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 Exercise with the FRED led to changes in onset of the lumbar erector spinae 

muscle 

 Later onsets of trunk muscles correlate with increased background activity. 

 FRED could be useful for rehabilitation. 
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Introduction 

An exercise device has recently been developed to activate deep spinal muscles [1, 2]. 

The device, called the Functional Re-adaptive Exercise Device (FRED, Figure 1), is 

similar in its kinematics to an elliptical trainer, but it offers little resistance to lower limb 

movement [3]. Using surface and intramuscular electromyography (EMG) as well as B-

mode ultrasound imaging, previous studies revealed tonic activation of lumbo-pelvic 

muscles during FRED exercise as compared to walking [1-3]. As tonic activation of 

postural muscles is an aspect of function that is modified in LBP, this suggests a potential 

role for this device as a rehabilitation tool to reinforce this function. Compared with 

walking, FRED exercise was associated with less activity of superficial trunk muscles (e.g. 

obliquus externus abdominis (OE) – a muscle that is often found to have additional 

activation in LBP [4, 5] whereas the mean activity of the Transversus Abdominis (TrA) 

and Multifidus (MF) muscles was similar between tasks [3].  

It was therefore proposed that FRED exercise could be beneficial if integrated into 

rehabilitation interventions following long term micro-gravity exposure or LBP [6]. In 

particular, tonic activation of trunk muscles induced by FRED exercise [3]  has been 
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suggested as a potentially useful training stimulus to train these muscles  [7]. However, 

whether such activation leads to sustained improvements in motor control and/or an 

increased activation (in the following this is referred to as background activation) of the 

activated deep spinal muscles during upright standing after completion of the task has 

not been investigated.  

One method to assess the coordination of trunk muscles involved in spinal control is to 

investigate anticipatory postural adjustments to predictable perturbations to the trunk 

during rapid arm movements [8-10]. This method provides insight into the preplanning by 

the nervous system in advance of any perturbation, i.e. feed-forward control. Previous 

studies have shown early activation of the TrA and MF muscles as a component of these 

anticipatory postural adjustments [11, 12], and that early activation is needed to prepare 

the spine in a manner that is somewhat independent of the direction of force applied to 

the spine (e.g. forward or backward perturbation) [11, 13]. Notably, activation of the TrA 

and LM muscles is delayed in individuals with LBP [8, 9]. Further, training of voluntary 

activation of the TrA muscle induces earlier activation of this muscle in an arm movement 

task both immediately after training [14] and during a six months follow-up if training is 

repeated [15]. Conversely, activation of the TrA muscle without conscious attention during 

sit-ups [14], walking training [16] or higher intensity generalised abdominal bracing tasks 

[17] induced no change in timing. FRED exercise encourages conscious attention to trunk 

alignment and lower limb movement but does not require conscious activation of the 

spinal muscles. However, whether training using the FRED induces changes in muscle 

activation during trunk perturbations requires investigation. 
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This study investigated whether a single bout of exercise on the FRED device induces 

changes in feedforward activation of spinal muscles in association with rapid arm 

movements. It was hypothesized that in pain free individuals a single exercise session on 

the FRED would lead to earlier onsets of spinal muscles in association with rapid arm 

movements. Further, it was hypothesized that ongoing background activation of the LM 

and TrA muscles in standing would be greater after one exercise session with the FRED. 

Methods 

Participants 

Nine healthy male volunteers (mean(SD) age: 27(5) years; height: 1.74(0.05) m; body 

mass: 73(10) kg; body mass index: 24(3) kg/m2) who had no history of joint or muscle 

disease or any current muscle, ligament or tendon pain or injury were recruited for the 

present study. Participants provided written informed consent prior to study inclusion. The 

study was approved by the Institutional Medical Research Ethics Committee of the 

University of Queensland and all procedures were in accordance with the Declaration of 

Helsinki. 

Electromyography 

Intramuscular Electromyography: Pairs of fine-wire electrodes (two Teflon-coated 75µm 

stainless-steel wires with 1 mm insulation removed from the ends, bent back to form 

hooks at 2 and 3 mm length, threaded into a hypodermic 0.50 x 70 or 0.50 x 32 mm-

needle) were inserted unilaterally into muscles on the right side of the trunk with guidance 

using B-mode ultrasound imaging (Aixplorer, Supersonic Imagine, Aix-en-Provence, 

France). Electrodes were sterilized in a vacuum steam autoclave (Sterilclave 18, 
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Cominox, Carate Brianza, Italy). Skin was cleaned with sterilization swabs (Persist Plus, 

BD, Franklin Lakes, USA). Electrodes were inserted into the following trunk muscles: 

deep fibres of LM – over the L4-5 facet joint 30 mm laterally to spinous processes; the 

longissimus part of the lumbar erector spinae muscle (LES) 40 mm lateral to the L2 

spinous process; OE, obliquus internus abdominis (OI) and TrA – separated by 5 mm 

midway along a line from the anterior superior iliac spine and the distal edge of the rib 

cage. 

Surface Electromyography: The skin was prepared using abrasive paste (Nuprep, 

Weaver and Company, Aurora, USA) and cleansed using alcohol swabs. Pairs of Ag/Ag-

Cl surface EMG electrodes (Blue Sensor N, Ambu, Ballerup, Denmark) were placed on 

the skin adjacent to the insertion point of the fine-wires for LM (LMs), and over the anterior 

(AD) and posterior (PD) deltoid muscles. LMs signals have to be interpreted with caution 

as they most likely represent a mix of different muscles underneath the surface electrodes 

and do not solely reflect actual activity of LM (see also discrepancy between LM and LMs 

signals in [3]). 

A reference surface electrode was placed over the iliac crest. EMG signals were pre-

amplified 2000 times, band-pass filtered between 20 and 1000 Hz (Neurolog, Digitimer, 

Welwyn Garden, UK) and recorded at a sampling rate of 2000 Hz using a Power1401 

data acquisition system and Spike2 software (Cambridge Electronic Design, Cambridge, 

UK). 

Study protocol 
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Data were collected in a single session. Following attachment of the EMG electrodes 

participants completed 10 repetitions of the rapid arm movement manoeuvre. Participants 

stood in a relaxed position with their feet shoulder-width apart and their arms by their 

sides. Participants were instructed to react as quickly as possible to flex or extend their 

shoulder to approximately 15 deg as sharply as possible upon the appearance of a visual 

cue, displayed approximately 1 m in front (a green light indicated shoulder flexion, and 

red indicated shoulder extension). 

After baseline data collection participants were familiarized with FRED exercise for 10 

minutes, during which they completed three different amplitude settings (data from these 

tasks are published elsewhere [3], beginning with the smallest amplitude [18]. The three 

different amplitude settings were 0.2 m (small) 0.36 m (middle) and 0.5 m (large). 

Increasing amplitudes result in longer foot trajectories and increased instability [3].  

Participants were instructed to keep their feet on the footplates and to maintain the upper 

body as “still” as possible while moving their lower limbs with as little movement variability 

as possible. Visual feedback of exercise cycle frequency and variability of foot movement 

was provided on a screen in front at eye level. Throughout the duration of FRED exercise, 

participants were asked to maintain cycle frequency at 0.42 cycles per second. After 

familiarization, participants completed a 30 min test battery of three FRED amplitude 

settings in random order [3] followed by a ten minute continuous sequence in the middle 

amplitude setting. Outcome measures (EMG at rest while standing and during rapid arm 

movements) were recorded immediately after completion (post) of the exercise and after 

a 10-minute wash-out during which they remained standing (10-min WO). 

Data analysis 
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Electromyography signals were processed using Matlab (Version 2014a, Mathworks, 

Natick, MA, USA). Signals were digitally band-pass filtered using a fourth order 

Butterworth filter (fine-wire EMG: 50-1,000 Hz; surface EMG: 20-500 Hz) and an adaptive 

ARMA whitening second order filter. For each arm movement, the times of EMG onset 

were detected using the approximated generalized likelihood ratio method [19]. This 

algorithm uses statistically optimal decision with a predefined threshold to detect changes 

in EMG amplitude. The automatically detected times of change in amplitude were then 

visually inspected and onsets were rejected if they were related to bursts of EMG not 

related to the arm movement (e.g. ECG bursts or other movement artifacts). The relative 

latency between the EMG onset of the deltoid (arm flexion - AD; extension - PD) and each 

of the trunk muscles was calculated and used for analysis. 

 

Statistics 

Preliminary analysis of EMG data identified large between-subject variability in 

background EMG for some of the trunk muscles. Ongoing background EMG activity may 

modify the necessity for an anticipatory adjustment and may change the sensitivity of the 

EMG onset detection method (i.e. it is more difficult to identify EMG onset if the muscle 

is already active). To assess the potential influence of background EMG on the detected 

onsets, the Pearson’s correlation coefficient was calculated between the time of EMG 

onset and the root mean square (RMS) EMG amplitude in the time window from 150-50 

ms preceding deltoid muscle  EMG onset. 
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Statistical analyses were performed using STATA statistics software (Version 13, 

StataCorp LP, College Station, Texas, USA). EMG onsets for each muscle were 

compared between trials performed pre- and post-exercise and after 10-min WO using 

one-way repeated measures ANOVA, with a Bonferroni post hoc. The significance level 

alpha was set to 0.05. Data are expressed as mean ± standard deviation throughout the 

text and figures unless stated otherwise. 

 

Results 

EMG onsets 

Figure 2 shows overlaid individual and averaged rectified EMG signals for each muscle 

(left panels) as well as the mean, SD and individual participant data points of EMG onsets 

of the trunk muscles (right panels) at each time point (pre, post, 10 min wash-out). Pre-

training trials show TrA was the first muscle active prior to AD in shoulder flexion, with the 

onset of LM at a similar time to AD. The EMG onsets of TrA EMG did not precede that of 

PD in shoulder extension, and an early onset of OE and a late onset of LES EMG was 

observed.  

EMG onsets of LM, TrA, OI and OE did not significantly change after the exercise bout 

with the FRED or after 10-min WO, for either shoulder flexion or extension movements 

(main effect of time: P ≥ 0.07). For LES, during shoulder flexion, EMG onsets became 

earlier after training, from -1 ms (SD: 32 ms) at baseline to -11 ms (SD: 27 ms) post-

exercise and -16 ms (SD: 22 ms) at 10-min WO after the FRED exercise bout (main effect 

of time: P = 0.03; post hoc P < 0.05 for pairwise comparisons with baseline). LES EMG 
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onset in association with shoulder extension was unchanged between time points (P = 

0.22).  

Correlation between background EMG and EMG onsets 

Figure 3 depicts the correlation between background EMG amplitude and EMG onsets of 

the investigated trunk muscles. During shoulder extension, significant correlations were 

found between background EMG and onset times for TrA (r = 0.6; P < 0.001), OI (r = 

0.59; P < 0.001), LES (r = 0.32; P = 0.046) and LMs (r = 0.77; P < 0.001). There were no 

other significant correlations (all P ≥ 0.09). The background EMG amplitude of the 

investigated muscles did not change between time points (all P ≥ 0.28). 

Discussion 

The main outcomes of this study were that in healthy individuals with no history of pain 

(and presumably “normal” control of the trunk muscles): 1) EMG onsets of most of the 

investigated trunk muscles were not modified by FRED exercise, with the exception of 

LES which had earlier EMG onset both immediately after FRED exercise and after a ten 

minute wash-out period; 2) EMG onsets of TrA, OI, LMs and LES depended on the 

amplitude of background activity prior to the postural disturbance; and 3) background 

(tonic) activity of trunk muscles in relaxed standing position prior to a postural disturbance 

was not affected by FRED exercise. 

EMG onsets 

Changes in timing of activation of spinal muscles in response to or in anticipation of 

postural disturbances have been identified in association with LBP [8, 9, 11]. In healthy 
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individuals, spinal muscles such as LM and TrA are usually activated in anticipation of the 

postural perturbation in order to protect the spine from imposed forces [9]. On the other 

hand, it has been observed that people with LBP have delayed EMG onsets when the 

trunk is challenged by a postural perturbation, and this has been suggested to make the 

spine more vulnerable [8, 9]. 

Although it was hypothesized that onsets of spinal muscles would be earlier after FRED 

exercise, only minor changes were observed in healthy individuals with presumably 

“normal” control prior to training in most trunk muscles observed. However, immediately 

after a single exercise bout with the FRED and after a ten-minute washout period, 

participants showed earlier onsets of LES EMG associated with shoulder flexion. During 

shoulder flexion movements, the reactive angular moment from arm movement causes 

the spine to flex, and requires early LES activation [20]. Contraction of the LES (upper 

lumbar spine) generates posterior shear forces on the lumbar spine which might be 

required to counter anterior shear forces associated with  trunk flexion [21].The present 

data show that this activation of the LES was “tuned” and became earlier after the FRED 

training. This finding might  have implications for rehabilitation of people with LBP and 

astronauts post mission. With respect to LBP, a recent large cross-sectional study has 

shown that there was a significant association between fatty infiltration of the LES (upper 

lumbar spine) and LBP [22]. As many LBP patients report problems with activities in the 

sagittal plane, control of the anterior shear forces associated with activities such as lifting 

[23] afforded by the LES during this and other activities may be of benefit for these 

patients. In addition, Claus et al. [24] identified that LES is more active during a “short 

lordosis” posture (i.e. lumbar lordosis with smooth transition to thoracic kyphosis at the 
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thoracolumbar junction) than in flat, “long lordosis” and slump postures. As recent work 

has highlighted a greater (short) lordosis in the FRED task than walking [18], this could 

explain greater bias to activation of  LES after a period of FRED exercise. However, this 

might also be expected to impact activity of LM, which was also reported to be most active 

in the short lordosis posture by Claus et al. [24], yet this was not observed in the present 

study.  

 

In astronauts and individuals following prolonged bedrest, the spinal extensor muscles – 

predominantly the LES and LM - atrophy while the flexor muscles (e.g. psoas major) 

hypertrophy [6, 25-27]. The early recruitment of the LES muscle in anticipation of shoulder 

flexion following a single 10-minute bout of FRED exercise may indicate that FRED 

exercise could be a useful adjunct to current astronaut rehabilitation regimes, as has 

previously been suggested [1, 6].  

There was no change in EMG onset of the TrA or LM muscles with training. The timing of 

EMG onset of these muscles was in most respects similar to what has been shown 

previously for people without a history of LBP [9], with the exception that the onset of the 

TrA muscle occurred after PD onset in shoulder extension (Figure 2). Of note, in previous 

studies that have tested the impact of training tasks on onset of the TrA muscle, 

participants have been individuals with LBP, who showed delayed activation at baseline 

[15]. Whether FRED exercise can impart a change in timing on people with LBP and 

abnormal timing remains to be tested. 

Relationship between background activity and onset of EMG 
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Despite the pain-free status of the participants, some individuals did not show an 

anticipatory activation of TrA during the shoulder extension task. This contrasts with a 

previous study of healthy individuals that demonstrated a consistent onset of TrA in 

advance of perturbation during both shoulder flexion and extension [11]. Investigation of 

the relationship between background activity while standing and onset of TrA activation 

(Figure 3) showed that the amplitude of background TrA EMG was a determinant of EMG 

onset: onsets were later when background activation was higher (in the shoulder 

extension trials). The same correlation was found for the LES, OI and LMs muscles. There 

are two likely explanations for this finding. First, a higher background muscle activity (tonic 

activation) results in an increased level of spinal control rendering ‘additional’ muscle 

activity unnecessary until later. Second, because of the higher background activity, the 

EMG onset detection method was less sensitive than with lower background activity. This 

may explain the difference between the present data and previous studies [11] – If 

background activity was lower, then earlier onsets of TrA EMG would have been expected 

in the extension task. The data of LMs should be interpreted with caution as surface EMG 

recordings of the LM at the level of L5 may be insufficiently selective and most likely 

represent a mix of both LES and LM muscle EMG [3]. 

The fact that the relationship between background activity and onset of activation was not 

significant for shoulder flexion would explain why, regardless of the amount of background 

activation, we were still able to detect early EMG onsets in that task, consistent with 

previous studies  [9, 15, 20]. 

Limitations of the study 
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Our interest in this study was to investigate healthy individuals with no previous 

experience with FRED exercise and a standardised period of familiarisation (10 min) 

before data collection. It is unknown whether FRED exercise would have a different effect 

for people with greater familiarity with FRED or for people with compromised trunk muscle 

function. 

Summary & Conclusions 

The presented data suggest that a single exercise bout on the device has a small but 

significant effect on timing of one trunk muscle but no effect on background muscle 

activation in healthy individuals while standing still. The only significant change was 

earlier activation of LES, which might have positive implications for the rehabilitation of 

people with LBP and astronauts post mission.  
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Figure 2 
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