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Abstract

This paper proposes a system for automatic surface
volume monitoring from time series of SkySat push-
frame imagery. A specific challenge of building and
comparing large 3D models from SkySat data is to
correct inconsistencies between the camera models
associated to the multiple views that are necessary
to cover the area at a given time, where these camera
models are represented as Rational Polynomial Cam-
eras (RPCs). We address the problem by proposing
a date-wise RPC refinement, able to handle dynamic
areas covered by sets of partially overlapping views.
The cameras are refined by means of a rotation that
compensates for errors due to inaccurate knowledge
of the satellite attitude. The refined RPCs are then
used to reconstruct multiple consistent Digital Sur-
face Models (DSMs) from different stereo pairs at
each date. RPC refinement strengthens the consis-
tency between the DSMs of each date, which is ex-
tremely beneficial to accurately measure volumes in
the 3D surface models. The system is tested in a real
case scenario, to monitor large coal stockpiles. Our
volume estimates are validated with measurements
collected on site in the same period of time.

1 Introduction

Stockpile measurement is a task of major importance
in a wide variety of industrial activities involving the
storage, treatment and transport of bulk materials
(e.g. mining [1], landfill management [2]).
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Figure 1: Diagram of our surface volume monitor-
ing approach. The RPCs of a time series of SkySat
acquisitions are refined and used to compute a high-
quality surface model for each date, where volume is
measured.

Large scale areas represent a particularly adverse
scenario to measure vast piles of possibly irregular
shapes. Primary methods, such as human-led topo-
graphic inspections, can pose a safety risk and are
ineffective in terms of time and accuracy. This has
raised the interest on technology-aided surveys em-
ploying ranging sensors and photogrammetry. Lidar
scans and imagery from Unmanned Aerial Vehicles
(UAVs), planes or robots, have proven to be highly
accurate and have gained great popularity in recent
years [1, 2, 3, 4].
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However, aerial or ground based solutions are often
costly or not viable in restricted areas, which may
prevent frequent updates. Recurrent satellite im-
agery is hence emerging as an alternative, as it allows
to classify, segment and reconstruct large areas with-
out on-site actions [5, 6, 7, 8]. Today’s abundance
of Earth observation satellite images, notably due to
the breakthrough of SmallSats, explains this growing
trend. SmallSat constellations have many low-cost
satellites flying at low-altitude orbits, that produce
high-resolution images with short revisit times, e.g.
PlanetScope, SkySat [9].

Unlike traditional satellite imagery, SkySat prod-
ucts are delivered as mosaics of images, denoted as
scenes, with a small geographic footprint. To this
end, the pushframe acquisition systems ensure a cer-
tain overlap between consecutive scenes [10]. Each
scene is provided with a Rational Polynomial Camera
(RPC) model, but the different RPCs associated to a
mosaic typically exhibit non-negligible bias. Inconsis-
tencies between camera models lead to systematic er-
rors in depth estimation from image correspondences,
hindering multi-view 3D reconstruction. RPC correc-
tion methods are indispensable to exploit such frag-
mented data, which is in contrast to the case of large-
footprint satellite images [11]. In addition, highly
dynamic areas like open-air storage facilities pose an
extra challenge for RPC refinement: images acquired
at different dates should be handled without assum-
ing a static scene over time.

Motivated by the previous observations, we present
an automatic system to monitor stockpiles or large
irregular volumes, in general, from time series of
SkySat scenes. The method can be applied to stereo
and tristereo acquisitions [10]. Our contributions are:

- A generic date-wise RPC refinement, indepen-
dent of satellite specificities and able to handle
areas that change over time.

- A volume tracking strategy based on a time se-
ries of high-quality surface models obtained by
multi-view 3D reconstruction using the refined
RPCs.

- A performance validation based on data acquired
on site.

2 Related work

2.1 Stockpile volume monitoring

Most image based approaches to compute stockpile
volume perform a 3D reconstruction of the area based
on the dense matching of multiple views [1, 2, 3, 5].
Single image methods using site-specific heuristics or
shape from shading have also been explored [8].

Once the 3D geometry of the scene is computed,
stockpile volume can be measured in different ways.
Cross-section methods model piles as big fairly reg-
ular solids, while horizontal section methods divide
them into layers following contour lines [2]. For finer
estimations on irregular shapes, it is common to dis-
cretize the scene into small elementary 3D volumes,
i.e. voxels, tetrahedrons, trigonal prisms [12, 4]; or
into Digital Surface Models (DSMs), i.e. a 2D grid
where each cell is assigned an altitude value [1, 13].
The boundaries of the piles are usually obtained by
subtraction of a bare terrain model, possibly com-
bined with a segmentation step [3, 2].

2.2 RPC model refinement

The RPC model is a generic camera model, indepen-
dent from specific physical properties, widely used
to describe satellite optical sensors. The RPC of a
satellite image relates 3D space coordinates (latitude,
longitude, height) to 2D image coordinates (pixel row
and column). The 3D to 2D mapping and its inverse
are known, respectively, as the projection and local-
ization functions.

In practice, commercial satellite imagery RPCs
contain inaccuracies caused by internal measurement
errors of the complex physical system they encode,
which need to be refined [14]. RPC refinement strate-
gies typically rely on a set of tie-points, whose projec-
tion across the input views has to coincide. Bundle
adjustment formulations [15] are a well known solu-
tion, which seeks to minimize the reprojection error
of the tie-points by optimizing a set of parameters
that modify the original camera models. [14] proved
that composing each RPC projection with a 2D offset
suffices to adjust satellite images covering lengths of
50 km or less, as this compensates the main source of
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errors, i.e. inaccuracies in sensor attitude. An equiv-
alent solution to remove such errors is to apply a cor-
rection rotation around each camera center previous
to the RPC projection [11]. Functions of polynomial
form, defined in object or image space, depending on
whether they are applied before or after the input
RPC mappings, can be used to additionally handle
higher order error sources (e.g. time-dependent drift,
lens distortion) [14].

3 Methodology

3.1 Bundle adjustment to correct
camera orientation

Since we do not have access to Ground Control Points
(GCPs) of the study area, i.e. points whose object
and image coordinates are known in advance, we per-
form a relative RPC correction based on tie-points
derived from feature correspondences. The correc-
tion is done in a date-wise manner, solving an inde-
pendent bundle adjustment problem for the group of
cameras of each acquisition date. This ensures that
the geometry seen by the cameras is coherent, which
is not guaranteed if multiple dates are treated at once.
Thus, feature mismatches are minimized and the ac-
curacy of tie-points increases.

Note that a relative correction is sufficient to reg-
ister the RPCs in a common frame of reference and
use them for 3D reconstruction, but the absolute lo-
cation of the scene remains subject to the geolocation
accuracy of the input models. To avoid large drifts in
object space, we fix a reference camera for each date,
which is not refined.

We refer to the list of image coordinates containing
the location of a tie-point across multiple images as
a feature track. SIFT keypoints [16] are extracted for
each image and matched to the keypoints of overlap-
ping views with sufficient baseline, using a ratio test
of 0.6 and a RANSAC Fundamental matrix geometric
filtering [17]. The union-find algorithm from [18] is
used to extend stereo correspondences to unordered
feature tracks of arbitrary length.

The object space coordinates of the tie-point asso-
ciated to each feature track are initialized by trian-

gulating all the stereo matches in the track with the
input RPC models, as in [7], and taking the mean of
the 3D locations. All tie-point coordinates are after-
wards optimized simultaneously with the correction
parameters of each camera.

Our method refines the RPC models by composing
them with a preceding rotation around the camera
center. The bundle adjustment problem is therefore
expressed as

min
Rm,Xk

K∑
k=1

M∑
m=1

‖Pm(Rm(Xk − Cm) + Cm)− xmk‖2,

(1)
where Equation 1 represents the reprojection error of
the setting. Xk denotes the k-th tie-point, xmk its
observation on the m-th image, and Pm(Rm(Xk −
Cm) + Cm) its reprojection given by the m-th RPC
projection Pm and the correction rotation Rm around
the center Cm. The camera center Cm is derived by
regressing a projective model from each RPC model.
Rm is initialized as the identity matrix and used

in the bundle adjustment procedure using the Euler
angles representation, which entails 3 variables to be
optimized per camera, i.e.

Rm =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

cosα − sinα 0
sinα cosα 0
0 0 1

,
(2)

where φ, θ, α are the 3 Euler angles associated to the
m-th camera.

3.2 Multi-view stereo reconstruction
After RPC refinement, the open-source satellite
stereo pipeline S2P1 [7] is run with the corrected
camera models. For each date S2P is used to re-
construct DSMs of the parts of the study area seen
in all pairs of overlapping scenes that meet certain
criteria (Fig. 2a): the convergence angle of a pair of
scenes must be more than 5 degrees and less than 35
degrees; and the bounding box of the triple intersec-
tion between the two scenes footprints and the study
area must have both its dimensions larger than 200
meters.

1https://github.com/cmla/s2p
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Figure 2: Illustration of the multi-view stereo process run to reconstruct the study area at each date. (a)
Several DSMs of the different parts of the area are computed independently from different stereo pairs. (b)
Thanks to RPC correction, the stereo DSMs are accurately registered and can be merged directly by taking
the average height at each 2D cell. (c) and (d) show, respectively, the standard deviation, in meters, between
height values of overlapping stereo DSMs with and without RPC refinement (the DSMs overlap only on the
shown strips).
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Figure 3: (a) Point-wise standard deviation of height
values along the DSM time series. (b) Mask of dy-
namic parts. (c) Example of nDSM.

Reconstructions from different pairs are natively reg-
istered in object space as a result of RPC correction.
This allows to easily merge them into a denser and
highly accurate model of the entire area by taking
the average height value at each DSM cell (Fig. 2b).
Small holes in the DSMs, due to occlusions between
views or lack of texture, are filled by a 5× 5 median
filter followed by cubic interpolation. The Ground
Sample Distance (GSD) is set to 1 m for all DSMs.

Similarly to [19], the DSMs of different dates are
aligned by a 3D translation that maximizes the Nor-
malized Cross Correlation between their geometry.
Even if the geometry may change between different
dates, this alignment serves to minimize the standard
deviation of DSM heights over time, which is later

exploited to determine a coarse mask of the dynamic
parts of the study area (Fig. 3).

Fig. 2c and 2d highlight the impact of RPC refine-
ment: the point-wise deviation between height values
of different stereo DSMs is of the order of a few me-
ters without the bundle adjustment from Section 3.1,
while it is reduced to tens of centimeters afterwards.

3.3 Volume estimation

Time series of aligned DSMs from remote sensing can
be effectively employed to measure and track vol-
umes over an area of interest. As a concrete example
of this, we propose an automatic system to monitor
stockpiles volume in a real case scenario (Section 4.1).

For each DSM, a Digital Terrain Model (DTM) is
subtracted to consider only the heights above ground.
Since our study area lies on a flat terrain, we model
the DTM as a plane with height equal to the 25th
percentile of the DSM heights. Without loss of gener-
ality, cloth simulation methods can be used to model
non-flat DTMs [20].

Additionally, we determine a site-specific mask
Mdynamic delimiting the dynamic parts of the area
(Fig. 3b). The labeling of Mdynamic is based on the
point-wise standard deviation of height values over
time, across the different DSMs of the area (Fig. 3a).
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Figure 4: (a) On-site coal stock measurements, S, in mega tonnes (Mt). Both in this plot and (b) the
line linking the set of discrete measures, represented as dots, is linearly interpolated. (b) Stockpile volume,
V , as obtained from the time series of photogrammetric DSMs derived from satellite imagery. (c) Linear
least-squares regression to predict coal mega tonnes as a function of stockpile volume estimates.

The normalized DSM (nDSM) containing the heights
above ground in areas where changes are expected
can be expressed as

nDSM(t) =Mdynamic(DSM(t) - DTM(t)) (3)

where t is the acquisition date of the time series.

Furthermore, only values in nDSM(t) between 3
and 30 meters are kept (Fig. 3c). Values outside this
range are likely to be due to noise, surface rough-
ness or machinery and cranes working in the area.
Note that both height thresholding and the use of
Mdynamic are site and task specific post-processing
steps aimed to reduce noise and ensure that only
height values associated to stockpiles are left in
nDSM(t). In the absence of any prior knowledge of
the facilities or target volumes, these post-processing
steps may be omitted at the expense of a small loss
of accuracy.

Finally, the volume of the stockpiles left in
nDSM(t) is computed in cubic meters as the addi-
tion of all individual cell volumes:

V (nDSM(t)) =
∑
i

liwihi (4)

where li, wi, hi represent the length, width and height
of the i-th cell. We use squared cell DSMs, i.e. li =
wi = GSD = 1 m.

4 Experiments

4.1 Data
We tested our method on a time series of SkySat
panchromatic L1B scenes covering the Richards Bay
Coal Terminal (RBCT) in South Africa, which has an
open-air storage area of ∼1.6 km2. The RBCT is one
of the world’s leading coal export terminals. Tonnes
of coal stockpiles are managed 24 hours a day to be
shipped overseas.

The time series comprises 43 acquisition dates, dis-
tributed non-uniformly between January and July
2020. Distance between consecutive dates oscillates
between 1 and 20 days, falling below 1 week in most
cases. For each date there are 6 to 10 scenes, cap-
tured by the same sensor among the 3 sensors of the
SkySats, with a difference of a few seconds. All im-
ages are free from clouds in the study area.

SkySat L1B scenes have a nadir GSD of ∼0.72 m
and a total size of 1349 × 3199 pixels. Each scene is
delivered with a RPC camera model. The absolute
geolocation accuracy of the provided RPC models is
of ∼30 m, with SkySats orbiting at an altitude of
∼500 km [10].

4.2 Validation using on-site stock
weight measurements

The volume V of coal stockpiles for each date t of the
sequence was computed using the system described
in Section 3 (Fig. 4b). Coal stock weight measure-
ments, S, as collected by agents on site during the
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same period of time, are shown in Fig. 4a in mega
tonnes (Mt). The correlation between both sets is
recognizable to the naked eye.

To assess the performance of our system, we pro-
pose a simple approach to predict coal weight from
stockpiles volume, so that the available measure-
ments can be compared in equivalent units. The
conversion is not straight-forward, as multiple date-
dependent factors may be involved (e.g. humidity
factors, non-uniform coal types or pile densities). To
this end, we linearly interpolate the two sets of mea-
surements and apply a least-squares regression to fit
two coefficients a and b satisfying S(t) = aV (t) + b.
The result is shown in Fig. 4c. We obtain a = 1.02,
b = 0.3, where a can be interpreted as the best-fitting
bulk density and b as a ground offset. Observe that
85% of the interpolated samples were used to fit a
and b (the training set), but the strong correlation
extends to the rest of dates, stressing the robustness
of the method.

It remains difficult to quantify the exact accuracy
of the system without measurements that match ex-
actly in time, specially since shipments or stock ar-
rivals can occur within a few hours. In general,
Fig. 4c seems to indicate that the differences between
our weight estimates derived from remote sensing
and on-site measurements from neighbor dates are
typically < 0.3 Mt. Discrepancies can be probably
explained by noisy or interpolated data in the pho-
togrammetric DSMs employed for volume estimation,
specific stockpile properties or a strong abrupt activ-
ity in the area.

5 Conclusion

An automatic system for surface volume monitoring
using recurrent satellite imagery was presented. The
system is based on a generic RPC refinement step, in-
dependent from satellite specificities, which enables
to accurately measure volume from multiple inde-
pendent DSMs obtained with an open-source satel-
lite stereo pipeline. A time series of SkySat images
distributed over ∼6 months was used to validate the
system in a real case scenario concerning a highly
dynamic area of coal stockpiles.
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