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Optimal responsiveness 
and information flow in networks 
of heterogeneous neurons
Matteo Di Volo1* & Alain Destexhe2

Cerebral cortex is characterized by a strong neuron-to-neuron heterogeneity, but it is unclear 
what consequences this may have for cortical computations, while most computational models 
consider networks of identical units. Here, we study network models of spiking neurons endowed 
with heterogeneity, that we treat independently for excitatory and inhibitory neurons. We find that 
heterogeneous networks are generally more responsive, with an optimal responsiveness occurring 
for levels of heterogeneity found experimentally in different published datasets, for both excitatory 
and inhibitory neurons. To investigate the underlying mechanisms, we introduce a mean-field model 
of heterogeneous networks. This mean-field model captures optimal responsiveness and suggests 
that it is related to the stability of the spontaneous asynchronous state. The mean-field model also 
predicts that new dynamical states can emerge from heterogeneity, a prediction which is confirmed 
by network simulations. Finally we show that heterogeneous networks maximise the information flow 
in large-scale networks, through recurrent connections. We conclude that neuronal heterogeneity 
confers different responsiveness to neural networks, which should be taken into account to investigate 
their information processing capabilities.

Studying the collective behavior of large numbers of units interacting non-linearly is a classical theme in physi-
cal and computational sciences. In biology, such studies are complicated by the fact that the units are usually 
non identical, but rather display considerable heterogeneity. This particularly apparent in cerebral cortex, where 
neuronal size and properties are highly heterogeneous1–12. Neuronal heterogeneity is particularly high for inhibi-
tory neurons, for which many cell classes were observed13–16. Recent works have shown also that heterogeneity 
in neural response, together with synaptic plasticity, can have a strong impact for response of single neurons as 
part of a network and can be functional to maintain low firing rates17–19. In these cases it is shown that networks 
of neurons can synchronize even in presence of heterogeneity20. In general, in networks of oscillators, as in 
neuronal networks, such heterogeneity across units (bare frequencies or neurons’ excitability) induces typically 
desynchronization at a population scale21–29. As one would expect, the more the neurons are different the less 
they are able to synchronize and to correlate their reciprocal activity. Nevertheless, despite this heterogeneity, 
cortical populations are able to respond coherently to external stimuli and also to generate synchronous collec-
tive oscillations30,31.

In the present paper, we consider sparse networks of spiking neurons endowed with heterogeneity in neurons’ 
intrinsic excitability, that we treat independently for excitatory and inhibitory neurons. We investigate the respon-
siveness of such networks to external inputs, and also compare the heterogeneity to experimental estimates. 
To yield insights on the causes of the responsiveness properties observed numerically, we employ theoretical 
methods to derive a mean-field model of heterogeneous networks. We then use the mean-field model to predict 
the emergence of new activity states due to heterogeneity, a prediction which is tested by numerical simulations 
of network dynamics. Finally, to determine if the enhanced responsiveness also applies to recurrent connectivity, 
we considered the propagation of activity in large-scale networks of mean-field models.

Results
We first investigate the responsiveness of heterogeneous networks of excitatory and inhibitory neurons numeri-
cally, and next we use a theoretical approach to understand the mechanisms underlying responsiveness.
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Optimal responsiveness for heterogeneous networks.  We studied networks of sparsely connected 
excitatory and inhibitory spiking neurons (see “Methods” for details). Each neuron receives afferent excitatory 
spike trains at a frequency νext(t) . To characterise the responsiveness of the network to external stimulation, we 
considered νext(t) composed by a time constant baseline value ν0 and a time variation of amplitude A (see “Meth-
ods”, Input in Fig. 1a). The network responds to the stimulation by increasing its population spiking activity (see 
Output in Fig. 1a). The network responsiveness R can be estimated as the total amount of evoked spikes by the 
whole network (see the blue area in the Output of Fig. 1a). We compared homogeneous networks to networks 
constructed from measurements in the adult human and mouse brain from the Allen Brain Atlas32. In Fig. 1b, we 
report the histogram of the resting membrane potential EL measured experimentally from excitatory (blue, top 
panels) and inhibitory neurons (red, lower panels) in human and mouse cortical layers. By calling EL the average 
value of EL , one can see a heterogeneous distribution of the re-scaled resting potential eL = EL/EL . The distribu-
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Figure 1.   Inhibitory neuron heterogeneity optimizes network responsiveness. (a) An afferent excitatory input 
(Poissonian spike train at a time-dependent frequency νext(t) , Input) was submitted to a network of excitatory 
and inhibitory neurons, whose population spiking activity (amount of spikes per time unit, Output) is measured. 
The excess of activity in response to the input (blue area) measures the Responsiveness R of the network to the 
external stimulation. (b) Histograms of the resting potential eL = EL/EL of excitatoy (inhibitory) neurons in 
blue (red), top (low) row. Cells originate from the adult human brain, cortical layers 5/6 and 2/3, and mouse 
cortical layers 6 and 2/3 (Allen Brain Atlas32). The continuous line is a Gaussian distribution with the same 
standard deviation as measured from the data. (c) Network activity in response to a time varying input νext(t) of 
amplitude A = 1 Hz and baseline value ν0 = 1.5 Hz (see “Methods” section). Excitatory neurons population rate, 
normalised to pre-stimulus baseline activity, (top row, blue line) and the corresponding raster plot (bottom row), 
i.e. spiking times of excitatory (inhibitory) neurons marked with blue (red) dots. Panel (c) corresponds to an 
homogeneous network σI = 0 , panel (d) to σI = 0.1 and panel (e) to σI = 0.15 (in these panels (c)–(e) σE = 0 ). 
(f) The evoked response R is reported in function of the heterogeneity of inhibitory (excitatory) neurons 
σ = σI ( σ = σE) , red (blue) dots (squares). Error bars are estimated as the standard deviation over 20 different 
realisations. Continuous lines report the prediction based on the mean field model (see main text). In the inset, 
R is reported in function of the spontaneous excitatory firing rate rE without the stimulus (average over 10 s). 
Red dots are obtained by varying σI (same data as the main panel). Green dots show R in function of rE for an 
homogeneous network ( σI = σE = 0 ) and different values of the average resting potential of inhibitory neurons 
EIL.
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tions have a comparable level of variability, quantified by the standard deviations σI and σE (e.g. σI ∼ 0.07 and 
σE ∼ 0.055 for Human cortical layers 2/3). Note that heterogeneity in inhibitory cells is generally higher with 
respect to that in excitatory cells.

To investigate the effect of neuronal heterogeneity, we first studied the effect of excitatory neurons’ hetero-
geneity σE and inhibitory neurons’ heterogeneity σI separately. Panels c,d and e of Fig. 1 show that σI strongly 
affects network responsiveness. In these simulations, the network displays spontaneous asynchronous activity 
where neurons fire irregularly, a dynamical regime due to the balance between excitation and inhibition typically 
observed in the cortex of awake animals, called asynchronous irregular17,33,34. The presence of external excitatory 
stimuli of short duration (see caption for details) produces a network response (an increase in population spiking 
activity) corresponding to a transient synchronous event, as it can be observed in the raster plots of Fig. 1c–e. 
Panel c corresponds to an homogeneous network, while panel d and e correspond to heterogeneous networks 
with increasing values of σI ( σI = 0.1 in panel d and σI = 0.15 in panel e, the resting potential eL follows a Gauss-
ian distribution with fixed average, see “Methods” for details). By increasing σI we observe a clear increase in 
the intensity of the burst of response (see panel d), that decreases for larger values of σI (panel e in Fig 1). This 
can be quantified by estimating the responsiveness R as the amount of evoked spikes by the stimuli (see Fig. 1a 
and “Methods” section). By looking at Fig. 1f we observe that the same input induces a bell-shaped response 
R in function of the heterogeneity σI , indicating that there is an optimal heterogeneity level ( σI ∼ 0.1 ), where 
the stimuli provokes a strong population response. Eventually, when σI is too large the response is very weak. 
On the other side, as it can be noticed from the raster plots in Fig. 1c–e, increasing heterogeneity in inhibitory 
neurons decreases excitatory neurons spontaneous activity. This is due to the presence of a fraction of inhibitory 
neurons with high values of the resting potential (closer to the firing threshold) that are more excitable and thus 
inhibit the excitatory population. In the inset of Fig. 1f we report R, as in the main panel, as a function of the 
excitatory neurons spontaneous activity pre-stimulus rE . We can observe that the responsiveness is maximum, 
in correspondence of σI ∼ 0.1 , for a relatively low value of excitatory spontaneous activity (around rE ∼ 0.3 Hz). 
Interestingly, if we consider a homogeneous network ( σI = 0 ) and we increase the average resting potential of 
inhibitory neurons, we observe a decrease of excitatory neurons spontaneous activity pre-stimulus rE but not an 
increase of responsiveness R (see green dots in the inset of Fig. 1f). This result shows that the increase in the size 
of the synchronous response is due to the presence of heterogeneity and cannot be replaced by a modification 
of the average excitability in the corresponding homogeneous network. If we now consider an homogeneous 
inhibitory population ( σI = 0 ), we observe that increasing only the heterogeneity of excitatory neurons σE has the 
effect to decrease network responsiveness (blue squares in Fig. 1f). To further investigate the role of heterogeneity 
in excitatory neurons we study, in the next section, the combined effect of heterogeneity in both populations.

Responsiveness depends on heterogeneity in excitatory and inhibitory neurons.  To explore 
the combined effect of heterogeneity in both excitatory and inhibitory populations we calculated the respon-
siveness R as a function of both σE and σI (see Fig. 2a). Apart from fluctuations due to the endogenous noise in 
network dynamics, we observe a region of optimal responsiveness for heterogeneous networks (warm colors in 
Fig. 2).

Importantly, the experimental values of heterogeneity (Fig. 1b) fall close to the predicted optimal region of 
network responsiveness (see symbols in Fig. 2a). More specifically, we observe that, if heterogeneity in inhibitory 
neurons is very high (and thus responsiveness very low), increasing heterogeneity in excitatory neurons permits 
to increase responsiveness R. In another way, both heterogeneity cooperate to increase network responsiveness 
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Figure 2.   Excitatory and inhibitory heterogeneity determines network responsiveness. (a) Responsiveness R as 
a function of heterogeneity of excitatory ( σE ) and inhibitory ( σI ) neurons for networks displaying relatively high 
levels of spontaneous activity (input baseline ν0 = 1.5 Hz and input amplitude A = 1 Hz). (b) Responsiveness R 
for networks with a lower level of spontaneous activity (input baseline ν0 = 0.4 Hz and input amplitude A = 0.6 
Hz). Different markers correspond to heterogeneity values estimated from Human cortex layer 2, 3 (white 
circle), Human cortex layer 5, 6 (grey circle), mouse cortex layer 2/3 (grey star) and mouse cortex layer 6 (white 
diamond) estimated from Allen Brain database32, see Fig. 1.
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R, that is low for homogeneous or too heterogeneous networks. Thus, the model predicts that the optimal 
heterogeneity matches that found in real neural networks, suggesting that this aspect is crucial to understand 
their responsiveness. In order to study the generality of this scenario, we consider a very different setup, with 
a lower background excitatory afferent input to the network (see caption in Fig. 2). In this parameter setup the 
homogeneous network has a lower spontaneous activity. In Fig. 2b we report the responsiveness R for this setup. 
We observe indeed that also in this case an heterogeneous network yields a higher responsiveness R and that the 
experimental amount of heterogeneity falls in the region of high responsiveness R. This result shows that, also 
across different parameter setups (other parameters are also studied in next sections), an heterogeneous network 
corresponds to an optimal responsiveness. Moreover, the optimal responsiveness appears for values of hetero-
geneity close to experimental amounts. In order to test the robustness of this observation, we have verified that 
changing network realization and initial conditions the results are the same (see Supplementary Information).

Optimal responsiveness comes from pushing the network at the edge of a dynamical transi-
tion.  To determine the mechanism at the origin of the enhanced responsiveness due to neuronal heterogene-
ity, we developed a mean-field approach explicitly taking into account diversity. We started from a mean-field 
model previously introduced for homogeneous neural populations35–37. We extend this approach to heterogene-
ous systems by employing a technique, called heterogeneous mean field (HMF), successfully applied previously 
to model networks with heterogeneous connectivity38,39 and extended here to networks with heterogeneous cell 
properties (see “Methods” section). This procedure describes the collective dynamics of large sparsely connected 
networks of heterogeneous neurons with a relatively simple three dimensional model. This HMF model predicts 
the time evolution of excitatory neurons population firing rate rE(t) and of inhibitory neurons population firing 
rate rI (t) . By comparing the prediction of the HMF model to estimations from direct numerical simulations of 
a large network of neurons, we observed a very good agreement, that can be appreciated from the prediction of 
the response R in function of σI(σE ) (see continuous lines in Fig. 1d).

The excellent match of the continuous curves in Fig. 1 shows that the HMF correctly predicts the numeri-
cal observations of an optimal amount of heterogeneity in inhibitory neurons for population response. We 
can go further, and exploit the simplicity of the HMF model to understand what are the differences between 
more or less responsive asynchronous states. By computing the stationary solution from the HMF we estimate 
the relative stability eigenvalues {�i} . The maximum exponent � is reported in Fig. 3a for different parameter 
setups. The closer � to the critical value �c = 0 the less the asynchronous state is stable to perturbations. We 
observe that, independently of model parameters it exists an intermediate value of heterogeneity σI for which 
� is maximum and closer to the transition point � = 0 . We have then estimated the responsiveness R for these 
setups and we observe that the maximum responsiveness appears at values of the heterogeneity σI at which the 
asynchronous state is less stable (see symbols in Fig. 3a). In Fig. 3b then we report � in function of σI and the 
intensity of excitatory–excitatory neurons synaptic strength QEE . We observe that, increasing QEE there exists a 
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Figure 3.   Enhanced responsiveness corresponds to regions closer to instability. (a) The largest stability 
Lyapunov exponent � (real part) of asynchronous dynamics as a function of the heterogeneity of inhibitory 
neurons ( σI ). Different colors indicate different parameters of the baseline external drive and the strength of 
excitatory-excitatory quantal conductance ( ν0,QEE ), i.e. black (1.5 Hz, 1.5 nS), red (3 Hz, 1.5 nS), blue (2 Hz, 
1.5 nS) and orange (3 Hz, 1.65 nS). Symbols are located at the value of σI for which the responsiveness R is 
maximum (same color code as continuous line). Different symbols indicate different amplitudes A of the input, 
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of asynchronous dynamics as a function of the heterogeneity of inhibitory neurons ( σI ) and the strength of 
excitatory-excitatory quantal conductance QEE for a baseline external drive ν0 = 1.5 Hz. The dotted (diamond) 
line is the responsiveness R for an input amplitude A = 0.1 Hz ( A = 1 Hz ) and QEE = 1.5 nS (as in Figs. 1 and 
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region where the asynchronous state becomes marginally stable (red region, � close to zero). By superimposing 
the responsiveness R from Fig. 1d (dotted line, in this case for fixed QEE = 1.5 nS), we can see that the value of σI 
for which the responsiveness is maximum corresponds to a network that is closer to the transition point where 
the asynchronous regime becomes unstable.

Heterogeneity can induce new dynamical regimes.  Finally, to determine what the unstable regions 
correspond to, we investigated heterogeneous networks both numerically and theoretically using the mean-field 
model. Figure 4a shows that, for intermediate amount of heterogeneity the asynchronous state can be unstable 
(blue dashed line in panel a). This dynamical phase corresponds to an oscillatory regime at the level of the whole 
network, arising from a super-critical Hopf bifurcation where the amplitude of the limit cycle (red lines in panel 
a) smoothly increases in function σI . In panel b of Fig. 4 we observe that this oscillating synchronous regime 
(present whenever the asynchronous state is unstable, � > 0 ) appears only for heterogeneous networks ( σI>0) 
but the location of the synchronous region depends on the average value of neurons’ resting potential EIL (notice 
that in panel a of Fig. 4 we used EIL = −70 mV and in Figs. 1, 2 and 3 we used EIL = −65 mV ). In order to 
verify these theoretical predictions, in panel c we finally perform numerical simulation of the neuronal network 
where we observe that the limit cycle corresponds indeed to collective network oscillations (middle panel) that 
disappear in homogeneous or too heterogeneous setups (higher and lower panels). This shows that not only 
heterogeneity can induce higher responsiveness, but it can also induce new dynamical regimes. The dynamics of 
heterogeneous networks is therefore richer.

Heterogeneity boosts information flow in large‑scale networks.  To determine if the enhanced 
responsiveness applies not only to external inputs but also to the flow of information through recurrent con-
nectivity, we considered large-scale networks where each unit is a population of heterogeneous neurons. We 
considered a two dimensional lattice of mean-field models, that are interconnected to each other via Gauss-
ian connectivity profiles (see Fig.  5a and “Methods” section). According to anatomical connectivity estimates, 
inhibitory neurons have a short-range connectivity (red curves in Fig. 5a) at variance with excitatory connectiv-
ity (blue curves in Fig. 5a)40. Importantly, we integrate distance-dependent propagation delays due to the finite 
velocity of axonal conduction of action potentials (we considered here an axonal conduction velocity of 0.3 m/s, 
see “Methods” section).

We stimulated this large-scale model by an external input (see “Methods” section) and we compared a model 
with locally heterogeneous neurons (each node is modeled with an heterogeneous mean field with σI = 0.15 ) 
versus the same model with locally homogeneous neurons (each node is modeled with an homogeneous mean 
field with σI = 0 ). As it can be appreciated from Fig. 5b, both the heterogeneous and the homogeneous model 
respond with an activation that propagates in space as a wave. We observed that the intensity of the wave is 
much larger in the model with locally heterogeneous networks. This is a direct consequence of the enhanced 
responsiveness of each node. But does local heterogeneity also impacts the spatial extent of the wave through 
recurrent connections? To answer this question we compared the homogeneous and the heterogeneous system 
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QEE = 1.53 nS.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17611  | https://doi.org/10.1038/s41598-021-96745-2

www.nature.com/scientificreports/

by normalising the firing rate activity with its maximum in space and time, in order to highlight the spatio-
temporal profile of the response. As it can be observed from panels c and d in Fig. 5, the homogeneous and the 
heterogeneous systems have different spatio-temporal profiles, indicating that local heterogeneity influences 
not only the intensity of the response to the stimulus, but also its spatio-temporal pattern through recurrent 
interactions. Remarkably the heterogeneous system has much longer-range spatial propagation of activity. More 
specifically, for an optimal amount of heterogeneity we observed a much enhanced propagation of the activity 
through the network (red curve in Fig. 5e), compared with homogeneous and highly heterogeneous networks.

These results show that an optimal amount of local heterogeneity has a double effect at large scale. First, it 
amplifies the intensity of the response to the external input (Fig. 5b, a consequence of local enhanced respon-
siveness) and, second, enhanced responsiveness also applies to recurrent inputs, which results in a long range 
propagation of activity across the network (Fig. 5e).

Discussion
In conclusion, we report here four findings. First, we have found that the heterogeneity of inhibitory neurons, 
which has been well documented experimentally13–16, optimises the responsiveness of spontaneously active 
networks to external stimuli. There appears a resonance peak as a function of the level of heterogeneity. We 
have here studied the heterogeneity in neurons’ resting potential, that is experimentally quantified (see Fig. 1b 
and Supplementary Information) and determines neurons’ proximity to firing threshold (and thus neurons’ 
excitability). On the other side our results do not limit to only this cellular parameter. We have indeed found, 
both theoretically and by performing network simulations, that an optimal responsiveness appears also for inter-
mediate heterogeneity in neurons’ leakage conductance, while almost no effect is observed for heterogeneity in 
neurons’ membrane capacitance (see Supplementary Information).

A similar effect of diversity-induced resonance was previously observed in excitable or bistable systems41–45, 
where heterogeneity creates active excitation clusters which were absent in the quiescent homogeneous system. 
We showed here a different type of heterogeneity, that of inhibitory neurons, can induce optimal population 
responses. More generally, we found that the heterogeneity of both excitatory and inhibitory populations induces 
optimal responsiveness in spontaneously active sparse networks with irregular firing activity. Importantly, we 
found that the level of heterogeneity measured experimentally across different cortical layers and species (Human 
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Figure 5.   Enhanced activity propagation in large-scale heterogeneous networks. (a) Two dimensional lattice of 
connected mean-field models. The connectivity between excitatory (inhibitory) cells is drawn from a Gaussian 
distribution with standard deviation of length lexc = 2 mm ( linh = 1 mm), see blue (red) curves. (b) Response of 
the system (firing rate of excitatory neurons) following a Gaussian afferent stimulus (see “Methods”). The upper 
row stands for locally homogeneous networks ( σI = 0 ) while lower row for locally heterogeneous networks 
( σI = 0.15 ). (c) Spatio–temporal profile of excitatory neurons firing rate normalised by its maximum in space 
and time ( σI = 0 ). (d) Same as (c) but for σI = 0.15 . (e) Normalised firing rate in function of the distance d 
from stimulus onset at a specific time [see dashed white line in panel (d)]. Different colors stand for different 
levels of heterogeneity (see the legend inside the panel). The dashed red line shows a fit of the exponential decay 
of activity found in the heterogeneous system (red line, σI = 0.15 ), with �d ∼ 3.5 mm.
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and Mouse) corresponds to the resonance peak, which suggests that cortical networks may have naturally evolved 
towards optimal responsiveness by adjusting their heterogeneity. Moreover, while several studies reported that 
heterogeneity can enhance coding in uncoupled networks46,47 and decrease neuronal correlations48–50, we report 
here that a higher input–output population response is linked to an increased tendency to synchronization in 
heterogeneous networks. The coding capabilities of neural networks will therefore be largely affected by neuronal 
heterogeneity, which opens interesting perspectives for future studies.

Second, we found that the enhanced responsiveness of heterogeneous networks is paralleled with a decreased 
stability of the spontaneous activity regime. To obtain this result, we designed a mean-field model that explicitly 
includes heterogeneity, and which can capture this diversity-induced resonance. This new mean-field formulation 
keeps track of microscopic complexity, compared to traditional mean-field approaches which implicitly assume 
homogeneous systems and would not predict the correct responsiveness. This also shows that responsiveness 
must be understood using the knowledge of the spontaneous activity of the network—and in particular its level 
of stability. The relation between instability and responsiveness also constitutes a promising subject to further 
explore in the future.

In this work we have studied heterogeneity in the intrinsic proprieties of neurons, but it is known that het-
erogenity can be found also in the structure of connections (say for example in neurons’ in-degrees). Structural 
Heterogeenity (i.e. in the topology of connections) can have a strong impact in network dynamics11,51–53. Our 
mean field approach is general and can be employed in the future to study the impact of heterogeneity in neu-
rons’ connectivity.

Third, we have shown that neuronal heterogeneity is not only important for responsiveness, but also can 
induce new dynamical regimes. Using the mean-field models, we could predict a transition to a sparsely synchro-
nous collective oscillation regime, which was confirmed by network simulations. This type of diversity-induced 
oscillations reminds some aspects found in noise-induced transitions in dynamical systems54,55. Whether the 
effects of heterogeneity could be considered as analogous to the effect of noise (“quenched noise”) in neural 
networks is also an interesting direction for future studies.

Finally, we have found that the enhanced responsiveness enables activity to propagate much easier in large-
scale heterogeneous networks. The enhanced response not only applies to the stimulus, but also it applies to 
information flow through recurrent excitatory inputs. As a result, comparing heterogeneous to homogeneous 
networks, a given stimulus produces a larger local response, and in addition, this response also propagates to a 
larger spatial extent because the effect of recurrent excitatory inputs is also amplified by heterogeneity. Thus, we 
conclude that heterogeneous networks can provide activity propagation at a level much superior compared to 
a homogeneous system, and thus will necessarily better propagate information and make it available to larger 
brain areas.

Methods
Network model.  We examined networks of excitatory and inhibitory neurons connected through conduct-
ance based synapses. We used networks of N = 10, 000 neurons, 80% of excitatory ( NE = 0.8 N ) and 20% of 
inhibitory ( NI = 0.27 N ) neurons. The membrane potential Vi of each neuron evolves according to the Adaptive 
Exponential integrate and fire model (AdExp)56:

where Cm = 200 pF is the membrane capacitance, gL = 15 nS the leakage conductance, vth = 50 mV the effec-
tive threshold and � defines the action potential rise ( � = 0.5 mV for inhibitory neurons and � = 2 mV for 
excitatory neurons). The adaptation current wi increases of an amount b = 60 nS at each spike emitted by neuron 
i at times {tspi } and has an exponential decay with time scale τw = 500 ms. Only excitatory neurons have spike 
frequency adaptation, while for inhibitory neurons b = 0 . The current Iis is the current received by neuron i 
from other neurons in the network. We consider a random graph where each couple of neurons is connected 
with probability p = 0.05 . By calling {tspj } the ensemble of spiking times of neuron j we have, for an excitatory 
post-synaptic neuron i:

where EE,I is the reversal for excitatory ( EE = 0 mV) and inhibitory synapses ( EI = −80 mV), τs = 5 ms the 
synaptic decay time and QEE ( QEI ) is the interaction strength of excitatory (inhibitory) synapses to excitatory 
neurons. The same equations (with gEEi → gIEi  , gEIi → gIIi  , QEE → QIE and QEI → QII ) apply for inhibitory 

(1)CmV̇i = gL(E
i
L − Vi)+ gLe

Vi−vth
� + Iis − wi

(2)
τwẇi = −wi + b

∑

{t
sp
i }

δ(t − t
sp
i ),

(3)Iis = gEEi (Vi − EE)+ gEIi (Vi − EI )

(4)
τsġ

EE
i = −gEEi + QEE

∑

{t
sp
j }∈(E)

δ(t − t
sp
j )

(5)
τsġ

EI
i = −gEIi + QEI

∑
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j }∈(I)

δ(t − t
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post-synaptic neurons. We fix QEI = QII = 5 nS and QEE = QIE = 1.5 nS (we employed different values of QEE 
in Fig. 3 and in Fig. 4, see the relative caption).

Each neuron receives an external Poissonian train of excitatory spikes at a rate νext . The value of νext deter-
mines the amount of ongoing spontaneous activity in the network. In order to study the response to external 

stimuli we considered a time varying νext(t) of the form νext(t) = ν0 + Ae
−

(t−t0)
2

2T2  , where A is the input ampli-
tude, t0 the time when input is maximum and T = 50 ms measures the duration of the input. We have employed 
ν0 = 1.5 Hz in all the numerical simulations, apart from Figs. 2b and 3 (see Figure caption for details). In Fig. 1 
we employed t0 = 6 s, ν0 = 1.5 Hz and A = 1 Hz. The responsiveness R is estimated by computing the amount of 
spikes of excitatory neurons while the input is on (i.e. between t = t0 − 3T and t = t0 − 3T ) minus the baseline 
activity (average of excitatory spike rate for A = 0 ). Responsiveness R is estimated by averaging over 20 different 
repetitions of this procedure.

To model heterogeneity, we considered a Gaussian distribution of the resting potential EiL of inhibitory (excita-

tory) population N (EE,IL ,
∼
σ
2

E,I ) with average EE,IL  and standard deviation ∼σ E,I . We considered EEL = EIL = −65 
mV if not stated otherwise (e.g. we used different values of EIL in the inset of Fig. 1d and in Fig. 4). The re-scaled 
standard deviation σE,I =

∼
σ E,I/E

E,I
L  is the main parameter to quantify heterogeneity. The same definitions apply 

for heterogeneity in other parameters (see Supplementary Information for gL and Cm).

Mean field model.  In the homogeneous case a mean field model for this network has been recently 
developed37. By employing a Markovian approximation over a time scale τ = 15 ms and by considering a suf-
ficiently slow time scale for the dynamics of adaptation τw , mean field equations read:

where rE ( rI ) is excitatory (inhibitory) neurons population firing rate, W is excitatory neurons average spike fre-
quency adaptation, FI (νE , νI ) and FE(νE , νI ,W) are the transfer functions of inhibitory and excitatory neurons, 
respectively. They measure the stationary firing rate of one neuron when receiving an excitatory (inhibitory) 
Poissonian spike train at a rate νE ( νI).

In the case of heterogeneous inhibitory neurons, a parameter x, say neurons reversal potential EL , is distrib-
uted according to a probability density function P(x). In the limit of large networks we can decompose inhibitory 
neurons in classes, each one characterized by a parameter x and by its own transfer function FIx(rE + νext , rI ) . 
We indicate with rIx the firing rate of the class of neurons with parameter x. The whole population rate is 
rI =

∫

dxP(x)rIx . The equations are closed by a self consistency equation for the mean input received by one 
neuron and we need to replace Eq. (6) with

Notice that the model still stays three dimensional but keeps track of the distribution P(x) of heterogeneity. In 
the case P(x) = δ(x − x0) we recover the homogeneous model.

The same procedure applies for excitatory neurons. Nevertheless, in this case each class x is characterised by 
its own adaptation variable wx . For each class with parameter x we get:

In this case the population quantities can be written as W =
∫

P(x)wx and rE =
∫

P(x)rEx  . These equations can 
be solved by sampling P(x) and we found that a sampling of around 50 points gives an accurate precision. In our 
work we employ the mean field for heterogeneous excitatory neurons only in Fig. 1d, for which we employed a 
sampling of 50 points.

Nevertheless, it is possible to reduce the dimensionality of this model by making the hypothesis that wx 
is slow enough. The stationary solution is wx = brEx  . In order to follow the dynamics of adaptation we evolve 
the population variable W as τwẆ = −W + brE and estimate the adaptation of each class from the equation 
wx = WrEx /rE = (W/rE)F

E
x (rE + νext , rI ,wx) . In this way the model stays three dimensional. Preliminary results 

indicate that this is a good approximation for the population dynamics in the heterogeneous case.
Finally, the estimation of neuron transfer functions for the AdExp model FE/I (rE , rI ,W) is done through a 

semi-analytical fitting procedure37 (see Supplementary Information).

Spatially extended model.  To model large-scale networks, we considered a square lattice of length L = 20 
mm composed of M ×M nodes, we employed M = 100 in the simulations of Fig. 5. Each node is modeled as a 
mean field model. In the limit of large M the dynamics of each node at a location (x, y) follows:

(6)τ ṙI = FI (rE + νext , rI )− rI

(7)τ ṙE = FE(rE + νext , rI ,W)− rE

(8)τwẆ = −W + brE ,

(9)τ ṙI =

∫

dxP(x)FIx(rE + νext , rI )− rI .

(10)τ ṙEx = FEx (rE + νext , rI ,wx)− rE

(11)τwẇx = −wx + brEx .



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17611  | https://doi.org/10.1038/s41598-021-96745-2

www.nature.com/scientificreports/

where P(z) is the distribution of heterogeneity, i.e. a Gaussian distribution with average EIL and rescaled standard 
deviation σI , and νE(x, y) ( νI (x, y) ) is the excitatory (inhibitory) input incoming in (x, y) from the other lattice 
locations, i.e.

where d =
√

(x − x1)2 + (y − y1)2 is the distance between two points in the lattice and GE ( GI ) is the excitatory 
(inhibitory) connectivity in space. We consider a Gaussian connectivity in both directions with standard devia-
tion �E = 2 mm ( �I = 1 mm) for excitatory (inhibitory) connections. We considered an axonal conduction 
velocity vc = 0.3 m/s. We considered an external stimulation as a stationary input νinp(x, y, t):

with T = 50 ms, �inp = 1.5 mm , A = 1 Hz , t0 = 100 ms and x0 = y0 = 10 mm.
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