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ABSTRACT
This paper proposes a system for automatic surface volume mon-
itoring from time series of SkySat pushframe imagery. A specific
challenge of building and comparing large 3D models from SkySat
data is to correct inconsistencies between the camera models associ-
ated with the multiple views that are necessary to cover the area at a
given time, where these camera models are represented as Rational
Polynomial Cameras (RPCs). We address the problem by proposing
a date-wise RPC refinement, able to handle dynamic areas covered
by sets of partially overlapping views. The cameras are refined by
means of a rotation that compensates for errors due to inaccurate
knowledge of the satellite attitude. The refined RPCs are then used
to reconstruct multiple consistent Digital Surface Models (DSMs)
from different stereo pairs at each date. RPC refinement strengthens
the consistency between the DSMs of each date, which is extremely
beneficial to accurately measure volumes in the 3D surface models.
The system is tested in a real case scenario, to monitor large coal
stockpiles. Our volume estimates are validated with measurements
collected on site over the same period of time.

Index Terms— change detection, stockpiles, RPC refinement,
bundle adjustment, SkySat, surface monitoring

1. INTRODUCTION

Stockpile measurement is a task of major importance in a wide vari-
ety of industrial activities involving the storage, treatment and trans-
port of bulk materials (e.g. mining [1], landfill management [2]).

Large scale areas represent a particularly adverse scenario to
measure vast piles of possibly irregular shapes. Primary methods,
such as human-led topographic inspections, can pose a safety risk
and are ineffective in terms of time and accuracy. This has raised the
interest on technology-aided surveys employing ranging sensors and
photogrammetry. Lidar scans and imagery from Unmanned Aerial
Vehicles (UAVs), planes or robots, have proven to be highly accurate
and have gained great popularity in recent years [1, 2, 3, 4].

However, aerial or ground based solutions are often costly or not
viable in restricted areas, which may prevent frequent updates. Re-
current satellite imagery is emerging as an alternative, as it allows to
classify, segment and reconstruct large areas without on-site actions
[5, 6, 7, 8]. Today’s abundance of Earth observation satellite images,
notably due to the breakthrough of SmallSats, explains this growing
trend. SmallSat constellations have many low-cost satellites flying
at low-altitude orbits, that produce high-resolution images with short
revisit times, e.g. PlanetScope, SkySat [9].
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Fig. 1: Diagram of our surface volume monitoring approach. The
RPCs of a time series of SkySat acquisitions are refined and used to
compute a high-quality surface model for each date, where volume
is measured.

Unlike traditional satellite imagery, SkySat products are deliv-
ered as mosaics of images, denoted as scenes, with a small geo-
graphic footprint. To this end, the pushframe acquisition systems en-
sure a certain overlap between consecutive scenes [10]. Each scene
is provided with a Rational Polynomial Camera (RPC) model, but
the different RPCs associated with a mosaic typically exhibit non-
negligible bias. Inconsistencies between camera models lead to sys-
tematic errors in depth estimation from image correspondences, hin-
dering multi-view 3D reconstruction. RPC correction methods are
indispensable to exploit such fragmented data, which is in contrast
to the case of large-footprint satellite images [11]. In addition, highly
dynamic areas like open-air storage facilities pose an extra challenge
for RPC refinement: images acquired at different dates should be
handled without assuming a static scene over time.

Motivated by the previous observations, we present an automatic
system to monitor stockpiles or large irregular volumes, in general,
from time series of SkySat scenes. The method can be applied to
stereo and tristereo acquisitions [10]. Our contributions are:

- A generic date-wise RPC refinement, independent of satellite
specificities and able to handle areas that change over time.

- A volume tracking strategy based on a time series of high-
quality surface models obtained by multi-view 3D reconstruc-
tion using the refined RPCs.

- A performance validation based on data acquired on site.



2. RELATED WORK

2.1. Stockpile volume monitoring

Most image based approaches to compute stockpile volume perform
a 3D reconstruction of the area based on the dense matching of mul-
tiple views [1, 2, 3, 5]. Single image methods using site-specific
heuristics or shape from shading have also been explored [8].

Once the 3D geometry of the scene is computed, stockpile vol-
ume can be measured in different ways. Cross-section methods
model piles as big fairly regular solids, while horizontal section
methods divide them into layers following contour lines [2]. For
finer estimations on irregular shapes, it is common to discretize the
scene into small elementary 3D volumes, i.e. voxels, tetrahedrons,
trigonal prisms [12, 4]; or into Digital Surface Models (DSMs), i.e.
a 2D grid where each cell is assigned an altitude value [1, 13]. The
boundaries of the piles are usually obtained by subtraction of a bare
terrain model, possibly combined with a segmentation step [3, 2].

2.2. RPC model refinement

The RPC model is a generic camera model, independent from spe-
cific physical properties, widely used to describe satellite optical
sensors. The RPC of a satellite image relates 3D space coordinates
(latitude, longitude, height) to 2D image coordinates (pixel row and
column). The 3D to 2D mapping and its inverse are known, respec-
tively, as the projection and localization functions.

In practice, commercial satellite imagery RPCs contain inaccu-
racies caused by internal measurement errors of the complex physi-
cal system they encode, which need to be refined [14]. RPC refine-
ment strategies typically rely on a set of tie-points, whose projection
across the input views has to coincide. Bundle adjustment meth-
ods [15] are a well known solution, which seeks to minimize the
reprojection error of the tie-points by optimizing a set of parameters
that modify the original camera models. [14] proved that compos-
ing each RPC projection with a 2D offset suffices to adjust satellite
images covering lengths of 50 km or less, as this compensates the
main source of errors, i.e. inaccuracies in sensor attitude. An equiv-
alent solution to remove such errors is to apply a correction rota-
tion around each camera center previous to the RPC projection [11].
Functions of polynomial form, defined in object or image space, de-
pending on whether they are applied before or after the input RPC
mappings, can be used to additionally address possible secondary
sources of error (e.g. time-dependent drift, lens distortion) [14].

3. METHODOLOGY

3.1. Bundle adjustment to correct camera orientation

Since we do not have access to Ground Control Points (GCPs) of
the study area, i.e. points whose object and image coordinates are
known in advance, we perform a relative RPC correction based on
tie-points derived from feature correspondences. The correction is
done in a date-wise manner, solving an independent bundle adjust-
ment problem for the group of cameras of each acquisition date. This
ensures that the geometry seen by the cameras is coherent, which is
not guaranteed if multiple dates are treated at once. Thus, feature
mismatches are minimized and the accuracy of tie-points increases.

Note that a relative correction is sufficient to register the RPCs
in a common frame of reference and use them for 3D reconstruction,
but the absolute location of the scene remains subject to the geolo-
cation accuracy of the input models. To avoid large drifts in object
space, we fix a reference camera for each date, which is not refined.

We refer to the list of image coordinates containing the loca-
tion of a tie-point across multiple images as a feature track. SIFT
keypoints [16] are extracted for each image and matched to the key-
points of the overlapping views with a sufficient baseline, using a ra-
tio test of 0.6 to reject outliers. The union-find algorithm from [17]
is used to obtain a set of feature tracks of arbitrary length from the
unordered collection of pairwise correspondences.

The 3D coordinates of the tie-point associated with each track
are initialized by triangulating all the pairwise matches of the track
with the input RPC models, as in [7], and taking the mean of the
3D locations. All tie-point coordinates are optimized afterwards,
simultaneously with the correction parameters of each camera.

Our method refines the RPC models by composing them with
a preceding rotation around an approximation of the camera center.
The bundle adjustment problem is therefore expressed as

min
Rm,Xk

K∑
k=1

M∑
m=1

‖Pm(Rm(Xk −Cm) +Cm)− xmk‖2, (1)

where Equation 1 represents the reprojection error of the setting. Xk

denotes the k-th tie-point, xmk its observation on the m-th image,
and Pm(Rm(Xk −Cm) +Cm) its reprojection given by the m-th
RPC projection Pm and the correction rotation Rm around the cen-
ter Cm. The camera center Cm is derived by regressing a projective
model from each RPC model and it remains fixed during the opti-
mization. This is similar to the bundle adjustment tool of [18].

Rm is initialized as the identity matrix and used in the bundle
adjustment procedure using the Euler angles representation, which
entails 3 variables to be optimized per camera, i.e.

Rm =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

cosα − sinα 0
sinα cosα 0
0 0 1

, (2)

where φ, θ, α are the 3 Euler angles related to the m-th camera.

3.2. Multi-view stereo reconstruction

After RPC refinement, the open-source satellite stereo pipeline
S2P1 [7] is run with the corrected camera models. For each date S2P
is used to reconstruct DSMs of the parts of the study area seen in all
pairs of overlapping scenes that meet certain criteria (Fig. 2(a)): the
convergence angle of a pair of scenes must be more than 5 degrees
and less than 35 degrees; and the bounding box of the triple intersec-
tion between the two scenes footprints and the study area must have
both its dimensions larger than 200 meters. The reconstructions
from different pairs are natively registered in the object space as a
result of RPC correction. This allows to easily merge them into a
denser and highly accurate model of the entire area by taking the
average height value at each DSM cell (Fig. 2(b)). Small holes in
the DSMs, due to occlusions between views or lack of texture, are
filled by a 5 × 5 median filter followed by cubic interpolation. The
Ground Sample Distance (GSD) is set to 1 m for all DSMs.

Similarly to [19], the DSMs of different dates are aligned by
a 3D translation that maximizes the Normalized Cross Correlation
between their geometry. Even if the geometry may change between
different dates, this alignment serves to minimize the standard devia-
tion of DSM heights over time, which is later exploited to determine
a coarse mask of the dynamic parts of the study area (Fig. 3).

Fig. 2(c) and 2(d) highlight the impact of RPC refinement: the
point-wise deviation between height values of DSMs from different
pairs is of the order of a few meters for the unrefined RPC models,
while it is reduced to tens of centimeters using the corrected ones.

1https://github.com/cmla/s2p
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Fig. 2: Illustration of the multi-view stereo process run to reconstruct the study area at each date. (a) Several DSMs of the different parts of
the area are computed independently from different stereo pairs. (b) Thanks to RPC correction, the DSMs from different pairs are accurately
registered and can be merged directly by taking the average height at each 2D cell. (c) and (d) show, respectively, the standard deviation, in
meters, between height values of DSMs from different pairs with and without RPC refinement (the DSMs overlap only on the shown strips).
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Fig. 3: (a) Point-wise standard deviation of height values along the
DSM time series. (b) Mask of dynamic parts. (c) Example of nDSM.

3.3. Volume estimation

Time series of aligned DSMs from remote sensing can be effectively
employed to measure and track volumes over an area of interest.
As a concrete example of this, we propose an automatic system to
monitor stockpiles volume in a real case scenario (Section 4.1).

For each DSM, a Digital Terrain Model (DTM) is subtracted to
consider only the heights above ground. Since our study area lies on
a flat terrain, we model the DTM as a plane with height equal to the
25th percentile of the DSM heights. Without loss of generality, cloth
simulation methods can be used to model non-flat DTMs [20].

Additionally, we determine a site-specific mask Mdynamic that
delimits the dynamic parts of the area (Fig. 3(b)). The labeling of
Mdynamic is based on the point-wise standard deviation of height val-
ues over time, across the different DSMs of the area (Fig. 3(a)).

The normalized DSM (nDSM) containing the heights above
ground in areas where changes are expected can be expressed as

nDSM(t) =Mdynamic(DSM(t) - DTM(t)) (3)

where t represents the acquisition date of the time series.
Furthermore, only values in nDSM(t) between 3 and 30 meters

are kept (Fig. 3(c)). Values outside this range are likely to be due
to noise, surface roughness or machinery and cranes working in the
area. Note that both height thresholding and the use ofMdynamic are
site and task specific post-processing steps aimed at reducing noise
and ensuring that only height values related to stockpiles are left in
nDSM(t). In the absence of prior knowledge of the facilities or target
volumes, these post-processing steps can be omitted at the cost of a
small loss of accuracy.

Finally, the volume of the stockpiles left in nDSM(t) is com-
puted in cubic meters as the addition of all individual cell volumes:

V (nDSM(t)) =
∑
i

liwihi (4)

where li, wi, hi represent the length, width and height of the i-th
cell. We use squared cell DSMs, i.e. li = wi = GSD = 1 m.

4. EXPERIMENTS

4.1. Data

We tested our method on a time series of SkySat panchromatic L1B
scenes covering the Richards Bay Coal Terminal (RBCT) in South
Africa, which has an open-air storage area of ∼1.6 km2. The RBCT
is one of the world’s leading coal export terminals. Tonnes of coal
stockpiles are managed 24 hours a day to be shipped overseas.

The time series comprises 43 acquisition dates, distributed non-
uniformly between January and July 2020. The distance between
consecutive dates oscillates between 1 and 20 days, falling below 1
week in most cases. For each date there are 6 to 10 scenes, cap-
tured by the same sensor among the 3 sensors of the SkySats, with a
difference of a few seconds. All images are free from clouds.

SkySat L1B scenes have a nadir GSD of ∼0.72 m and a total
size of 1349 × 3199 pixels. Each scene is delivered with a RPC
camera model. The absolute geolocation accuracy of the provided
RPC models is of ∼30 m, with SkySats orbiting at an altitude of
∼500 km [10].

4.2. Validation using on-site stock weight measurements

The volume V of coal stockpiles for each date t of the sequence was
computed using the method described in Section 3 (Fig. 4(b)). Coal
stock weight measurements, S, collected by on-site agents during
the same time period, are shown in Fig. 4(a) in mega tonnes (Mt).
The correlation between both sets is recognizable to the naked eye.

To assess the performance of our system, we propose a simple
approach to predict coal weight from stockpiles volume, so that the
available measurements can be compared in equivalent units. The
conversion is not straight-forward, as multiple date-dependent fac-
tors may be involved (e.g. humidity factors, non-uniform coal types
or pile densities). To this end, we linearly interpolate the two sets of
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Fig. 4: (a) On-site coal stock measurements, S, in mega tonnes (Mt). Both in this plot and (b) the line linking the set of discrete measures,
represented as dots, is linearly interpolated. (b) Stockpile volume, V , as obtained from the time series of photogrammetric DSMs derived
from satellite imagery. (c) Linear least-squares regression to predict coal mega tonnes as a function of stockpile volume estimates.

measurements and apply a least-squares regression to fit two coeffi-
cients a and b satisfying S(t) = aV (t) + b. The result is shown in
Fig. 4(c). We obtain a = 1.02, b = 0.3, where a can be interpreted
as the best-fitting bulk density and b as a ground offset. Observe that
85% of the interpolated samples were used to fit a and b (the training
set), but the strong correlation extends to the rest of dates, stressing
the robustness of the method.

It remains difficult to quantify the exact accuracy of the system
without measurements that match exactly in time, specially since
shipments or stock arrivals can occur within a few hours. In gen-
eral, Fig. 4(c) seems to indicate that the differences between our
weight estimates derived from remote sensing and on-site measure-
ments from neighboring dates are smaller than 0.3 Mt. Occasional
larger differences can be due to noisy or interpolated data in the pho-
togrammetric DSMs used for volume estimation, specific stockpile
properties or a sudden strong activity in the area.

5. CONCLUSION

An automatic system for surface volume monitoring using recurrent
satellite imagery was presented. The system is based on a generic
RPC refinement step, independent from satellite specificities, which
allows to accurately measure volume from multiple independent
DSMs obtained with an open-source satellite stereo pipeline. A
time series of SkySat images distributed over ∼6 months was used
to validate the system in a real case scenario concerning a highly
dynamic area of coal stockpiles.
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