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Abstract. Understanding the mapping between structural and func-
tional brain connectivity is essential for understanding how cognitive pro-
cesses emerge from their morphological substrates. Many studies have in-
vestigated the problem from an eigendecomposition viewpoint, however,
few have taken a deep learning viewpoint, even less studies have been en-
gaged within the framework of graph neural networks (GNNs). As deep
learning has produced significant results in several fields, there has been
an increasing interest in applying neural networks to graph problems.
In this paper, we investigate the structural connectivity and functional
connectivity mapping within a deep learning GNNs based framework,
including graph convolutional networks (GCN) and graph transformer
networks (GTN). To our knowledge, this original GTN based frame-
work has never been studied in the context of structure-function and
brain connectivity mapping. To achieve this goal, we use a GNNs based
encoder-decoder system, where the encoder takes structural connectiv-
ity (SC) matrix as input and generates a latent representation of each
node in a lower dimension, then the decoder uses the latent represen-
tation to reconstruct or predict the associated functional connectivity
(FC) matrix. Besides comparing different encoders for node embedding,
we also demonstrate that a decoder, which projects lower dimension vec-
tors onto higher dimensional space, can improve the model performance.
Our experiments demonstrate that both GCN encoder and GTN encoder
combined with the proposed decoder can provide better results on our
data than the previously proposed GCN autoencoder model. GTN en-
coder is also shown to be much more effective when it comes to noisy
data and outliers.

Keywords: Brain connectivity mapping · Graph neural network · Graph
convolutional network · Graph transformer network · Autoencoder.

1 Introduction

Studying the relationship between structural connectivity and functional con-
nectivity is essential to understand how brain function emerges from their un-
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derlying structural substrate. A better characterization of the link between SC
and FC will provide insights into how lesions to the structural substrate affect
brain function [1–3], with great potential clinical applications. Previous studies
have shown that functional connectivity and structural connectivity patterns are
correlated [4–6]. Therefore, it is reasonable to expect that FC matrices can be
predicted from SC matrices.

Many models have been proposed to map structure to function [9–13]. A
subset of these models are specifically based on the link between the eigenvalues
and eigenvectors of SC and FC matrices. However, this approach is based on the
assumption that there exists a correspondence between structural and functional
eigenmodes that can be captured by the models. Moreover, they are usually com-
putationally expensive when dealing with large data. In contrast, deep learning
(DL) approaches provide a more general approach to learn the mapping between
SC and FC. Deep learning has produced significant results in several fields, in-
cluding computer vision, speech recognition and natural language processing [7].
To integrate non-Euclidean graph data, graph neural networks (GNNs) have
been developed to deal with graph problems [8]. For example, graph convolu-
tional networks (GCN), which were proposed by [14], are motivated by the graph
convolution operator [15]. At a higher level, GCNs use the graph Fourier trans-
form to aggregate neighboring nodes’ features, thus exploiting the topology of
the graph during the learning process. GCNs have been studied on structure-
function mapping in [16], where a graph encoder-decoder based on GCNs was
proposed to recover the SC-FC mapping. However, the decoder in this model
is mainly an inner product operation with no trainable parameters. The linear
encoder used by the model can also be sensitive to outliers presented in data.
A second example are graph transformer networks (GTN) [17] are analogous to
Spatial Transformer Networks [18]. The most advantageous point of GTNs over
GCNs is that they consider heterogeneous graph structures, and can therefore
be used to predict FC from several different SC matrices. This feature makes
GTN more robust when dealing with outliers or noisy data, where GCN is much
less effective.

In this work, we revisit structure-function mapping via deep graph neural
networks. First, we investigate the importance of a trainable decoder in the
GCN architecture of [16] and show that it improves the prediction of FC from
SC. Second, we propose a GTN architecture to predict FC from several diffusion
derived SC matrices and show that is more robust to outliers. To our knowledge,
this is the first time GTNs have been studied in the context of structure-function
and brain connectivity mapping. All of the models are tested on 1050 subjets of
the Human Connectome Project, therefore providing reproducible results.

The rest of the paper is composed of three parts. The first part is Prelimi-
naries, where we state the main problem and then introduce the mathematical
theories of GCN, GTN and encoder-decoder system. Then we propose numerous
models based on GNNs. The second part is Experiments, where we present how
SC/FC matrices are extracted from Magnetic resonance imaging(MRI), and de-
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tails of the implementation. The final part is Results and conclusion, where we
compare and discuss in detail the performance of each proposed model.

2 Preliminaries

In this section, we first state the problem and the objective of this paper and
review some GNNs architectures including GCN, GTN, and the main framework
Autoencoder that includes them all. At the end of each architecture description,
a model is proposed.

2.1 Problem statement

Given an undirected SC matrix, which is extracted from diffusion MRI, we define
A ∈ RN×N as its symmetric adjacency matrix, Dii =

∑N
j=0Aij as the diagonal

degree matrix which denotes the number of connections of each node, N as the
number of nodes and in our case it is the number of regions of the atlas. The
normalized Laplacian of A is defined as L = IN −D−

1
2AD−

1
2 = UΛUT , where Λ

denotes its eigenvalues and U as its eigenvector. The brain connectivity mapping
is between the SC matrix and the FC matrix. The objective is to identify a
mapping that takes A as input and predicts a FC matrix Z ∈ RN×N , such that
Z is close to the empirical FC matrix. The problem can be reformulated as

minimize
1

K

K∑
k=1

‖f(Ak)− Zk‖2F (1)

where f is the mapping function (in our case a DL architecture),K is the number
of subjects, and ‖ · ‖F is the Frobenius norm.

2.2 Autoencoder

The idea of autoencoder [19] is to use an encoder to learn a latent representa-
tion of the data, then use a decoder to reconstruct its input. Here, we use the
autoencoder as our main structure, but we alter it into reconstructing the as-
sociated FC matrix instead of SC matrix. An encoder generates a latent vector
representation yi for each node, then a decoder uses these representation vec-
tors to compute the prediction of the FC matrix, denoted as Z ′ = f

′
(Y ) with

Y ∈ RN×F where F is the dimension of the latent node representation. In this
work, we test both GCN (as in [16]) and GTN as encoders. A diagram of the
model is presented in Figure 1.

The decoder mainly serves to transform latent nodes embedding Y to target
symmetric FC prediction Z. In [16], the authors proposed a decoder based on
inner product, defined as:

Z ′ = tanh(ReLU(Y Y T )) (2)
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Fig. 1: Model pipeline. The first step is to process SC matrix to obtain Â. Then
the encoder(GCN or GTN) takes Â as input and generate embedding Y . Finally,
the decoder(DC1 or DC2) takes Y as input and reconstruct FC matrix Z ′. A
loss function(Tril-MSE) calculates the error between Z ′ and the empirical FC.

where tanh(x) = ex−e−x

ex+e−x and ReLU(x) = max(0, x) are activation functions. Z ′
is a symmetric matrix whose values are in the range [0, 1], like the observed FC
matrix. However, apart from reconstructing a prediction that fits the FC matrix’
symmetry and range property, it is not trainable. In the rest of the article, this
decoder is referred to as DC1.

To overcome the disadvantage of DC1, we propose a decoder that is trainable,
defined as

Y
′
= YW d

0 +Bd,

Y
′′
= tanh(Y ′ ∗W d

1 ),

Z ′ = ReLU(Y
′′
Y
′′T )

(3)

where W d
0 ∈ RF×N is a trainable parameter which augments the dimension of

the latent embedding Y , Bd ∈ RN×N is a bias parameter, W d
1 ∈ RN×1 is also a

trainable parameter, initialized with constant 1 to keep the output’s range close
to [0, 1] from the start. It balances the dynamic of the inner product operation.
The ∗ operator denotes a row-wise multiplication. To predict a semidefinite pos-
itive FC matrices, for example when FC matrices are not thresholded, it suffices
to omit ReLU(·). In the rest of the article, this decoder is referred to as DC2.

2.3 Graph Convolutional Networks(GCN)

A spectral graph convolution operator, as defined by [21], is given by

gθ ? x = UgθU
Tx (4)

with the filter gθ = diag(θ), θ ∈ RN is the parameter. Therefore gθ can be consid-
ered as a function of the eigenvalues of the Laplacian Λ. In order to avoid expen-
sive computation of eigendecomposition of graph Laplacian L, [20] proposed us-
ing Chebyshev polynomials to approximate gθ(Λ). Given the recursively defined
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Chebyshev polynomial as Tk(x) = 2xTk−1(x) − Tk−2(x), with T0 = 1, T1 = x,
gθ(Λ) is reformulated as

gθ′(Λ) ≈
K∑
k=0

θ
′

kTk(Λ̃) (5)

where Λ̃ = 2
λmax

Λ − IN , λmax is the largest eigenvalue of L. θ
′ ∈ RK is the

coefficient vector of Chebyshev polynomial. Combining equations (4) and (5), a
new graph convolution operator can be defined as

gθ′ ? x ≈
K∑
k=0

θ
′

kTk(L̃)x (6)

where L̃ = 2
λmax

L− IN .
In [14], a simple graph convolution operator is proposed, which is motivated

by a first-order approximation of Chebyshev polynomials [20]. By limiting K =
1 and setting λmax = 2, θ

′

0 = −θ′1 = θ in equation (6), we have the graph
convolution operator that is motivated by the first order of Chebyshev

gθ′ ? x ≈ θ(IN +D−
1
2AD−

1
2 )x = θD̃−

1
2 ÃD̃−

1
2x (7)

where Ã = A+ IN is a symmetric self-looped adjacency matrix, D̃ii =
∑N
j=0 Ãij

denotes the degree matrix of the Ã. Finally the first order approximation GCN
is defined as

Y (l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2Y (l)W

(l)
0

)
, (8)

where Y 0 = X, Y (l) denotes the lth hidden layer, W (l)
0 is the weight parameter

of lth layer. σ(·) is an activation function.
In our implementation, the GCN encoder is a single layer GCN defined as

Y = ReLU(ÂXW0), (9)

where Â = D̃−
1
2 ÃD̃−

1
2 , Ã was defined in equation (7),W0 ∈ RN×F is a trainable

parameter of the encoder, N and F are previously defined.

2.4 Graph Transformer Networks(GTN)

Graph Transformer Networks [17] take heterogeneous graphs as multi-channel
input and use these channels to compute multi-channel meta-path graph tensors.
Then, GTNs apply a single layer GCN to each channel of the meta-path tensor
and generate a node representation for each channel. Finally, a perceptron layer
is added on top of the concatenation of the node representations of each channel.

Consider A ∈ RN×N×C a set of adjacency matrices of heterogeneous graphs,
C denotes channel number, which in our case A =[Â1, Â2, Â3] is composed by the
first order approximation of three types of SC matrices, whose nature is detailed
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in Section 3.1. First the Graph Transformer (GT) layer generates two interme-
diate adjacency matrices, Q1 ∈ RN×N×C and Q2 ∈ RN×N×C , then performs a
1x1 convolution as

Qi = φ(A, softmax(Wφ)), (10)

where φ is a graph convolution, Wφ ∈ R1×1×K is the parameter of φ, softmax(·)
is an activation function defined as softmax(xi) = exp(xi)∑

j exp(xj)
. Second, the GT

layer combines the intermediate adjacency matrices Qi together to compute a
normalized new graph structure. For the A(1) = D−1(1)Q1Q2, D ∈ RN×N×C is
the multi channels degree tensor of Q1Q2. For multi layers GTN, we repeat
the procedure from Equation (10) by generating Ql+1, then we compute the
new graph A(l) = D−1(l)A

(l−1)Q(l+1). Finally, a graph convolution is performed
on each channel of the new structure A(l) before combining all channels’ node
embedding. Instead of concatenating all channels’ embedding as in the original
paper [17], we found that summing them performs better. Thus the intermediate
output is

Y
′
=

C∑
i=1

σ
(
D̃−1i Ã

(1)
i XW0

)
(11)

where Ã(l)
i = A

(l)
i + I. C denotes the number of channels, W0 ∈ RN×N is a

trainable weight parameter. In our implementation of GTN, we set the layer
number to l = 1 and the channel number to C = 3. Upon the output defined
in Equation (11) in section 2.4, an additional layer is added in order to obtain
lower dimension embedding. The ultimate GTN encoder is defined as

Y = ReLU
(
Y
′
W1 +B1

)
(12)

where W1 ∈ RN×F is a trainable parameter, B1 ∈ RF×F denotes bias.

3 Experiments

3.1 Data

The SC and FC dataset, which contain 1050 subjects, is provided by Human
Connectome Project 5 (HCP). The SC and FC data are extracted from diffusion
MRI (dMRI) and functional MRI (fMRI) using the same pipelines as in [27]. We
used the streamlines produced by the diffusion pipeline to compute three types
of SC matrices, Count, SIFT2, Length. The first one Count(i, j) represents the
total number of streamlines between regions i and j. The second one SIFT2(i, j)
was computed by summing the SIFT2 weights of streamlines connecting i and
j [28]. The third one Length(i, j), denotes the reciprocal average length of the
streamlines connecting i and j. Both SC and FC adjacency matrix contain N =
68 rows and columns, each row and column corresponds to a brain region of the
Desikan-Killiany atlas.
5 http://www.humanconnectomeproject.org/
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The SC matrix A extracted from dMRI is not directly used as model in-
put. First, we set the diagonal values of A to be zero. Then, as explained in
Section 2.3, we use first order approximation of Chebyshev polynomial on A to
obtain the input Â, defined in Equation (7). As Length data has infinite values
(between disconnected brain regions), for computational stability, we set its di-
agonal values as 1, then compute 1/Length(i, j) beforehand. The FC originally
ranges between -1 and 1, but in our implementation, the negative values in FC
are set to 0 as in previous researches dealing with functional brain connectiv-
ity [25, 26]. After our processing pipeline, the average correlation between the
FC matrix and the Count, Length, and SIFT2 matrices is 0.24, 0.28, and 0.24,
respectively.

3.2 Implementation

The GCN uses only the Count matrix, while GTN uses all three SC matrices
mentioned previously. The dataset is split into three parts: 80% for training,
10% for validation and 10% for test. Cross-validation (10 folds) and early stop
are applied. We use Adam as optimizer [22], set learning rate to 0.001; batch
to 25 for GCN, 1 for GTN; dropout rate to 0.05; encoder’s output dimension
to F = 32 for all models. The weight parameters are initialized using [23]. The
models are implemented via Pytorch [24]. We use Mean Square Error(MSE) as
all models’ loss function, however, it is only applied on the lower triangular part
of the predicted FC matrix, since FC matrix is symmetric and whose diagonal
values are always 1. We reference it as Tril-MSE in the following. We also use
Pearson Correlation as a supplementary measure to double evaluate the quality
of predictions, although we do not train our models on it. Same as Tril-MSE, we
apply it only on the lower triangular part of output matrices, we reference it as
TPearson for the rest of the paper.

4 Results and discussion

We evaluate the average and median Tril-MSE test error, as well as the aver-
age and median TPearson between predicted FC and empirical FC. It is also
important to evaluate the median test error because outliers are often present
in data and difficult to identify beforehand. A model with a lower median test
error is more robust when it comes to a dataset with outliers, an important
consideration in clinical applications.

As presented in Table 1, the first architecture "GCN+DC1" from [16] is the
baseline for comparison, while the rest are the new models proposed in this
work. We observe that both GCN and GTN encoder combined with DC2, de-
fined in Equation (3) have obtained better scores in all measures than when
they are combined with DC1, defined in Equation (2). This improvement can be
explained by the additional trainable parameters of the decoder which projects
the latent space to the FC prediction. When comparing the median Tril-MSE,
we can notice that GTN increases the performance by up to 18% when compared
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Results Average
Tril-MSE

Median
Tril-MSE

Average
TPearson

Median
TPearson

GCN+DC1 0.0430±0.0016 0.0431 0.6628±0.0077 0.6671
GCN+DC2 0.0404±0.0018 0.0402 0.7003±0.0073 0.7069
GTN+DC1 0.0401±0.0020 0.0351 0.7160±0.0077 0.7228
GTN+DC2 0.0397±0.0018 0.033 0.7154±0.0061 0.7231

Table 1: Average and median test error for the graph convolutional and trans-
former networks using different decoders: DC1 and DC2 are defined in Equa-
tion (2) and (3), respectively.

to GCN. This significant change in the median error highlights the robustness
of GTN to outliers. In addition, GTN also outperforms GCN at the supplemen-
tary measure TPearson. Also note that the GTN always provides a better FC
prediction regardless of the decoder selected, showing that important informa-
tion is captured in the Length, and SIFT2 matrices not exploited by the GCN
architecture.

5 Conclusion

A better understanding of the link between SC and FC has the potential to
provide insights into how lesions to the structural substrate affect brain func-
tion. In this work, we have revisited the structure-function mapping via graph
neural networks. We investigated the importance of a trainable decoder in a
previously proposed GCN architecture and proposed a novel GTN architecture
to predict FC from several diffusion derived SC matrices. We presented predic-
tion results on 1050 subjects of the Human Connectome Project, showing that
trainable parameters in the decoder improve the performance of the models. In
addition, our results indicated that GTNs, which simultaneously exploit differ-
ent realisations of the SC matrix, outperformed GCNs. Overall, the preliminary
results presented in this work highlight the potential for graph neural networks
in structure-function mapping.
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