c;; to
properly track the time variations of ¢, (¢), the spectral bandwidth y
of kernel w() is broader than the bandwidth of ¢, (¢).

Under this condition,

I1-1
&) =K ) cw(y(t—id)) (7)
i=0

withk =1/ (Ziez w(yiA)) returns an estimate of ¢ (¢) in the form

of an interpolation based on kernel w(y?) (see Appendix).

3. Synthesis of Tones

Once the Fourier coefficients have been estimated, the tonal com-
ponents can be extracted by using the reconstruction formula:

P = eu()erno® ®)

keA

with ¢, (7) as defined in Eq. (7). In the case of time-invariant Fourier
coefficients, perfect reconstruction is guaranteed by the partition-
of-unity condition:

Zw(y(t — iA)) = constant )

i€Z

Near-perfect reconstruction in the case of slowly varying Fourier
coefficients is guaranteed by assumption H3 (see Appendix).

The above formula (8) can actually be used in several ways. One is
to extract tones in a reduced list only (i.e., a subset of .4), for instance,
tones related to the rear and front propellers, separately. Another
possibility is to reconstruct the tonal components at a different speed
than the measured ones, simply by adjusting the value of 6. It is also
possible to reconstruct unmodulated tones by replacing the Fourier
coefficients c;; by equivalent but constant values, for instance,

substituting | ci|| = (Zf;(') |ck,«|2/1)l/2 for |cy;| (same power), thus
leading to

PO =[] e (10)

keA

C. Complexity

The complexity of the proposed method is LN, /A for both the
computation of the short-time Fourier coefficients and for the syn-
thesis of a tone. For instance, with a Hann window and 3/4 overlap—
which is the default choice used hereafter as it trivially satisfies
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condition (33)—the constant N,,/A = 4 remains insignificant as
compared with L, so that complexity essentially scales with the signal
length. In the general case of K tones and M channels, the complexity
is KML.

By comparison, the complexity of the Vold—Kalman filter is Lg>
for factorizing a sparse system of equations and L ¢ for the subsequent
filtering of a tone, with g the filter order (a typical choice is a two-pole
filter, i.e., ¢ = 2). The factorization being computed only once
(assuming a constant bandwidth), the complexity also scales as
KML when several tones and channels are processed.

III. Toward Automated Extraction of Tones

The apparent simplicity of the proposed method hides some
hitches. The first one is the selection of the spectral bandwidth y in
Eq. (5). On the one hand, y is bounded downward by assumption H3;
on the other hand, if too large, a large part of the noise x(#) will be
extracted together with the tonal components p(1)—Eq. (A7) of
Appendix establishes that the energy of this part is proportional to
the noise PSD times the spectral bandwidth of the kernel. This is
reminiscent of the identifiability issue discussed in Sec. IL.B.1. The
user is therefore faced with a difficult bias-variance tradeoff consid-
ering the fact that the bandwidth of the tones—according to which y is
to be set—is a priori unknown. One possibility would be to estimate it
from the width of the peaks in the spectrum, by visual inspection or
some heuristic criterion (e.g., the 3 dB bandwidth). However, such an
approach has been found fastidious due to the diversity of the spectral
configurations. An automatic setting of the spectral bandwidth thus
seems compulsory. This is the object of Sec. IIL.B.

The second hitch is again related to the fact that part of the noise
x(1) is unavoidably extracted together with the tones. When tones are
below the level of noise, or simply when they are nil, the estimates are
dominated by noise. This is clearly troublesome when it involves
several components in the reconstruction formula (8) because the
energy of noise then grows proportionally, up to a level that might
become unacceptable. It is therefore necessary to identify those tones
that are statistically nil—i.e., indistinguishable from noise for a given
record length—and to remove them from the reconstruction. An
automatic method to do so is proposed in Sec. III.C.

As will be seen later, the automatic selection of the spectral
bandwidth and of the significant tones requires a good estimate of
the noise PSD before the tones are extracted. This matter is treated as
apreliminary step in the next subsection, where an original solution is
proposed.

A. Estimation of Spectral Baseline

Based on assumptions H1 and H2, the noise PSD coincides with
the spectral baseline of the measured signal y(¢), i.e., the line that
passes smoothly through the broadband part of the spectrum as if
peaks were absent. Hence, the idea is to estimate the PSD of x(#) from
the spectral baseline of y(7). This is achieved by first estimating the
PSD of signal y(r) with a very fine frequency resolution, say, S (),
and next applying a robust smoothing filter, 7, with high resilience to
peaks, to estimate the spectral baseline, Sg; = F{Si"(f)}. For
instance, a simple robust smoothing filter is offered by the running
median, yet it may have a prohibitive computational cost when the
number of spectral bins is large (as implied by a fine frequency
resolution). A filter 7 with better computational efficiency is pro-
posed herein. It consists of robustly fitting the logarithm (n S§,i“e f)
on a smooth spline basis (the rationale for taking the logarithm is to
reduce the dynamics of the peaks and to get closer to a Gaussian
distribution). The associated probabilistic model is

N
b ST(F) = Y buthu(f) + () an
n=1
b Spr(f)

where {¢,(f);n=1,...,N} is a set of spline functions, b =
(by,...,by)T stands for a vector of coefficients, and e(f) follows a

leptokurtic PDF that embodies the occurrence of peaks in the
spectrum. Assuming that the PDF of e(f) is a generalized Gaussian
with power 0 < g <2 (this choice is a matter of convenience, yet
other possibilities are allowed, e.g., a 7-Student, without much differ-
ence in the final results) and considering frequency bins f;,
j =1,..., F,the maximum likelihood estimate of b is the solution of

q

F
b = Argmi 12
rgmin ; (12)

N
b ST (f ) = > bugha(f))
n=1

which may be solved, for instance, with iterated reweighted least
squares (IRLS). Finally, the spectral baseline is returned by

N
S (f) = exp(Z l;ntﬁn(f)) a3
n=1

B. Automatic Setting of Bandwidth

The selection of the bandwidth y is a compromise between
bias errors (amplified by too large values of y) and stochastic errors
(produced by too small values of y). The two types of errors
have different manifestations in the spectrum of the residual signal
e(r) = y(r) — p(¢) [an estimate of x(¢) in Eq. (2)]. For y too small, the
peaks of p(r) are not well removed and parts of them are still present
in the spectrum. For y too large, part of the noise is removed together
with the peaks, which leaves large dips in the spectrum. The optimum
is somewhere between these two extremes, where just enough of the
peaks is removed so as to produce a smooth spectrum, without
residual peaks or dips. The idea is to search for this compromise by
making the PSD of e(f) as close as possible to the spectral base-

line Spp (f).
To do so, the following short-time Fourier transform (STFT)

1 _ k
Ei(fi) = PZe(t)w(},/(t —iN))e 2 f, = '

teZ

k=0,....N' =1, i=0,....1'-1 (14)

of the residual is considered, with N’ the length of kernel w(¢) and
k" = (3, w?(y't))"/%. The differences with the Fourier coefficients
of the STAFS in Eq. (5) must be highlighted. First, the STFT involves
a transformation over the time variable and not angle. Second, it is
normalized so that

I'-1

500 = 1 2 B (15)

i=0

returns an estimate of the PSD of e(¢). Third, it does not have to
be invertible, which places no constraint on the value of the stride
A’. Fourth, the kernel shape might be different, although the
same notation w(¢) is used here for simplicity. Fifth, the spectral
bandwidth y’ is taken at least as small as the (assumed) lower bound
of y.

With these settings, it is proved in the Appendix that a spectral
distance between S,(f;) and Sg; (f) in a band defined by indices
ke K c{0,...,N’/2}is returned by

1 1“3‘8
C=2) (Si=lnSy) where S, = (16)

kex Lo - SeL(f3)

with F the cardinal of IC and I, the effective number of snapshots as
returned by Eq. (20). Clearly, this defines a cost function C(y) that
depends on the spectral bandwidth y through the computation of the
residual signal e(t). Therefore, the optimal value of y is found as

7P = ArgminC(y) an
14
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This cost function may be used globally, in a frequency range that
includes all tones of interest, or separately in multiple frequency
bands associated to different tones. It may also be averaged over
several sensors.

C. Automatic Selection of Tones

Whether to include or not a tone in the reconstruction formula (8)
can be solved by testing the following hypothesis:

Hy:c,i =0 forall ie{0,...,I—1} (18)
for each candidate k in the list. It is proved in the Appendix that the

null hypothesis Hy is to be rejected if the mean square of the Fourier
coefficients is above a given threshold, namely,

1 &4 Sp1(af)B

2 2 BL\%%. w
1216l > By =y (19)
N —

(|L'ki\z)

at significance level p. In the above equation, )(%Ieml— pisthe 1 —p
quantile of the chi-square with 2/ degrees of freedom, and Spp.
(o f ) is the spectral baseline introduced in Sec. III.A and evaluated at
frequency aif, with f = Y121 6(1)/(2xL) the average rotation
frequency (this evaluation is easily achieved by interpolation because
SgL is, by construction, a smooth function). B, = Y ,w*(yt)/
(>_,w(yt))? is a measure of the spectral bandwidth of kernel w
proportional to y (for instance, B,, = 1.5y for the Hann window)
and

1
I = —— < I with
T 02 + 21 (1= )p(in)?

_ 2 w(w(—7)
AU O Y

is the effective number of snapshots, i.e., the number of independent
Fourier coefficients in the set {c;;;i = 2,..., I} (see, e.g., [30]).

By using the notations given under the braces in Eq. (19), one has
the modified reconstruction formula

P =Y &0 O 1y @h
ke A

with 1 the indicator function. Consequently, the estimation variance
(see Appendix) now becomes

Vip(®)} = BwZSBL(akj)l[(\ck|z)>tk] ~B,S,N, (22)
keA

where the last approximation holds when the spectral baseline is
almost flat, Sg; (f) = S, (S, being the noise PSD), and N, stands for
the number of significant tones retained in the reconstruction.
Clearly, N, has to be as sharp as possible (through setting the value
of the quantile p) in order to control the estimation variance, yet
without missing significant harmonics which would then introduce
bias errors in the estimate p(r).

IV. Simultaneous Tone Extraction from Multiple
Measurements

So far, the proposed extraction method applies on a single signal.
If several signals were recorded simultaneously, it would apply on
each of them, independently. Such an approach would not take into
account that the same tones may be shared by several channels.
To fully exploit this property, a specific treatment is required.

The counterpart of model (2) in the multichannel case is

yi?’l(t) = pm(t) +xm(t)7 = 07 1’2""7L_ ]"
m=1,....M (23)

with M the number of channels, and

Pul(t) = e (r)elad® (24)

ke A

the tonal part of the mth channel, which shares the same orders
{ay; k € A} with all other channels. The time-varying Fourier coef-
ficients of the mth channel are then calculated as

G US O CD

L el

The aim is now to seek spatial filters that, for each order a,
transform the Fourier coefficients ¢y} into a reduced set of uncorre-
lated latent variables z%, [ =1,...,M < M, which capture their
communalities and, next, to apply the proposed tonal extraction
algorithm on each z}; independently. Let C;, denote the M x I matrix
[Cili = ¢ and Z, the M x I matrix [Z,];; = z};. One seeks the M x
M transformation matrix B such that Z;, = B,C; and the M x M
regression matrix A; such that A;Z; is as close as possible to the
original C,. In the mean-square sense, A, and B are therefore the
minimizers of the Frobenius norm

[Cr — AxBCi|)? (26)

where the product A; B, is of reduced-rank M. The solution of the
above problem is returned by A; = B = (v, 4,..., v, ) With vy,
the /th eigenvector of C,C /I [31]. 5

The next step is to select the value of M by running the test of
significance of Sec. IIL.C on the eigenvalues /;; attached to the
eigenvectors vy ;, [ = 1,..., M. In this case, the spectral baselines
to which they have to be compared are returned by

1
AgL(f) = f{vﬁl (f Y(f)Y(f)H) Uk,l} (27)

evaluated at f = a;f, where F stands for the robust smoother
introduced in Sec. ILA and [Y(f)],,; for the STFT coefficient of
Y (2) a time datum i, as defined in Eq. (14).

The overall transformation can be resumed as

M
C, = (Z l[dkm.,]”k‘l"fz)ck (28)

=1

Py

with #;; = ;(%Ieff,l_p/lBLk((xkf)Bw/(210ff) and [P, a projector in a
subspace of dimension M = Y M, l{4,,>1,1- The remaining index k
stresses the fact that the transformation is applied for each order a;.
The common tonal components are eventually reconstructed in the
time domain from the inversion of C‘k based on Eq. (8).

V. Numerical Experiments

This section aims at validating the proposed methodology on
numerical examples. A synthetic signal is simulated according to
the model described by Egs. (2) and (3). The signal length is 10°
samples and the sampling frequency is normalized to 1 Hz.
The orders are defined as a; =k, k =1,..., K, so as to produce
K = | A| harmonic components. The angular function is defined
through its time derivative, é(t) =2xfy + (1), where f, is the
central frequency and e(t) is a first-order autoregressive process,
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Fig. 1 a) Estimation of the optimal bandwidth y = 1/N,, by searching for the minimum of the cost function given by Eq. (16) (continuous line, left
scale) and comparison with the normalized root-mean-square error (dotted line, right scale). Positions of the minima are indicated by black bullets.
b) Normalized root-mean-square error as a function of the dimension of the projector P, in Eq. (28) for different subspace dimensions D = 1,2,...,10.
Positions of the minima of the NRMSE are indicated by black bullets and solutions of the automatic selection by stars.
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Fig.2 Power spectral density (A f = 27'2F,) of a signal simulated with K = 40 harmonics in the presence of background noise (SNR = 40 dB) together
with the normalized root-mean-square error as a function of the number N, of extracted tones.
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Fig.3 Schematic of the CROR with the acoustic array. Sensors used in
the analysis are numbered from 1 to 17.

€(t) = 0.999¢(¢ — 1) + v(t), driven by stationary white Gaussian
noise v(¢). The standard deviation of é(t) is about one per mil (this
is enough to invalidate methods that do not explicitly consider angle
rather than time as the descriptive variable, even though the method
proposed in this paper could handle much larger fluctuations). The
time-varying Fourier coefficients of Eq. (3) are synthesized as
(1) = cor(1 + €(7)), where ¢y, is a deterministic value and
ex(1) = 0.999¢,(t — 1) + n (1) with 7,(1)’s a set of mutually inde-
pendent stationary white Gaussian noises with complex values [also
independent of v(¢)]. The standard deviation of c,(¢) is about 0.1.
Finally, the simulated tonal part p(f) is obscured with stationary
white Gaussian noise n(f) according to a specified SNR.

The first experiment is to evaluate the capability of the scheme
introduced in Sec. IILB to automatically set the bandwidth of the
STAFS. The signal is simulated with a single harmonic [K = 1 in
Eq. (3)], with fo = 0.05F; and ¢y = 1/2. The SNR is 40 dB. The
STAFS is used with a Hann window with 1/4 overlap. The spectral
baseline (Sec. III.A) is estimated with a frequency resolution of


https://arc.aiaa.org/action/showImage?doi=10.2514/1.J060288&iName=master.img-000.jpg&w=238&h=152

Downloaded by Jerome Antoni on September 22, 2021 | http://arc.aiaa.org | DOI: 10.2514/1.J060288

8 Article in Advance / ANTONIETAL.

h)

Fig. 4 a) CROR (rearview) with the acoustic array; b) flush-mounted microphones.
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Fig. 5 Illustration of the spectral baseline (arbitrary units) estimated from robust regression of the periodogram (top) on a basis of spline functions

(bottom) with bandwidth Af = 5x 1073F,.

0.015. The cost function (16) is then evaluated for various band-
widths and compared with the normalized root mean square error
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Fig.6 Estimation of the optimal kernel bandwidth y by searching for the
minimum of the cost function C,(y).

where p(t) stands for the estimated tonal part for a given bandwidth y.
As seen in Fig. la, the cost function C(y) and the NRMSE both
indicate the same optimum y°?* = 27'9F , which is also close to the
bandwidth of the autoregressive process used to simulate the time-
varying Fourier coefficient of the signal.

The second experiment is to test the automatic selection of tones of
Sec. IIL.C. The signal is simulated with f, = 0.01F and K = 40
harmonics with ¢, = 1/(2 k3). The SNR is 40 dB, so that the 12th
harmonic is virtually indistinguishable from background noise when
a spectral analysis with Af = 2712F is performed (see Fig. 2). The
STAFS setting is as before with the optimal bandwidth just found
above. Figure 2 displays the NRMSE as a function of the number N,
of tones retained in the extraction. Whereas the minimum NRMSE is
for N, = 10, the automatic selection based on the test given in
Eq. (19) returns the value N, = 12 with significance level 0.99.
Although there is a minor difference, it is observed that the NRMSE
is quite flatin therange 11 < N, < 14, so thatany value in this range
will achieve nearly the same minimum.

The last experiment deals with the automatic selection of
the dimension of the subspace that is supposed to contain tones
simultaneously observed on M sensors. The signal is simulated with
fo =0.01F; and K = 1. D independent realizations of the time-
varying Fourier coefficients c((¢) are projected on M = 10 sensors
by multiplication with an M X D random matrix. This is repeated for
D =1,2,...,10. The experimental results indicate that two differ-
ent behaviors exist depending on whether the SNR is high or low. On
the one hand, for high positive SNRs (not shown here), the reduction
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of the NRMSE due to projection in a subspace of dimension lower
than M is negligible, provided that it is not less than the actual
dimension D. In this configuration, it has been observed that the
automatic selection scheme of Sec. IV most often selects the correct
subspace dimension and, if not, slightly overestimates it. On the
other hand, for low SNRs, the reduction of the NRMSE due to
projection can be significant. This is illustrated in Fig. 1b for an
SNR of 0 dB. It is seen that for D > 4, the minimum of the NRMSE
no longer coincides with the actual subspace dimension. This is
because in high noise levels, the introduction of a small bias error
can result in large reduction of the variance, thus lowering the overall
mean square error. There is therefore a benefit of projecting in a
subspace whose dimension is smaller than the actual one. As seen in

Fig. 1b, the proposed automatic selection scheme correctly captures
this behavior.

VI. Experimental Validation on CROR Data

The extraction of tones is now illustrated on aeroacoustic signals
recorded on a CROR engine [32,33]. This CROR data considered
particularly difficult for several reasons [34-36]. First, the signals
contain a multitude of tonal components over a wide frequency range
due to interactions between the two rotors. This results in a long list
of incommensurable frequencies. Second, the measurements are
polluted by strong background noise due to the turbulent boundary
layer. Third, the tones are randomly modulated. As explained in the
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Fig. 7 Power spectral densities (arbitrary units) of the estimated tonal part (red line), the residual part (thick green line), and the total signal (blue
line) (Af = 4 x 10~4F,) with different kernel bandwidths: a)y = 2719, b)y = 274, and ¢) y = 2718,
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Introduction, these challenges preclude the use of the synchronous
average and are likely to defeat methods based on least squares or
model-based tracking filters.

A. Presentation of the Data

The data were collected during an experimental campaign on a
CROR engine placed in a wind tunnel. A linear array was placed 1 m
away from and parallel to the CROR with equispaced flush-mounted
microphones. Pressure signals were measured in the near-field of the
CROR (see Figs. 3 and 4). The instantaneous angles of rotation of the
rear and front rotors were measured by two encoders. All results are
presented hereafter for Mach speed 0.78 and desynchronized unequal
rotor speeds. Frequency values are normalized by the sampling
frequency F.

B. Preliminary Analyses

Spectral analysis reveals that the tonal components pertain to three
families (e.g., see blue curve in Fig. 9). The first one comprises
the harmonics of the BPF of the rear rotor, denoted by {k - f,
k= =£1,42,...}, with f the (average) rear rotor speed. The second
comprises the harmonics of BPF of the front rotor, {k- f5,
k= =+1,4£2,...}, with f, the (average) front rotor speed. The third
family contains tones produced by the interaction between the two
rotors. These are of the form {m - f| + n - fo,m,n = £1,4+2,...}.
Hence, the signal model is in the form of Eq. (4). Specifically, with
0,(¢) and 6, (¢) the angles of rotation of the rear and front rotors,

P(0) =Y cnoe™ O+ o, (el

neZ nezL

pi(0) p2(1)

py

(m,n)€Z?
n#0,.m#0

Coun (t)ej(m9‘ () +n0,(1)) (30)

Pia(t)

where p(f), p,(t), and p,(f) embody the tonal components of the
rear and front rotors and their interactions, respectively. Because the
two rotors are not cinematically locked, the ratio between the two
frequencies f| and f, is not constant. Spectral analysis also reveals that
tones do not show off as perfect peaks but are slightly distributed
(e.g., see blue curve in Fig. 7). This is partly because the rotor speeds

are not constant, yet the shape and width of the peak distribution
indicate that other reasons exist. It is believed that periodic acoustical
waves experience random modulation when propagating in the pres-
ence of turbulence, thus becoming narrowband random. The chopping
of the waves by the rotation of the blades typically broadens tones more
and more with frequency. These effects also jeopardize the use of the
classical synchronous average, at least if used in its original version.
The STAES proposed in this paper allows the unwrapping of these
random modulations to some extent and therefore reassigns the corre-
sponding power to the tonal components rather than to the broadband
components. This is deemed meaningful as this power originally
pertained to the tones before it got distributed in frequency.

As explained in Sec. 11, the first step in the automatic extraction of
tones is to estimate the baselines of the spectra. These will be used to
automatically set up the kernel bandwidth of the STAFS and to detect
significant tones. Figure 5 gives one example of a spectral baseline
obtained from the proposed robust regression on a basis of spline
functions with spectral bandwidth of Af = 5 x 1073F,. It is note-
worthy that the spectral baseline estimated in this way is virtually
insensitive to the presence of tones.

The next step is to automatically set up the kernel bandwidth y
of the short-time windows in the STFT transform. As explained in
Sec. IIL.B, this requires a balance between a value short enough to
properly capture the aforementioned signal modulations and long
enough to improve the extraction capability (the dynamic range of the
extracted tones is proportional to 1/y). The cost function (16) shows
an optimal value around y = 274 F (see Fig. 6). The rational beyond
this criterion is illustrated by Fig. 7. A too short window introduces
excessive removal of the spectral components in the vicinity of the
peaks, thus producing artificial gaps in the spectrum of the residual
signal after extraction of estimated tones. On the opposite, a too long
window is not able to capture the spectral spread of the peaks and part
of the tones is still present in the residual signal.

Another question is whether the tones should be extracted inde-
pendently on each sensor or simultaneously on all sensors. Because
the tonal components correspond to acoustical waves with a high
correlation length, a coherence is expected between the microphones
of the array. Therefore, the multivariate approach is deemed more
relevant. This fact is experimentally confirmed by comparing the
extraction results obtained from the two strategies in Figs. § and 9.
It is seen that the multivariate approach is able to extract tones of
small magnitude that are not detected as significant with the uni-
variate approach. The multivariate approach detects them because
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Fig.8 Separation from the univariate strategy on sensor #11. Power spectral densities (arbitrary units) of the estimated tonal part attached to the rear
rotor (red line), the front rotor (orange line), the interactions (violet line), and of the residual (thick green line) and total (blue line) signals

(Af = 4 x 10~ F,). The bottom view is an excerpt of the top view.
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Fig.9 Separation from the multivariate strategy on sensor #11. Power spectral densities (arbitrary units) of the estimated tonal part attached to the rear
rotor (red line), the front rotor (orange line), the interactions (violet line), and of the residual (thick green line) and total (blue line) signals
(Af = 4 x 107*F,). The bottom view is an excerpt of the top view.

they actually exist on all sensors, possibly with high magnitude on synchronous averaging is unable to make the difference between
some of them. insignificant tones and background noise. This is why all harmonics

For the sake of the comparison, Fig. 10 displays the results of appear in Fig. 10, even those that have been classified as indistin-
synchronous averaging the two shafts separately. The signal was first guishable from background noise by the proposed method (e.g.,
resampled in the angular domain of the shaft of interest and, after harmonic orders of the BPF1 higher than 18th).

being synchronously averaged, resampled back to the time domain. It
is noteworthy that the extraction of the interaction tones was not

possible as these are not synchronous to either shaft. It is seen that the C. Analysis of Separation Results

power of the tones is largely underestimated and, consequently, Based on the above observations, it was decided to use the multi-
the complementary residual part still contains a large portion of the variate strategy with y = 2714, With this setting, the extraction of a
peaks. This is because simple synchronous averaging is not able to tone in a signal consisting of 1.9 samples took a fraction of a second
track the random modulations of the tones (a refined version could be with an Intel Core 17-4810MQ processor. The statistical threshold
used as in Ref. [9], yet it would not be able to extract the interaction used to detect significant tones is set to a risk of 5%. The maximum
tones anyway). The extraction of a tone by synchronous averaging number of eigenvalues of the cross-spectral matrix is equal to the
is actually very similar to the use of the proposed method with a number of sensors (M = 17). Figure 11 displays the results of the
too small bandwidth, as illustrated in Fig. 7c. For another point, automatic selection of tones in the three families. The ordinates
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Fig. 10 Separation from simple synchronous averaging on sensor #11. Power spectral densities (arbitrary units) of the estimated tonal part attached to
the rear rotor (red line), the front rotor (orange line), and of the residual (thick green line) and total (blue line) signals (A f = 4 x 10~*F,). The bottom view
is an excerpt of the top view.
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Fig. 11 Automatic selection of the significant tones in the families related to the rear rotor (top), the front rotor (middle), and the interactions (bottom).
The ordinates correspond to the number of degrees of freedom required to model each tone. A value of zero means that the tone is not selected.

correspond to the number of degrees of freedom required to model
each tone, as returned by the number of significant eigenvalues at the
corresponding frequency in the spectral matrix (see Fig. 12). The
high number of degrees of freedom indicates the presence of random
modulation (in theory, a pure tone would require only one degree of
freedom). Its decrease as a function of frequency follows the evolu-
tion of the SNR. It is noteworthy that most of the tones in the third
family are significant, even though their magnitude is actually very
small (as seen in Fig. 13, they rapidly move below the noise level).
Visual inspection of the PSDs of all sensors confirms an excellent
separation of the tonal and broadband components. The PSDs of the
residual signals, after removal of tones, are continuous densities.
Careful inspection reveals that some small spectral ripples remain
around the extracted tones. As explained above, these are due to the
presence of random modulation of the tones (they are particularly
noticeable in the first eigenspectra in Fig. 12). Whether they should

be assigned to the tonal part or the AT-CS2 part is not clear, because
they truly result from interaction between the two parts. In any case, if
not taken into account in the first part, they will be in the second one.

The intensity of the tones strongly depends on the spatial location
of the sensor. They are clearly stronger on sensors facing the rotor
than on sensors located farther upstream. The spatial distribution of
the tonal energy is displayed in Fig. 13. As expected, the energy
distribution assigned to the rear rotor is slightly shifted behind the
energy distribution assigned to the front rotor. The energy distribu-
tion of the interactions is distinctly localized behind the front rotor,
which is fully consistent with their physical origins.

Finally, Fig. 14 shows the tonal parts reconstructed in the time
domain for sensor #10. It is noteworthy that the tonal parts of the rear
and front rotors are periodic, whereas that of the interactions is not
because it is composed of incommensurate frequencies. The signal is
actually pseudoperiodic, yet because of its rich spectral content it

100 T T T T

dB

0.16 0.19 0.22 0.26 0.29 0.32

frequency

frequency

Fig. 12 Eigenspectra of the cross-spectral matrix (arbitrary units). The bottom view is an excerpt of the top view up to 0.1F,. Vertical lines indicate

theoretical positions of the tones (Af = 10~5F,).
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Fig. 13 Power of the extracted tonal components (arbitrary units): a) front rotor, b) rear rotor, and c) their interactions as functions of frequency and space
(Af =4x1073F)).

e -5 I I I I I I I
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

time (s)

Fig. 14 Extracted time signals (arbitrary units) for sensor #10 with the same code of colors in Figs. 8 and 9: a) total signal y(#); b) tonal part due to rear
rotor p;(¢); ¢) tonal part due to front rotor p,(¢); d) tonal part due to interactions py,(¢); e) residual signal x(¢).
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looks almost random. It also shows a lower magnitude than the
individual contributions of the rear and front rotors. The residual
signal obtained after removal of tonal components eventually ends up
broadband and purely random.

VII. Conclusions

A method has been proposed to automatically extract tones from
aeroacoustic signals. Compared with the state-of-the-art, the pro-
posed solution is flexible enough to extract in reasonable time very
large numbers of tones, even when distributed at incommensurate
frequencies. When concerned with the sequential extraction of tones
in a single signal, it offers a valuable alternative to the Vold Kalman
filter, with similar complexity and performance. Because it is rooted
in the theory of angle-time cyclostationary processes, which is well
suited to modeling aeroacoustic signals, it is able to compensate to
some extent for the presence of moderate random modulations. A
special effort has been made to relieve as much as possible of the user
expertise by introducing data-driven strategies for setting up param-
eters. The proposed methodology has proved very efficient when
processing several datasets, including the CROR data that are known
for being challenging. As a byproduct, the extraction of tones also
returns the broadband contribution of the signals. The latter is just as
likely to contain relevant information. For instance, it typically
embodies turbulent pressure fluctuations modulated by the rotor
speed or the blade-passing frequency. The extraction of these com-
ponents from the remaining background noise is also possible from
the theory of angle-time cyclostationary processes. It will be the topic
of a sequel in a companion paper.

Appendices

A.1. Near-Perfect Reconstruction of the STAFS

Let us consider the monochromatic case y(f) = c(£)e/*®. On the
one hand, the Fourier coefficient returned by formula (5) reads

_ ez cwly(r = ia)0)
> ez w(y(t — iR))0(r)

(A1)

i

Assuming that the Fourier coefficient ¢(#) has variations slow enough
so that it can be considered nearly constant in the time interval

covered by w(y(t — iA)) (assumption H3), one has ¢; ~ c(iA) with
exact equality when c(f) is a constant. On the other hand, the
reconstruction formula (8) requires that p(f) = p(¢), which is ful-
filled provided that

1-1
c(t) = kY cw(y(i = id)) (A2)
i=0

The meaning of the above equation is that ¢(f) can be interpolated
with kernel w(¢). This is again compliant with assumption H3. The
special case where c(f) =c is a constant returns c¢; ~ ¢ and the
condition

-1

L=k w(y(t—id) (A3)
i=0

This requires {w(y(t — iA));i = 0,...,I — 1} to partition the unity
(which can be achieved at least for N, /2 <t < L — N, /2) and the
constant k to be defined as in Eq. (8). It places a constraint on the value
of the stride A, which must be small enough. For instance, with a
Hann window of length N,,, A may be equal to N, /4. Note that,
given an arbitrary positive window, say, v(f), condition (A3) can
always be forced by setting

v(t)
YT v(r(t = id))

provided that A is small enough so that Y Iz} v(y(r —iA)) #0
everywhere.

It is noteworthy in passing that, under these conditions, the short-
time Fourier coefficients (5) lend themselves to the recovery of a
global—i.e., constant—Fourier coefficient through the simple time
average

w(t) = (A4)

(A5)

(=1

=l

For the sake of comparison with another technique, Fig. Al dis-
plays the frequency gains of the STAFS with a Hann window and of
the Vold—Kalman filter. It is seen that the gains are very similar. They
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Fig. A1 Comparison of the frequency gains of the STAFS with a Hann window (red) and a Hann window raised to the power 1.2 (blue) with the two-pole

Vold-Kalman filter (orange).
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can actually be made arbitrarily close by changing the design of the
window w(t), for instance, by raising the Hann window to some
power; here a Hann window to the power 1.2 produces nearly the
same gain as the two-pole Vold—Kalman filter.

A.2. Bandwidth Selection

Under mild conditions, it can be reasonably assumed that the jth
snapshot E;(f) at frequency f, follows a zero-mean complex
Gaussian with variance 62(f;) [37]. Provided that the set of snap-
shotsi = 0, ..., I’ — 1 are independent with respect to both the time
and frequency indices j and k, the quantities {} ! [E;(f;)|*;
ke IC} jointly follows a complex Wishart with an F' X F covariance
matrix (with F = |K|) composed of the diagonal elements &% (f}).
Now let us make E;(f;;y) depend explicitly on a parameter y and
search for the value y°P' that makes the observations {d /7]
E(fi; )| ke IC} as close as possible to the realizations of the
stochastic process defined by the complex Wishart with covariance
matrix composed of Sg; (f;). This amounts to maximizing the like-
lihood function of the complex Wishart, i.e.,

r_ . 2 1’71
Y15 IE; (fk,r)lz) (Zrlzol |Ei(fk»7)| )

yoP'=Ar maxl'[ ex ( -
A Sor (/) SeL ()

NEGenl? o, ( {:I\Ei(fk§7’)|2)
=A Lo Eunl_ — Dl | =TT
rgmmZ( satrn T s

Ci(n

(A6)

where all constant terms have been removed. Because the so-defined
cost function Cy(y) is growing with I’ it is sensible to normalize it.
At the same time, care should be taken to make it unbiased. Hence,
the aim is to find a modified cost function C,(y) = C,(y)/I' + ¢
such that, by convention, E{C,(y)} = 1 when 312V |E;(fr, 7)) is

actually distributed like the assumed complex WlShaI‘t. Let define
S = Y E(Fis )P/ SeL(f); 28 is seen to follow a chi-squared
with 21’ degrees of freedom. Therefore, E{S,} =1’ and E
{lw S} = w(I’) with y the digamma function and ¢ = (1 —1/I")
w(l'). Now, for I’>1 (as requested by spectral analysis),
w(I") =~ (I, from which the cost function (16) immediately follows.

A.3. Test of Significance
Under the null hypothesis (18), the Fourier coefficient c;; is
assumed to follow a zero-mean complex Gaussian distribution (the
Gaussian distribution is sensible, because it is asymptotically true
under mild conditions due to the Central Limit Theorem [37]).
Assuming first that the rotation speed is constant, i.e., 0(1) =2z f
the variance of cy; is

Vicw} = S, (o f)B,, (A7)

where S, (af) is the theoretical PSD of background noise and
B, =Y, w(yt)?/(>, w(yt))? is proportional to the spectral band-
width y. Equation (A7) remains a very good approximation when the
rotation speed fluctuates slowly enough so that S,,(f) = S, (a.f) for
all values of f in the span of é(t) /(2x). With these results, the mean
square quantity 2y 12} |cxi 2/ (S, (a.f)B,,) follows a chi-squared
distribution with 2/ degrees of freedom, where /¢ is the equivalent
number of independent terms in the set of Fourier coefficients, as
given by Eq. {c;;;i =0, ..., I — 1} (I < I due to overlapping of
snapshots [30]). Therefore, under the null hypothesis,

S, (a.f)B.,
—ZI wl?~ (a"f ) e (A8)

where the ~ sign means “distributed like.”
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