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Abstract

Gamma oscillations are widely seen in the awake and sleeping cerebral cortex, but the

exact role of these oscillations is still debated. Here, we used biophysical models to examine

how Gamma oscillations may participate to the processing of afferent stimuli. We con-

structed conductance-based network models of Gamma oscillations, based on different cell

types found in cerebral cortex. The models were adjusted to extracellular unit recordings in

humans, where Gamma oscillations always coexist with the asynchronous firing mode. We

considered three different mechanisms to generate Gamma, first a mechanism based on

the interaction between pyramidal neurons and interneurons (PING), second a mechanism

in which Gamma is generated by interneuron networks (ING) and third, a mechanism which

relies on Gamma oscillations generated by pacemaker chattering neurons (CHING). We

find that all three mechanisms generate features consistent with human recordings, but that

the ING mechanism is most consistent with the firing rate change inside Gamma bursts

seen in the human data. We next evaluated the responsiveness and resonant properties of

these networks, contrasting Gamma oscillations with the asynchronous mode. We find that

for both slowly-varying stimuli and precisely-timed stimuli, the responsiveness is generally

lower during Gamma compared to asynchronous states, while resonant properties are

similar around the Gamma band. We could not find conditions where Gamma oscillations

were more responsive. We therefore predict that asynchronous states provide the highest

responsiveness to external stimuli, while Gamma oscillations tend to overall diminish

responsiveness.

Author summary

In the awake and attentive brain, the activity of neurons is typically asynchronous and

irregular. It also occasionally displays oscillations in the Gamma frequency range (30–90

Hz), which are believed to be involved in information processing. Here, we use computa-

tional models to investigate how brain circuits generate oscillations in a manner
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consistent with microelectrode recordings in humans. We then study how these networks

respond to external input, comparing asynchronous and oscillatory states. This is tested

according to several paradigms, an integrative mode, where slowly varying inputs are pro-

gressively integrated, a coincidence detection mode, where brief inputs are processed

according to the phase of the oscillations, and a resonance mode where the network is

probed with oscillatory inputs. Surprisingly, we find that in all cases, the presence of

Gamma oscillations tends to diminish the responsiveness to external inputs. We discuss

possible implications of this responsiveness decrease on information processing and pro-

pose new directions for further exploration.

Introduction

Gamma oscillations appear in many brain states and brain regions [1] and are detectable

mostly from the local field potential (LFP) as oscillations in the 30–90 Hz frequency range.

During sensory responses, oscillations in this frequency range were initially proposed to serve

as a mechanism for coordination of neural activity among cells coding for different aspects of

the same stimulus [2–5]. Strengthening of synaptic input due to temporal summation led to

the hypothesis that Gamma synchrony was necessary to effectively transmit specific sets of

information across cortical networks in the very noisy conditions in which the brain operates.

This concept was later expanded by proposing that synchronous Gamma also engages inhibi-

tion in target networks. Phase-locked inhibition creates strong suppression around the excit-

atory drive and creates windows of low and high neuronal excitability. Such observations led

to hypotheses that Gamma oscillations are important for information processing and coding.

The most popular theories are the Binding-by-synchronization Hypothesis [4, 5], the Phase

Coding Theory [6, 7], the Communication Through Coherence Theory [8, 9] and Communi-

cation through Resonance Theory [10].

An alternative hypothesis, instead of relying on oscillations for efficient cortical communi-

cation, posits that desynchronized states are optimal for the transfer of signals between cortical

networks [11, 12]. Desynchronized states, called Asynchronous-Irregular (AI) [13] because of

its features, are characterized in cortical cells in vivo by irregular firing with very weak correla-

tions and stationary global activity [14–18]. This type of activity can be modeled by networks

with balanced excitatory and inhibitory inputs [19].

In the present work, we aim at testing these two discrepant points of view using computa-

tional models. We take advantage of previously published electrophysilogical data, measured

extracellularly in human temporal cortex [20, 21], to characterize the behavior of individual

neurons during Gamma oscillations in resting awake states, and to compare such experimental

features to spiking neural networks generating Gamma. We exploit different network struc-

tures to investigate three well-known mechanisms of Gamma generation [22–27]: either by the

exclusive interaction between inhibitory neurons [Interneuron Gamma (ING)] or by the inter-

action of inhibitory and excitatory neurons via Pyramidal-Interneuron Gamma (PING) or via

Chattering Induced Gamma (CHING). First we compare to what degree each mechanism can

reproduce the observed experimental features of human Gamma oscillations and what are the

specificities of each mechanism, in the way neurons behave during Gamma. Subsequently,

we examine network responsiveness due to three types of stimulus: Gaussian slowly-varying

inputs (integration mode), precisely-timed Gaussian inputs (coincidence detection mode) and a

sinusoidal varying Poissonian input (resonance).
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Materials and methods

Neuron and network models

Each of the three networks developed in this work uses the Adaptive Exponential Integrate-
And-Fire Model (Adex) [28] for its neural units. In this model, each neuron i is described by its

membrane potential Vi, which evolves according to the following equations:

C
dViðtÞ
dt

¼ � gLðVi � ELÞ þ gLDexp
ðViðtÞ � VthÞ

D

� �

� wiðtÞ � ISyniðtÞ

ISyniðtÞ ¼ gEiðtÞðViðtÞ � EEÞ þ gIiðtÞðViðtÞ � EIÞ

tE;I
dgE;IiðtÞ
dt

¼ � gE;IiðtÞ þ QE;Ii

X

k

dðt � tkÞ

twi
dwiðtÞ
dt

¼ aðViðtÞ � ELÞ � wiðtÞ þ b
X

j

dðt � tjÞ

ð1Þ

where C is the membrane capacitance, gL is the leakage conductance, EL is the leaky membrane

potential, Vth is the effective threshold and Δ is the threshold slope factor. The synaptic current

(ISyni (t)) received from other neurons to neuron i is taken into account as conductance based:

every time a presynaptic neuron spikes at time tk, the excitatory (gEi) or the inhibitory (gIi) syn-

aptic conductance increase by a discrete amount QE or QI (excitatory or inhibitory synaptic

strength), depending on the nature of the presynaptic neuron. Synaptic conductances subse-

quently decay exponentially with a time constant τE or τI. EE and EI are the reversal potential

of excitatory (EE) and inhibitory (EI) synapses. The ∑k runs over all the presynaptic excitatory

or inhibitory neurons spike times. During the simulations, the equation characterizing the

membrane potential Vi is numerically integrated until a spike is generated. Formally this hap-

pens when Vi grows rapidly toward infinity. In practice, the spiking time is defined as the

moment in which Vi reaches a certain threshold (Vth). When Vi = Vth the membrane potential

is reset to Vrest, which is kept constant until the end of the refractory period Tref. After the

refractory period the equations start being integrated again. The adaptation current is

described by the variable wi. It increases by an amount b every time neuron i emits a spike at

times tj and decays exponentially with time scale τw. The parameter a indicates the subthresh-

old adaptation.

Three types of cells were used in our models: Regular Spiking Cells (RS), Chattering Cells

(Ch) and Fast Spiking Cells (FS). The cell specific activities are displayed in Fig 1 and their

parameters are indicated in Table 1.

Each of the three developed networks are composed of N = 25000 neurons, 80% excitatory

and 20% of inhibitory. All neurons are connected randomly. Additionally to recurrent connec-

tions, each neuron receive an external drive (noise). This noise was implemented as NExt =

20000 independent and identically distributed excitatory Poissonian spike trains with a spiking

frequency μExt, being sent to the network with a 2% probability of connection. These spike

trains were computed inside of the synaptic current term Isyn(t), by means of a discontinuous

increase of the excitatory synaptic conductance gE by an amount QExt (at every spike time).

This type of implementation adds to the network a low degree of correlation, since some neu-

rons share the same drive. Nevertheless, this extra correlation does not affect our results,

which kept being qualitatively the same when a drive with no correlations was applied. The
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patterns of connection and neuron type composition of each network model, as well as the

specific values of Poissonian stimulation (μExt and QExt), are described bellow.

• PING Network: It is composed of 25000 Adex neurons (20000 excitatory Regular Spiking

and 5000 inhibitory Fast Spiking cells). All neurons are connected randomly with a probabil-

ity of connection of 2%. All synapses are delayed by a time delay of 1.5 ms. The synaptic

excitatory (inhibitory) time scales are τE = 1.5 ms (τI = 7.5 ms), with synaptic strengths of

Fig 1. Neuronal response to an external current. A: External drive fluctuation. External current, in each neuron, varied from 0 to 0.5 nA

in a linear way, was kept constant for 500 ms, subsequently decreasing to 0 nA in a linear way. B: Isolated RS cell in response to the

external drive presented in A. C: Isolated FS cell in response to the external drive presented in A. D: Activity of one Ch cell, in a network

exclusively composed of 1000 Ch cells connected randomly with a probability of 2%.

https://doi.org/10.1371/journal.pcbi.1009416.g001
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QE = 5 nS (QI = 3.34 nS). Synaptic time scales were chosen accordingly to the parameter

search indicated in S1 Fig. For Gamma activity, the network was stimulated with an external

noise of μExt = 3 Hz and QExt = 4 nS. For an activity similar to an Asynchronous and Irregu-

lar activity (AI-like), the network was stimulated with an external noise of μExt = 2 Hz and

QExt = 4 nS.

• Asynchronous and Irregular (AI) Network: The AI Network was used in this work as one

of the building blocks for the ING and the CHING Network. It is composed of 25000 neu-

rons (20000 excitatory Regular Spiking and 5000 inhibitory Fast Spiking). All neurons are

connected randomly with a probability of connection of 2%. All synapses have synaptic

strengths of QE = 1 nS or QI = 5 nS, and are delayed by a time delay of 1.5 ms. This network,

independently of the strength of the the external noise, can not generate Gamma rhythms.

This is the case because the chosen synaptic excitatory and inhibitory time scales (τE = τI = 5

ms) are in a region of the parameter space in which the regime is asynchronous and irregu-

lar. See S1 Fig. Because of this feature, the AI Network was used as a control to study network

responsiveness (see Results section).

• Gamma Network: The Gamma Network was used in this work as one of the building blocks

for the ING Network. It is composed of 1000 inhibitory Fast Spiking neurons, highly con-

nected between each other. All neurons are connected randomly with a probability of con-

nection of 60%. All synapses have synaptic strengths of QI = 5 nS and synaptic time constant

of τI = 5 ms, and are delayed by a time delay of 1.5 ms. This network is capable of generating

oscillations by its own due to the exclusive presence of inhibitory neurons excited by an

external drive [29, 30]. Low oscillation frequencies in the Gamma range (�70 Hz) are possi-

ble thanks to the high connectivity patterns used (60%). S2 Fig displays the parameter space

of network connectivity vs. inhibitory synaptic strengths for this network. The parameters

chosen in our simulations (p = 60% and QI = 5 nS) are indicated.

• ING Network: The ING Network is constructed as a mixture of AI network with the Gamma
Network. It is composed of 25000 neurons: 20000 RS and 4000 FS from the AI network plus

1000 FS neurons from the Gamma Network. The Fast Spiking neurons in the original AI
network and the ones in the Gamma Network share all the same parameters of FS cells in

Table 1. The only difference among them is their pattern of connectivity. To make it clear,

we call as FS2, the FS neurons that were part of the Gamma Network, and we keep calling as

FS the ones that were part of the AI Network. In the ING Network, FS2 cells send and receive

Table 1. Specific neuron model parameters.

Parameter RS FS Ch

Vth -40 mV -47.5 mV -47.5 mV

Δ 2 mV 0.5 mV 0.5 mV

Tref 5 ms 5 ms 1 ms

τw 500 ms 500 ms 50 ms

a 4 nS 0 nS 80 nS

b 20 pA 0 pA 150 pS

C 150 pF 150 pF 150 pF

gL 10 nS 10 nS 10 nS

EL -65 mV -65 mV -58 mV

EE 0 mV 0 mV 0 mV

EI −80 mV −80 mV −80 mV

Vrest -65 mV -65 mV -65 mV

https://doi.org/10.1371/journal.pcbi.1009416.t001
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random connections to RS neurons with a probability of 15%, FS2 cells send random con-

nections to FS neurons with a probability of 15% while FS cells send random connections to

FS2 neurons with a probability of 3%. This combination of the Gamma network with the AI
Network allows the oscillation frequency to slow down further, reaching� 55 Hz. All synap-

ses have synaptic strengths of QE = 1 nS or QI = 5 nS and synaptic time scales of τE = τI = 5

ms. Synapses are delayed by a time of 1.5 ms. For Gamma activity the network was stimu-

lated with an external noise of μExt = 3 Hz, while for Asynchronous and Irregular activity,

the network was stimulated with an external noise of μExt = 2 Hz. The external noise used

had a synaptic strength of QExt = 0.9 nS.

• CHING Network: The CHING Network is constructed the same way as the AI network, with

the difference that 5% of the RS cells were replaced by Chattering Cells (Ch). This way, the

CHING Network is composed of 25000 neurons: 19000 RS, 1000 Ch and 5000 FS. All cells in

the network are randomly connected to each other with a probability of 2%. All synapses

have synaptic time scales of τE = τI = 5 ms and are delayed by a time delay of 1.5 ms. Excit-

atory synapses have synaptic strengths of QE = 1 nS, while inhibitory synapses from FS cells

to Ch or to RS have synaptic strengths of QI = 7 nS. Synapses from FS to FS have synaptic

strengths of QI = 5 nS. The network receives external noise with synaptic strength of QExt = 1

nS in excitatory cells (RS and Ch) and QExt = 0.75 nS in FS cells. For Gamma, external noise

of μExt = 2 was used, while for Asynchronous and Irregular activity, μExt = 1 Hz.

Simulations

All neural networks were constructed using Brian2 simulator [31]. All equations were numeri-

cally integrated using Euler Methods and dt = 0.1 ms as integration time step. The codes for

each one of the three developed networks are available at ModelDB platform: http://modeldb.

yale.edu/267039.

LFP model

To model the LFP generated by each of the three developed networks, we used a recent method

developed by [32]. This approach calculates the contribution of individual neurons to the LFP

by means of the convolution of individual neuron spike trains (generated by the networks)

with a phenomenological Kernel K, which had its parameters fitted from unitary LFPs (the

LFP generated by a single axon, uLFP) measured experimentally [32]. Each neuron spike train

is convoluted with a particular Kernel Kp
that depends on the particular neuron position ~xp in

a 2-D space.

Kp
ð~x; tÞ ¼ Að~xÞexp½� ðt � tpickÞ

2
=ð2s2Þ�

tpick ¼ t0 þ d þ j~x� ~xp j=va

Að~xÞ ¼ A0exp½� j~x� ~xp j=l�

ð2Þ

in which σ is the standard deviation in time, tpick is the peak time of the uLFP, t0 is the time of

the spike of a particular cell p, d is a constant delay, va is the axonal speed, and j~x � ~xp j is the

distance between the position of particular cell (~xp) and the position of the electrode (~x). Að~xÞ
gives the space-dependent amplitude, in which A0 is the maximal amplitude, and λ is the

space constant of the decay. These parameters were estimated separately for excitatory and
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inhibitory contributions (Kp
E and Kp

I ) [32, 33]. The LFP, at a particular electrode position~x, is

given by the sum of all individual neuron contributions:

LFPð~x; tÞ ¼ ð3Þ

X

p

Z

Kp
Eð~x; t � tÞ

X

j

dðt � tjpÞ

 !

dtþ
X

p

Z

Kp
I ð~x; t � tÞ

X

j

dðt � tjpÞ

 !

dt ð4Þ

In which ∑p runs over neurons p, and ∑j runs over all spike times of neuron p. To be able to

apply this method to our simulations (which don’t presume any neuronal localization in

space), we randomly displaced the network neurons in 2-D grid, assuming that the electrode

was displaced on its center and was measuring the LFP in the same layer as neuronal soma.

The program code of the kernel method is available in ModelDB (http://modeldb.yale.edu/

266508), using python 3 or the hoc language of NEURON.

Detection of Gamma rhythms and Gamma phase

In both, experimental and simulated signals, Gamma rhythms were detected by means of the

Hilbert transform of the band-filtered LFP. The identification of Gamma bursts was done sepa-

rately for each electrode. We considered as Gamma bursts periods in which the amplitude of

Hilbert Transform envelope (absolute value) differed from the mean, by at least 2 standard devi-

ations for the experimental data, and by at least 1 standard deviation for the numerical ones, for

a minimum duration of 3 Gamma cycles. This criteria were not enough to identify all Gamma

bursts (some Gamma bursts were ignored). On the other hand, no false positives were included

in the analysis. All the Gamma bursts automatically identified by the algorithm were individu-

ally confirmed visually. The oscillation phase was acquired using the angle of the imaginary

part of the transform. The LFP was band-pass filtered in the band of 30–50 Hz (unless indicated

otherwise). To band-pass the LFP signals, we used a FIR (Finite Impulse Response) filter using

the Kaiser window method with a 60 dB stop-band attenuation and a 5Hz width from pass to

stop transition [34]. To implement the filter we used the following functions from the Python-

based ecosystem Scipy: signal.kaiserord, signal.lfilter and signal.firwin [35].

Spike-LFP phase-locking

Every time a Gamma period was identified, in both experimental and simulated signals, the

spiking times of each neuron was stored and compared to the Gamma rhythm phase. This

information allowed the construction of the phase distribution of each neuron. For the experi-

mental data, considering that the identification of Gamma bursts was done separately for each

electrode, neurons measured in particular electrode, had their phases and firing rates analyzed

exclusively with respect to the rhythm measured in this electrode. Neuron phases were calcu-

lated from -π to π. In this way neurons with negative phases should be interpreted as spiking

preferentially before than neurons with positive phases. The phase distribution of each neuron

was tested for circular uniformity using a Bonferroni-corrected Rayleigh test [36, 37]. A neuron

was considered phase-locked if we could reject circular uniformity at P< 0.01. See S3 Fig. Neu-

rons that spiked less then 5 times inside Gamma bursts, or neurons whose electrode measured

less then 1 second of Gamma, in the respective data segment, were classified as inconclusive.

Firing rate change

The average firing rate of each neuron outside Gamma bursts (fout) was computed based in the

total time, excluding the activity inside Gamma bursts and their duration. In accordance, the
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average firing rate inside Gamma bursts (fγ) was calculated based on the total Gamma duration

and the activity occurring exclusively inside Gamma bursts. A neuron was considered to

increase its firing significantly if the observed number of spikes in the measured time was

higher than the percent point function of a 95% Interval of Confidence of a Poissonian distribu-

tion with average firing rate fout. Cells that had firing rates smaller then 0.1 Hz or cells whose

electrode measured less then 1 second of Gamma bursts, in the respective data segment, were

classified as inconclusive. See S4 Fig.

Responsiveness

The level of responsiveness (R) of a network, due to a stimulus (S) in a time window of duration

T, is defined as the difference between the total number of spikes generated by the whole net-

work due to a stimulus (NS
spikes) and the total number of spikes generated in the absence of the

stimulus (Nspikes), normalized by the network size (total number of neurons Nn) and the dura-

tion of the time window T.

R ¼
NS
spikes � Nspikes

TNn

ð5Þ

Phase-dependent responsiveness

The Phase-dependent responsiveness of a network R(θ), in a time window of duration T, due to

a stimulus S presented to the network in a particular phase θ of the Gamma cycle, is defined as

the difference between the total number of spikes generated by the whole network due to a

stimulus at the θ phase, NS
spikesðyÞ, and the total number of spikes generated in the absence of

the stimulus at the θ phase, Nspikes(θ), normalized by the network size (total number of neurons

Nn) and the time window T.

RðyÞ ¼
NS
spikesðyÞ � NspikesðyÞ

TNn

ð6Þ

Human recordings

In one epileptic patient with intractable seizures, 10x10 Neuroprobe silicon multielectrode

arrays (400-μm inter-electrode separation, 1 mm electrode length, Blackrock Microsystems)

were implanted in the middle temporal gyrus (layers II/III). Electrodes were implanted in

regions expected to be removed, and after the monitoring session, the implant area was

excised. The patient consented to the procedure, which was approved by the Massachusetts

General Hospital Institutional Review Board in accordance with the ethical standards of the

Declaration of Helsinki. This data set have already been published previously [20, 21]. Neurons

could be classified through clustering based on the spike shape and functional interactions

(determined using cross-correlograms) [20, 38] as Regular Spiking Cell (RS), putative excit-

atory, and Fast Spiking Cells (FS), putative inhibitory. From 81 electrodes, 91 neurons could

be detected: 23 FS and 68 RS.

Results

We first analyze Gamma oscillations from human recordings, then examine network models

of Gamma oscillations and compare them to the experimental data. Finally, we examine the
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responsiveness and resonant properties of these networks, comparing Gamma and asynchro-

nous states.

Human recordings analysis

In this paper, aiming to constrain our computational models to observed experimental fea-

tures, we extend the human data analysis performed in [20, 21], focusing on awake states. The

data was acquired extracellularly in patients suffering of intractable epilepsy, who had multi-

electrode arrays implanted during therapeutic procedures. The arrays registered simulta-

neously local field potential (LFP) and unit activity. We considered here one patient for which

the recording was very stable, and in which several periods of wakefulness could be analyzed.

In each electrode, Gamma rhythms were identified and neural activity was characterized

with respect to the Gamma cycles. Fig 2A illustrates a specific instant in which Gamma bursts

were observed in most of the electrodes (spiking activity and the respective electrode band-fil-

tered LFP are shown). Gamma rhythms were determined through the Hilbert transform of the

filtered LFP (30–50 Hz). Fig 2B and 2C give an example of how Gamma is detected and how

neural phase with respect to the oscillation is extracted (see Detection of Gamma rhythms and
Gamma phase in Materials and methods Section). The data were acquired during the night.

Five awake periods could be recorded, having a mean duration of 27 minutes, containing on

average 13 seconds of Gamma (Fig 2D). During these periods the patient was in a resting

awake condition.

In accordance with other studies, the spiking activity during Gamma bursts was observed

to be very irregular and close to a Poissonian process, with a spiking frequency much smaller

than the population frequency [21, 39–41]. Moreover, conformable to [21], on average, only

4% of RS cells and 17% of FS cells were Phase-Locked (Fig 2E), with RS cells having a phase

preference later in the cycle than the FS cells (see S5 Fig). Furthermore, by measuring the firing

rate change of each cell inside and outside Gamma bursts (Fig 2F), we encountered on average

47% of FS cells that increased their firing inside Gamma bursts, while only 17% of RS cells did.

These observations suggest that Gamma oscillations modulate spiking activity in two manners:

by means of firing rate increase and by defining time windows were some neurons are more

likely to spike (phase-locking).

Contrary to the intuition that all neurons in a network generating Gamma would be partici-
pating to the rhythm, this analysis indicates that, only a small percentage of neurons has its

activity modulated by the oscillation (either by phase-locking or by firing rate increase). We

call this group of neurons as Gamma participating cells.

To better characterize the non-participation to Gamma rhythms, we followed each cell in

each of the 5 waking periods present in the recordings, searching for behavioral changes. We

observed that in different data segments, different groups of neurons were identified to partici-

pate to Gamma, indicating that the group of Gamma participating cells varies with time (see

S6 Fig). Furthermore, cells that were classified as phase-locked in different data segments, had

their preferred phase changed from one recording to the other (see cells 65 and 22 in S5 Fig).

We called this feature as dynamical phase preference. Fig 3 indicates the individual cell behavior
consistency, that is, how frequently a cell keeps being identified to a certain behavior: either

being phase-locked or to have its firing rate changed inside Gamma bursts in a particular data

segment. Stacked bars of Fig 3A and 3B indicate a color-coded behavior distribution of indi-

vidual neurons, inside of the 5 data segments, with respect to firing rate change and phase-

locking respectively. Neurons are ordered in a way in which inhibitory cells are displayed in

the beginning. Red neuron indexes stand for FS cells and green neuron indexes stand for RS

cells. Fig 3C and 3D depict the distribution among all recorded neurons of each behavior (C:
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Firing Rate Increase, D: Phase-Locking). A behavior consistency of zero denotes that the indi-

cated percentage of neurons never presented that behavior, while a behavior consistency of 5

denotes that the indicated percentage of neurons presented that behavior in all 5 data seg-

ments. FS cells tended to participate of Gamma bursts with higher consistency than RS cells.

Fig 2. Human electrophysiological data. A: Simultaneously recorded LFP and multi-units activity. The Filtered LFP (30–50 Hz) of the 81 electrodes

are shown together with the spiking times of 91 neurons. Some neurons were recorded by the same electrode, which had its LFP duplicated in the

figure. The identification of Gamma bursts was done separately for each electrode. This way, neurons measured in a particular electrode, had their

phases and firing rates analyzed exclusively with respect to the rhythm measured in its respective electrode. Spikes of Fast Spiking (FS) neurons,

presumably inhibitory, are shown in red, and spikes from Regular Spiking (RS) neurons, presumably excitatory, are shown in green. B: Gamma periods

detection. Raw LFP (black), band-pass filtered LFP (yellow) and Hilbert Transform Envelope (red) are shown. Gamma bursts were detected by means

of the deviation from the average of the Hilbert Transform envelope (dashed red line) of at least 2 SDs (dotted red line), with a minimum duration of 3

Gamma cycles. The gray shaded region indicates one example of identified Gamma burst. C: Oscillation Phase extraction. The oscillation phases were

obtained by the angle of the imaginary part of the Hilbert Transform. The phase distributions of each neuron were computed based on the oscillation

phases where each neuron spiked. D: Data organization. Five awake periods could be recorded during one night. Each period had a different total time

duration (yellow bars in minutes) and a different average duration of total Gamma occurrences (orange bars in seconds). Since each electrode was

analyzed individually, the average indicated in the bars is the average among all the electrodes in the respective segment. E: Percentage of neurons

identified as phase-locked in each data segment. The average amount of Phase-locked neurons in the five data segments was of 4% in RS and 17% in FS.

RS neurons are shown in green and FS neuron in red. F: Percentage of neurons that increased their firing during Gamma, in each data segment. The

average amount neurons in the five data segments which increased their firing during Gamma was of 17% in RS and 47% in FS. Same color scheme as

in E.

https://doi.org/10.1371/journal.pcbi.1009416.g002
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While 34.8% of FS increased their firing inside Gamma bursts in at least 4 of the 5 data seg-

ments, only 4.4% of RS cells did the same. Moreover 8.7% of FS cells kept being phase-locked

in at least 4 data segments, in comparison to only 1.5% in RS population (see S7 Fig). Likewise,

we call the reader’s attention to the significant number of cells that never increase their firing

rate inside Gamma bursts (Fig 3C,� 40% of the recorded neurons) and to the significant

number of cells that never presented phase-locking (Fig 3D,� 80% of the recorded neurons).

The behavior of individual cells during Gamma is quantified in S8 Fig.

Furthermore, another important aspect to be acknowledge is a possible correlation between

high firing rate cells (inside Gamma bursts) and those cells that show higher phase locking.

Nonetheless, the human data set used in this study is too small to be able to arrive to any con-

clusion. In our analysis cells with high firing rates were observed to be not phase-locked (or

phase-locked), the same way as cells with lower firing rates were observed to phase-locked

(or not phase-locked). See S9 Fig. The same is true if we try do drive conclusions about the co-

occurrences of firing rate increase and phase-locking (see S6 Fig).

In summary our analysis shows that, during Gamma bursts, only a small percentage of the

recorded neurons participate of the rhythm. This participation takes place in two ways: phase-

locking and/or firing rate increase. FS cells presented significant higher level of phase-locking

and firing rate increase in comparison to RS cells. Likewise the level of consistency behavior

were also more marked in FS cells than RS cells. Our analysis further indicates that, the group

of Gamma participating cells changes with time as well as their phase-preference.

Network models of Gamma oscillations

Gamma oscillations have been extensively modeled in the literature with different neuronal

models and networks structures [23, 42]. The low and irregular firing rates observed during

Gamma oscillations have been reproduced in recurrent networks of spiking neurons [13, 30,

43–45] by means of strong recurrent inhibition and strong noise (due to external inputs and/

or due to synaptic disorder). Networks displaying this type of activity are known to be in the

Fig 3. Individual neural behavior consistency on human recordings. Stacked bars indicating the color-coded distribution, inside of the 5 data

segments, of individual neural behavior relative to firing rate change (A) and phase-locking (B). Neurons are ordered in a way in which inhibitory

neurons are displayed in the beginning of the graph. Red neuron indexes stand for FS cells and green neuron indexes stand for RS cells. Items C andD
indicate respectively the statistics of the consistency indexes among the recorded neurons for Firing Rate Increase and Phase-Locking.

https://doi.org/10.1371/journal.pcbi.1009416.g003
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firing rate regime [30]; in contrast to models fully synchronized, in which neurons behave as

periodic oscillators. In this last regime, known as an spike-to-spike regime, neurons spike at

every cycle (or once every two cycles), with an average firing rate close to the frequency of

oscillatory network activity [46–54]

It is well established, experimentally and theoretically, that inhibition plays a crucial role in

generating Gamma rhythms [21, 23, 29, 42, 55–59]. Nonetheless, it is still controversial [22–

25] whether Gamma oscillations are generated by the exclusively interaction among inhibitory

neurons [Interneuron Gamma (ING)] or via the interaction of inhibitory and excitatory neu-

rons [Pyramidal-Interneuron Gamma (PING)]. Furthermore, a third mechanism, less explored

in the literature, relies on the presence of pacemaker excitatory cells known as Chattering neu-
rons [26, 27]. We named this third mechanism as Chattering Induced Gamma (CHING).

To compare to what degree each of three previously mentioned mechanisms can reproduce

the observed experimental features, and what are the consequences of each mechanism, we

constructed three neural networks working in the firing rate regime, adapted to generate

Gamma by means of ING, PING or CHING. Network and neuronal parameters were chosen

in a way to allow each model to reproduce experimental features as well as possible, with physi-

ologically plausible firing rates and membrane conductance distributions (see S10 and S11

Figs). We call the reader’s attention to the fact that, while networks with a structure similar to

our PING Network have been largely used in the literature, the structures of ING and CHING
Networks were developed exclusively for this study.

Like in previous works [60], all three networks are capable of generating spontaneous

Gamma bursts. These Gamma bursts are controlled by fluctuations of recurrent drive gener-

ated by the network dynamics, which for this reason occur irregularly and in an unpredictable

fashion. However, more predictable Gamma bursts can be obtained by increasing the external

drive (in all three networks). Fig 4 shows the behavior of the three networks when a fluctuation

on the Poissonian input generates Gamma, mimicking the Gamma bursts observed experi-

mentally. Note however that, outside of Gamma bursts (low input amplitude), the networks do

not necessarily display a pure AI state: all three networks display reminiscent low-amplitude

oscillations. In all cases, the firing dynamics remained irregular and with low synchrony, so we

called them AI-like states.
We next performed on the network models an equivalent analysis as in the human data

recordings. Each cell was followed in 5 different simulations containing on average 13 seconds

of Gamma bursts (same duration as in the experimental recordings, mimicking the five experi-

mental data segments) and statistical tests to identify phase-locking and firing rate changes

were performed. Fig 5A, 5B and 5C display respectively the quantification of behavior consis-

tency for PING, ING and CHINGNetworks. Accordingly to the unit recordings [21], the cells

were generally more depolarized and increased their firing during Gamma. On the other

hand, within the three models, only the ING Network (Fig 5Bc) is capable of describing the

appropriate amount of neurons that increase their firing in different data segments, during

Gamma. The PING and CHING networks predict an over-estimation of this number. The

presence of a sub-population of highly connected inhibitory neurons, capable of generating

Gamma rhythms by their own (see Neuron and Network Models: Gamma Network in Materials

and methods Section), allows the ING Network to provide a compensation for external excit-

atory fluctuations: whenever there is an augmentation of input in the network (generating

Gamma), there is in addition a concomitant augmentation of inhibition thanks to the FS2

population.

In comparison to the experimental data analysis performed previously, all three models are

capable of correctly describing the frequency of re-occurrence of phase-locking inside of a

group of neurons in different data segments. That is, all three models predict the same the
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same intensity of phase-locking consistency as the one observed on the human recordings (Fig

3D). On the other hand, regardless of the mechanisms of Gamma generation, all networks pre-

dict an over estimated phase-locking level (total number of phase-locked neurons per data seg-

ment) (see S12 Fig). With respect to the human data set, the PING and ING networks predict a

comparable level of phase-locking in the excitatory population but an exaggerated level in the

inhibitory population. In contrast, the CHING Network predicts a comparable level of phase-

locking in the inhibitory population but an exaggerated level in the excitatory one. Side by

side, the CHING Network is the one that still captures the best the level of phase-locking in

both populations (excitatory and inhibitory).

The right prediction of phase-locking consistency can be explained by the type of activity

regime in which each network works: the fluctuation-driven regime. Since this regime allows

neurons to spike with low firing rates in an irregular fashion, participating of the global

Gamma oscillation only in certain cycles due to the subthreshold randomness. Nonetheless,

the over-estimation of phase-locking level, indicates that the simple fact of being in the fluctua-
tion-driven regime is not enough to capture all levels of description. We hypothesize that the

network structure play a key role in the way neurons behave during oscillations. Fig 5 illus-

trates how different network structures (different connectivities in the ING Network or differ-

ent neuron types in the CHING Network) influence network activity.

Fig 4. Neural activity of different Gamma generation mechanisms networks. PING Network (left), ING Network (middle) and CHING Network
(right). A: Scheme of each network structure and pattern of connectivity. B: External Poissonian noise fluctuation generating Gamma bursts. C: Raster

plot of network activity inside and outside Gamma bursts. Only 1000 neurons of each cell type are shown. D: Membrane potential activity of randomly

picked neurons of each type. Pay attention to the well defined subthreshold oscillation exclusively present in the ING Network. E: Simulated LFP (raw—

in black) and its filtered version (yellow).

https://doi.org/10.1371/journal.pcbi.1009416.g004
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In the presented human recordings, inhibitory neurons tended to spike earlier in the cycle

than excitatory neurons. Fig 6 shows the phase preference with respect to the Gamma cycle of

all the neurons considered phase-locked in the human data recordings (Fig 6A) and in each of

the three developed networks (Fig 6B, 6C and 6D). The ING and CHING networks predict the

Fig 5. Individual neural behavior consistency in computational models. A: PING Network. B: ING Network. C: CHING Network. Same

analysis and color codes used in Fig 3. To mimic the five experimental independent data segments in the Human data recordings (Fig 3) on

the network models, five simulations (per model) were performed, containing on average the same amount of total Gamma bursts duration

as in the experimental data (13 seconds). In addition, to match the number of recorded neurons in the experimental data, in the models a

subset of 100 randomly picked neurons were selected in each case.

https://doi.org/10.1371/journal.pcbi.1009416.g005
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same relationship as observed in the human recordings (inhibition preceding excitation) while

the PING Network predicts the opposite. Moreover, in the same way as the human data set (S5

Fig), cells that were classified as phase-locked, have their preferred phase changed from one

simulation to other (dynamical phase preference). We argue that this feature is also a conse-

quence of the fluctuation-driven regime.
The phase relationship between excitation and inhibition is an important aspect to be dis-

cussed, since it has been suggested to be a marker of the type of Gamma generation mecha-

nism [25]. It has been shown theoretically by [45] that, in models composed of conductance

based neurons (neurons that include non-linear spike generation mechanisms on their equa-

tions) the spiking order of excitatory and inhibitory populations depends exclusively on sin-

gle-cell characteristics. Based on their analysis, when the IAMPA/IGABA ratio is the same in

excitatory and inhibitory neurons, excitatory cells tend to follow the inhibitory ones in most of

the physiologically plausible parameter space. On the other hand, when the ratio of excitation

to inhibition is weaker in excitatory cells than in inhibitory ones, excitatory cells tend to pre-

cede inhibitory neurons [30, 45]. In our simulations, the only network in which this theory

can be directly applied (because of the network structure) is the PING Network, in which the

IAMPA/IGABA ratio in excitatory cells is weaker than in inhibitory cells. Interesting discussions

about neural properties and population phase-differences can also be found on [61, 62].

Concluding this section, we showed that network models working in the firing rate regime,
regardless of the mechanism of Gamma generation, can reproduce qualitatively some of the

Fig 6. Phase preference of phase-locked cells. A: Human Data (Data segment 2). B: PING NetworkData. C: ING NetworkData. D: CHING Network
Data. The preferred phases of each phase-locked cell are displayed in polar graph representation. Note that, since phases were calculated from −π to π
(see Spike-LFP phase-locking in Materials and methods Section), these polar graphs should be interpreted clockwise with time. The vector size gives a

measure of the phase distribution of each cell. Big amplitude vectors indicate very concentrated distributions while small amplitude vectors indicate less

concentrated ones (see S3 Fig). The color of each vector encodes the type of the cell of whom it represents the phase: red (FS), dark red (FS2), green (RS)

and dark green (Ch). Cell number IDs are indicated. Dark colored vectors indicate the average phase among each neuron type and Δθ the phase

difference among them. Data segment 2 presented 43 minutes of recordings, containing 14 seconds of Gamma activity.

https://doi.org/10.1371/journal.pcbi.1009416.g006
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most important features of experimental neural activity during Gamma: phase-locking consis-

tency and dynamical phase preference. On the other hand, all models predict an overestima-

tion of the phase-locking levels. Additionally, only the ING Networkmodel was capable of

describing a reasonable level of firing rate increase inside Gamma bursts, as found in the

human recordings. We advocate that just the simple fact of being in the fluctuation-driven

regime is not enough to capture all levels of description of Gamma oscillations, and hypothe-

size that the network structure play a key role in the way neurons behave during oscillations.

Considering that the different types of spontaneous activity exhibited by the three presented

models could greatly influence how the network processes external input, we have investigated

this issue of responsiveness to external input in the next section.

Responsiveness and resonance during Gamma oscillations

Responsiveness. The way information is encoded and processed in the brain is still a

largely investigated enigma. Several ways of encoding information have been considered, such

as firing rates [63, 64], pairwise correlations [65, 66], spike pattern irregularity [67–70] and

spike packets [71], among others. In particular, two main theories have been dominating the

debate: Temporal Coding in which individual neurons encode information by means of precise

spike timings (working as coincidence detectors), and the Rate Coding in which neurons

encode information by means of changes in their spike rates (working as temporal integra-

tors). Regardless of the encoded strategy used to encode information, the way the network is

capable of responding to a certain stimulus is of prime importance. To identify how Gamma

rhythms change the response properties of a network to an external stimulus with respect to

AI, in this section we applied two protocols, investigating the effect of Gamma in both, the

coincidence detection mode and in the integration mode [72, 73].

In the integration mode protocol, we compared how each of the three developed models

responded to slowly-varying inputs (occurring in a time window much bigger than the

Gamma period). In this protocol, each network received Poissonian drive (spikes from an

external network) with firing rates varying in time, in a Gaussian manner, both during

Gamma and AI-like states. The applied Gaussian inputs had a standard deviation of 50 ms,

allowing the stimulus to interact with different Gamma cycles. Several amplitudes of slowly-

varying Gaussian were tested, and the responsiveness of excitatory and inhibitory populations

were measured separately. Responsiveness (see Eq 5) was defined as the difference between the

total number of spikes (in a time window of duration T) generated by the whole network in

the presence and in the absence of the stimulus (normalized by the network size and the time

window duration T).

Fig 7 shows the responsiveness of the PING Network, the ING Network and the CHING Net-
work, when the integration mode protocol was applied. To be able to measure the real impact

of Gamma oscillations on network responsiveness, we used as a control the responsiveness

curves from the AI-Network, in which no oscillation is generated, independently of the level of

external drive. See Neuron and Network Models: AI Network in Materials and methods Section

and S13 Fig. All models, regardless of the mechanism of Gamma generation, were less respon-

sive during Gamma bursts in comparison with their baseline responsiveness during AI-like

states. Furthermore, the responsiveness of a network in a real AI-state (gray curve generated

by the AI Network) is equal or higher to the AI-like responsiveness, in each of the networks,

and is always higher then the Gamma state responsiveness in all cases. In addition, to further

investigate this result, we examined the responsiveness of individual cells (S14 Fig). Due to the

previous finding that only a restricted group of cells participate to Gamma, one could imagine

that there could still be few cells (Gamma participating cells) that would be more responsive,
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Fig 7. Network responsiveness to a Gaussian input with varying amplitude. The responsiveness, in different states (Gamma and AI-

like), was measured in the three developed networks and compared to the responsiveness of the AI Network as a control. A:

Responsiveness protocol scheme for Gamma state. A Gamma burst is generated due to fluctuations of the external drive (black dashed

line). During the Gamma activity, a Gaussian input (green line) is applied. The total number of spikes due to the stimulus, in time

window of 500 ms, is measured. To measure the total number of spikes in the absence of the stimulus, another drive fluctuation is created

generating Gamma. The total number of spikes inside of a time window of 500 ms is measured again (this time, without the Gaussian

input). Only the situation in response to a stimulus is depicted in the scheme. This procedure was repeated 100 times per each Gaussian

amplitude input. To measure responsiveness in AI and AI-like states no drive fluctuation was applied (the black dashed line in the figure
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while all others (Gamma non-participating cells) would be less responsive, leading to a yet

overall less prominent responsiveness. Nonetheless, S14 Fig shows the contrary. All cells seem

to follow the same decrease of responsiveness during Gamma oscillations, and we found no

evidence that some subset of cells would be more responsive, for all amplitudes tested.

In the coincidence detection mode protocol, the responsiveness at different Gamma

phases was measured. To do this, precisely-timed inputs (occurring in a time window much

smaller than the Gamma period) were applied and related to Gamma cycles in each of the

three developed networks. In this protocol the amplitude of the stimulation was kept con-

stant, while the time of the application of the Gaussian stimulus changed with respect to the

phase of the Gamma oscillation. This procedure allowed each network to be stimulated at

different Gamma phases (see S15 Fig). Fig 8 indicates the network response of excitatory

cells per Gamma phase, in different states: Gamma state (blue), AI-like (black) and AI-

like modulated by a control external current oscillating at Gamma frequency (gray). All

responses were normalized by the average response of AI-like states without external cur-

rent modulation (black).

AI-like states, when modulated by an external oscillatory current, displayed, in all network

models, preferred phases in which the network response was higher in comparison to the non-

modulated AI-like state. This constitutes an important control, because the external current

creates periods of higher and lower excitability in the network, which is translated in a phase-

dependent response (as shown by the gray curves in Fig 8). Likewise, when generating

Gamma, our models (PING and ING) demonstrate an equivalent type of phase-dependence

response (even-tough with a narrow amplitude range). On the other hand, in agreement with

the integration mode protocol, our simulations show that the responsiveness during Gamma

states at all phases are less or equal to that during AI-like states.

Resonance. In Physics, when dealing with an oscillatory system, one of the first features

to be explored is its resonant properties. In general, resonance describes the phenomenon of

increased amplitude in a system, that occurs due to the application of an oscillatory stimulus

whose frequency is equal or close to the natural frequency of the system. It has been shown

experimentally that this phenomenon can also be observed in inhibitory [56] and excitatory

[74] neuronal populations. Furthermore, theoretical studies [75] have shown that resonance is

a fundamental property of spiking networks composed of excitatory and inhibitory neurons.

Resonance has also been proposed as a mechanism to gate neuronal signals [76] and to com-

municate information [10].

We tested the resonant properties of each of our networks in AI-like and Gamma states. In

this protocol, each network received Poissonian drive with firing rates varying in time in a

sinusoidal manner, with different frequencies (Fig 9A). Fig 9B, 9C and 9D depict, for each fre-

quency and oscillation phase, the average number of spikes per RS neuron and time bin, dur-

ing Gamma and AI-like states, for the PING, ING and CHINGNetworks. All values were

normalized by the average firing inside of each state to exclude the state dependent firing rate

level (which is higher on Gamma). To enhance the comprehension of the responsive proper-

ties of each network, a linear version of the color maps depicted in Fig 9 (amplitude vs. phase)

was kept constant). B: Input Amplitude Variation. The stimulus consisted of a Gaussian fluctuation in the firing rate of the external drive.

The Gaussian amplitude varied from 0.05 Hz to 2.5 Hz (step of 0.05 Hz) and had a standard deviation of 50 ms. Items C, D and E display

respectively the responsiveness of the PING Network, the ING Network and the CHING Network, inside Gamma bursts (green for

excitatory cells, red for inhibitory cells), and outside Gamma bursts—AI-like activity—(black for both types of cells). Every point

corresponds to the average responsiveness measured in 100 simulations. Standard error of the mean are indicated by the shaded region

around each curve. The responsiveness of the AI-Network was added as a control in each case (gray curve in C, D and E). To implement

the responsiveness protocol the AI-Network received a constant drive with μExt = 3 Hz, in addition to the Gaussian inputs. See S13 Fig.

https://doi.org/10.1371/journal.pcbi.1009416.g007
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Fig 8. Phase-dependent network response. A: External oscillatory current applied at AI-like state as function of its oscillation phases (gray curve)

and the filtered LFP measured during Gamma states as function of its oscillation phases (blue curve). All networks received a current oscillating

from 0 to 0.1 nA in a sinusoidal manner with a Gamma frequency Fγ. To match the Gamma oscillation frequency generated by each network, the

frequency of the external current applied to PING and CHING networks was Fγ = 40 Hz, while the one applied to ING network was Fγ = 55 Hz. The

LFP depicted is the one from PING network. ING and CHING also displayed a similar LFP pattern. B: PING Network phase-dependent response C:

ING Network phase-dependent response. D:CHING Network phase-dependent response. The phase-dependent network response was calculated

according to Eq 6, in a time window of duration T equal to one Gamma cycle (T = 25ms for the PING and CHING Networks and T = 18ms for
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is provided in S16 Fig. In addition, S17 Fig depicts the resonant properties in other cell types

(FS, FS2 or Ch) during Gamma state for each one of the networks.

We observe that, in both AI-like and Gamma states, all models display resonant properties

around the Gamma band, with the main difference in between these two states being a shift of

the resonance frequency center. In this protocol we detect a similar level of responsiveness per

phase (reflected in the measured number of spikes per time bin) in AI and Gamma, indicating

that networks receiving oscillatory inputs have the same latent potential to resonate at Gamma

ranges regardless if they are displaying AI or Gamma oscillations. One should note that each

model presents its own particularities. While the PING network presents just a shift of the cen-

ter frequency of resonance, the ING network presents an enlarged potential of resonance in AI

(in addition to the frequency shift). During AI, the ING network presents an equal resonance

in several bands other than Gamma. Moreover, when a Gamma oscillation is triggered in this

network, this resonance is shrunk and becomes more concentrated in the Gamma band. The

CHING network, on the other hand, presents a strong resonance in the 15–25 Hz frequency

range during AI, while during Gamma this resonance is lost.

Concluding this section, we investigated three dynamical properties (Responsiveness,

Phase-dependent-responsiveness and Resonance) in different states (AI-like and Gamma) of

each of the three developed networks. We encounter that, regardless of Gamma generating

mechanism (PING, ING or CHING), the network responsiveness, in both coincidence detec-
tion and integrativemode, is decreased at Gamma states with respect to AI. On the other hand,

the resonant properties around the Gamma band in all networks did not change significantly

from one state to the other. The main resonant properties changes between AI and Gamma

states in each model were most prominent around other bands. The implications of these

observations on the role Gamma rhythms in neural computations and information transfer

will be discussed in the next section.

Discussion

In this paper, we have examined the genesis and responsiveness of Gamma oscillations con-

strained by human recordings. We analyzed Gamma oscillations from previous studies [20,

21], where the recordings were stable, and in which RS and FS cells were discriminated. We

compared the results of this analysis to conductance-based network models implementing

three different mechanisms that were proposed for Gamma oscillations, PING, ING and

CHING. We next examined these three networks with respect to their responsiveness and res-

onance to external inputs. We discuss these aspects below.

Human data analysis

Compared to a previous analysis of the cellular correlates of Gamma oscillations [21], we con-

firm here the low level of cellular engagement and a greater participation of FS cells during

Gamma, either through phase-locking or through firing rate increase. FS cells not only pre-

sented a higher percentage of phase-locking or firing rate increase during Gamma, but they

also presented a more consistent behavior compared to RS cells which were much more vari-

able. Our analysis further indicates that, the group of Gamma participating cells changes with

ING). Responses measured inside AI-like activity (outside Gamma bursts) are shown in black, and in gray when the networks received a

supplementary oscillatory external current. Responses measured inside Gamma bursts are displayed in blue. All curves were normalized by the

average response inside AI-like activity without external current modulation. Solid lines indicate the average, and the shaded region indicates the

standard error of the mean. The curves were calculated based on the output of 12000 simulations (120 positions of the Gaussian stimulus in 100

numerical seeds for external Poissonian drive). The Gaussian stimulus used had an amplitude of 50 Hz and standard deviation of 1 ms.

https://doi.org/10.1371/journal.pcbi.1009416.g008
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Fig 9. Resonant properties of computational models. A: Representation of external Poissonian noise varying in time in a

sinusoidal manner around μnoise. In this protocol sinusoidal frequencies varied from 5 Hz to 100 Hz (step of 5 Hz). Two oscillatory

frequencies are depicted: 20Hz (blue) and 40 Hz (black), together with their phases (second axis) and time bins (vertical line). For

all frequencies the average Poissonian noise (μnoise) was kept the same, varying from μnoise − Δnoise and μnoise + Δnoise. The bins were

chosen in a way in which the oscillatory phases (from -π to π) were divided into 25 intervals (for all frequencies), resulting in time

bins of different duration for each oscillatory frequency. B: Resonant properties of PINGNetwork. C: Resonant properties of ING
Network. D: Resonant properties of CHINGNetwork. The color maps displayed in B, C and D depict, for each oscillatory

frequency and oscillation phase, the average number of spikes per RS neuron per time bin, during Gamma and AI-like states. All

PLOS COMPUTATIONAL BIOLOGY Integration, coincidence detection and resonance in networks of spiking neurons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009416 September 16, 2021 21 / 33

https://doi.org/10.1371/journal.pcbi.1009416


time as well as their phase-preference. The analysis performed on this work is very qualitative,

since it was based on a single patient. Nonetheless, this very sparse participation of RS and FS

cells during Gamma was seen in different patients, and the same was observed in monkey for

beta oscillations [21].

Responsiveness

The occurrence of Gamma rhythms have been correlated with conscious perception [77–81]

and several authors support these rhythms as being a suitable marker of consciousness. On the

other hand, it has been proposed that the Asynchronous and Irregular activity, observed dur-

ing awake and aroused states, due to its specific responsiveness properties, is an ideal setting

for integrating multiple external inputs [12]. In support of this, it was concluded in a review

that asynchronous states constitute the most reliable correlate of conscious states [82].

Previous work [12] has compared the responsiveness of a fully synchronized network

(spike-to-spike regime) with a network in AI state, showing that the AI state is the best state to

integrate multiple external inputs. It was also shown that, in rate-based networks, the most

chaotic states could display the highest responsiveness, as measured using Shannon informa-

tion [83]. In the present work, we compared the responsive properties of AI state with Gamma

states generated by means of three different mechanism: PING, ING and CHING. Each of

these networks were submitted to two types of inputs. First, a slowly-varying input integrated

by the population of neurons over a substantial period of time (integrative mode). Second, we

examined precisely-timed inputs, occurring in a time window smaller than the Gamma period

(coincidence detection mode). For the integrative mode, we systematically found that the

Gamma oscillations yielded less responsiveness than the AI-like states and even lesser respon-

siveness than real AI states (generated by the AI Network, used as a control). In the coincidence
detection mode, we found that the response was only weakly modulated by the phase of the

Gamma. This was assessed by comparing the Gamma oscillation to a sinusoidal control input,

in which case the response was clearly phase-dependent. In agreement with the integrative
mode, the responsiveness measured in the coincidence detection mode protocol was generally

higher for the AI-like states. In addition, in the coincidence detection mode, among the three

models, the ING Network is the only one that presents a similar responsiveness between

Gamma and AI states, which stresses again the importance of network topology on networks

behaviors.

A smaller responsiveness during Gamma states is somehow surprising since neurons are in

general more depolarized in this state and additionally increase their firing, as we showed in

our data analysis. On the other hand this observation is intuitively easy to understand, if we

take into account the fact that Gamma oscillation are composed of successions of periods of

high inhibition, which define time windows in which neurons are less likely to spike. While

during Gamma states, these time windows of high inhibition constrain the times a certain neu-

ron can spike, during AI states neurons can spike at all moments with the same probability.

Indeed, we observed that the response during Gamma oscillations is phase-dependent, while

there is no phase preference during AI states. However, although there was a phase depen-

dence, Gamma oscillations did not provide a preferred phase where the network is more

responsive than during AI states. The fact that higher levels of inhibition during Gamma could

values were normalized by the average firing inside of each state to exclude the state dependent firing rate level (which is higher on

Gamma). Δnoise = 0.5 Hz in all network models but μnoise varied in each case. For AI, in PING and ING Networks μnoise = 2 Hz and

in CHING Network μnoise = 1 Hz, while for Gamma, μnoise = 3 Hz in in PING and ING Networks and μnoise = 2 Hz in CHING

Network.

https://doi.org/10.1371/journal.pcbi.1009416.g009
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explain their diminished responsiveness should be testable experimentally using intracellular

recordings in vivo.

Given our model results, what this decrease of responsiveness could be useful for, and

what are the advantages of a higher responsive state in AI? This questions can be approached

in the light of the Phase Coding Theory (PC). This theory was initially formulated with

respect to Theta rhythm [6], but lately extended to Gamma [7]. This theory states that, within

the Gamma cycle, the excitatory input to pyramidal cells is converted into a temporal code

whereby the amplitude of excitation is re-coded in the time of occurrence of output spikes

relative to the cycle [7]. In this view, the cells that are most excited fire earlier in the cycle,

while cells that are not excited enough are prohibited to spike due the new wave of inhibition

composing the cycle. This process can be seen as a winner-take-all phenomena (or more pre-

cisely a few-winners-take-all phenomena, since it involves several neurons neurons) [7].

Such a coding strategy enables transmission and read out of amplitude information within a

single Gamma cycle without requiring rate integration, proving a fast processing and readout

by means of coincidence detection, rather than on rate integration [84], in agreement with

more recent work [60, 76, 85]. Furthermore, this type of encoding strategy would, in princi-

ple, allow an improvement of signal-to-noise ratios, since neurons not conveying informa-

tion would be hindered to spike. In this perspective, according to our models, Gamma

oscillations would allow a network to respond quicker at the expense of decreasing the

strength of its response. On the other hand, more responsive states such as AI, would be bet-

ter suited to respond to low amplitude stimulus (due to their high sensitivity) at the cost of

loosing temporal precision. Thus, AI states, because of their high responsiveness, seem well

suited to detect inputs, while gamma oscillations, due to their tighter time precision, seem

better suited to transmit timing information. Such possibilities constitute interesting direc-

tions to explore by future models.

Resonance

In this work we reproduced previous results [75] showing that resonance is a fundamental

property of spiking networks composed of excitatory and inhibitory neurons. We compared

the resonant properties during AI and Gamma states generated by three different mechanism

(ING, PING and CHING) and verified that, apart from a shift on the resonant frequency cen-

ter, the resonant properties around the Gamma band in all networks did not change signifi-

cantly from one state to the other. We call the reader attention to the particularities of each

network model, especially the enlarged potential of resonance of ING network during AI.

Even though previous work proposed the importance of resonance in information transfer

and processing in the brain [10], this aspect has been left aside until recently [86]. The most

popular view, known as the Communication Through Coherence (CTC) Theory [8, 9], pro-

poses a mechanistic explanation for how different neural regions could communicate by

means of coherence [60]. This theory advocates that, since oscillations generate a rhythmic

modulations in neuronal excitability (defining time windows in which neurons are capable to

respond), only coherently oscillating groups can effectively communicate. In contrast, a recent

work [86] present results indicating that, to the contrary, coherence is a consequence of com-

munication, not a cause of it. This study shows that if an oscillating network is connected to

another network that owns resonant properties around this same frequency, these two net-

works present coherent activity, and that the presence of these resonant interactions could

explain more than 50% of the observed coherence. Furthermore, they show that the oscillating

network sends information to the resonant one (the Granger-causality between field potentials

is dominated by oscillatory synchronization in the sending area).
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In this perspective, the enlarged potential of resonance of ING network in different bands

during AI, indicates that this type of network structure (with heterogeneous connectivity pat-

terns in between inhibitory neurons) could potentially convey information equally well in

several bands. This stress the importance of network topology for neuronal information pro-

cessing and also constitutes interesting directions to further explore.

Supporting information

S1 Fig. Synaptic time scale parameter search of a network composed of RS and FS neurons

randomly connected. The network used to produce this figure was composed of 20000 excit-

atory Regular Spiking and 5000 inhibitory Fast Spiking neurons connected randomly with a

probability of connection of 2%. All synapses were delayed by a time delay of 1.5 ms, and had

reference synaptic strengths of QR
e ¼ 1 nS or QR

i ¼ 5 nS and reference synaptic time scales of

tRe ¼ t
R
i ¼ 5 ms. Synaptic strengths (Qe,i) were normalized at each tested time scale (τe,i) to

keep the same synaptic gain, such that: Qe;i ¼ ðQR
e;i:t

R
e;iÞ=te;i. A: Network oscillation frequency

depicted in a color scheme as a function of excitatory and inhibitory synaptic time scales.

White color corresponds to regions in which no oscillation was identified in RS population. B:

Synchrony Index of RS population (top) and network balance (bottom) as a function of synap-

tic time scales. The Synchrony Index (SI) is based on the auto-correlation of the population

frequency of RS cells. To be calculated, the autocorrelation of the population frequency was

fitted by a damped cosine function and the value of this fitted function at zero time lag was

defined as the SI. If the exponential decay rate was higher then 100, it was considered that

there was no global oscillation at the population scale. The network balance was defined as the

rate between the average excitatory and inhibitory synaptic currents, h
hIexciN
hIinhiN
it, in which hiN

stand for average among neurons and hit average on time. White squares indicate the two

different parameter sets used in our simulations (τe = τi = 5 ms for AI Network, and τe = 1 ms,

τi = 7.5 ms for PING Network). C: Same as B but calculated for the FS population. D: Popula-

tion frequency autocorrelation of RS (green dots) and FS population (blue dots) neurons of

the two used parameter sets. Solid lines indicate the damped cosine fitted function.

(TIF)

S2 Fig. Gamma Network parameter search. The network connectivity (p) vs. inhibitory syn-

aptic strengths (Qi) parameter space of the Gamma Network are displayed as color-plots. A:

Average spiking frequency. B: Network oscillation frequency. C: Network balance: rate

between the average excitatory and inhibitory synaptic currents, h
hIexciN
hIInhiN
it , in which hiN stand

for average among neurons and hit average on time. D: Membrane Potential Synchrony

(χ), calculated by means of the equation: w2 ¼
s2
V

1
NS

N
i s

2
Vi

, in which VðtÞ ¼ 1

N S
N
i ViðtÞ,

sV
2 ¼ h½VðtÞ�2it � ½hVðtÞit�

2
and sVi

2 ¼ h½ViðtÞ�
2
it � ½hViðtÞit�

2
. The set of parameter which

allowed Gamma Network to oscillate in the Gamma range are indicated by a star symbol. The

white and yellow curves depict parameter choices in which the product between p and Qi
are the same. The yellow curve indicates all parameters equivalent to a choice of p = 60% and

Qi = 5 nS (Q0i ¼ 3=p0), while the white curve indicates all parameters equivalent to a choice of

p = 10% and Qi = 5 nS (Q0i ¼ 0:5=p0), like it is usually used in other works [30]. Every point in

each graph is given by the average output of 10 simulations of 5 seconds each. In this simula-

tions each neuron of the Gamma Network received 400 independent and identically distrib-

uted excitatory Poissonian spike trains with a spiking frequency μExt = 5 Hz and a synaptic

strength ofQExt = 1 nS that decayed with synaptic time constant of τE = 5 ms. E: Network activ-

ity for the parameters indicated with a start in A, B, C and (p = 60% and Qi = 5 nS). The raster
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plot of the whole network (e1), the population frequency (e2), the membrane potential of 3

randomly chosen neurons (e3) and the power spectrum of the population frequency (e4) are

indicated. The population frequency is calculated as the total number of spikes (spikes of the

whole network) in a time bin of 1 ms, divided by the duration of this time bin. Because of the

exclusive presence of inhibitory neurons and its high level of recurrent inhibition, this network

is capable of generating Gamma rhythms with frequencies around 70Hz by means of an ING

mechanism.

(TIF)

S3 Fig. Phase-locking statistical test. A and B: Phase distribution of two randomly picked

cells from the human recordings (Data segment 1): one excitatory (A, green) and one inhibi-

tory (B, red). The phase distribution of each cell was fitted to a Von Mises curve, which allowed

the estimation of its preferred phase yVM . The phase distribution of each neuron was tested for

circular uniformity using a Bonferroni-corrected Rayleigh test [36, 37]. C and D: Rayleigh Z

calculated for all recorded neurons: excitatory (C, green) and inhibitory (D, red). A neuron

was considered phase-locked if the circular uniformity at P < 0.01, (Z > Zc) could be rejected.

In these plots, neurons were ordered according to their Z value and not according to their

original indexes. E: Preferred phases, yVM , of each phase-locked cell, displayed in polar graph

representation. Dark colored vectors indicate the average phase among each neuron type and

Δθ the phase difference among RS and FS. Data segment 1 presented 22 minutes of recordings,

containing 9 seconds of Gamma activity.

(TIF)

S4 Fig. Firing rate change statistical test. A: Activity of two randomly picked cells during sev-

eral Gamma bursts: neuron 13 (inhibitory, left) and neuron 75 (excitatory, right). The graphs

display the firing patter around Gamma bursts (indicated by the black doted lines). Each point

corresponds to one spike in the correspondent tuple of time and burst ID (y-axis). B: Histo-

gram computing the distributions of all spikes inside all Gamma bursts of neuron 13 (left)

and neuron 75 (right). C: Exemplification of firing rate change statistical test. The Poissonian

distribution of these two neurons is constructed based on their average firing rate calculated

outside of Gamma bursts. The critical number of spikes nc, indicated by the dotted lines, is

calculated based on the Percent Point Function of the respective Poissonian Distribution for a

period T, with an 95% Interval of Confidence. The observed number of spikes nobsv is depict as

a dot over the curve. According to this procedure, only neuron 75 is considered to increase its

firing, since nobsv> nc.
(TIF)

S5 Fig. Phase preference of phase-locked cells per data segment in the human record-

ings. A: Data segment 1—containing 22 minutes of recordings and 9 seconds of total

Gamma activity. B: Data segment 2—containing 43 minutes of recordings and 14 seconds of

total Gamma activity. C: Data segment 3—containing 28 minutes of recordings and 16 sec-

onds of total Gamma activity. D: Data segment 4—containing 26 minutes of recordings and

13 seconds of total Gamma activity. E: Data segment 5—containing 16 minutes of record-

ings and 11 seconds of total Gamma activity. The preferred phases of each phase-locked cell

are displayed in polar graph representation. Phases were calculated from −π to π. The vector

size gives a measure of the phase distribution of each cell. Big amplitude vectors indicate

very concentrated distributions while small amplitude vectors indicate less concentrated

ones. The color of each vector encodes the type of the cell of whom it represents the phase:

red (FS), and green (RS). Cell number IDs are indicated. Dark colored vectors indicate the
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average phase among each neuron type and Δθ the phase difference among them.

(TIF)

S6 Fig. Change of Gamma participating cells with time in experimental data. The middle

panel represents each cell by a circle in each of the 5 data segments. FS and RS phase-locked

cells are depicted respectively as red and green circles, while not phase-locked or inconclusive

(with respect to phase locked) cells of both types are depicted as blue and gray circles respec-

tively. Superposed to each cell circle, pointing up and down triangles were added to indicate if

the cell increased (4) or decreased (5) its firing. If the cell didn’t change its firing significantly

a minus sign (-) was added. Side box plots indicate, on the left, the percentage of phase-locked

FS (red) and RS (green) cells in each of the 5 data segments, and, on the right, the percentage

of firing rate increase. Dotted lines indicate the average value (phase-locking level: left and

firing rate increase: right) between the 5 data segments. The bottom box plot depicts the super-

posed counts of phase-locking or firing rate increase behavior of each individual cell, com-

puted in the 5 data segments.

(TIF)

S7 Fig. Behavior consistency of RS and FS cells in human recordings. Distributions of con-

sistency indexes among the recorded neurons with respect to to firing rate increase are dis-

played respectively in A and B for RS cells and FS cells, while C and D display the consistency

indexes distribution of phase-locking for RS and FS.

(TIF)

S8 Fig. Neural behavior time distribution in the human data. The activity of each neuron

inside and outside Gamma bursts in all 5 data segments were quantified. Taking into account

that each data segment had a different duration, containing a different total Gamma duration,

and that some neurons were silent in some data segments, each neuron was analyzed individu-

ally, taking into account the percentage of the total amount of time in which the neuron was

active. A: Phase-locking time distribution. The grid plot in the middle displays the amount of

time (with respect to the total recording time) in which each neuron was considered phase-

locked (A, y axis), and the the amount of time in which each neuron was considered not

phase-locked (A, x axis). RS neurons are depicted in green and FS neurons in red, together

with their ID number. Neurons lying outside of the diagonal are neurons of whom statistical

analysis was inconclusive at some data segments, due to the reduced number of spikes. At the

top left corner, lie neurons that were always considered phase-locked, while neurons that were

never considered phase-locked are placed at the bottom right corner. Pie plots indicate the per-

centage of neurons that passed at least 50% of the total time being either phase-locked or not

phase-locked (neurons that fall inside of the colored quadrants) and the neurons lying on the

left white quadrant. B: Same analysis as A but displaying the firing rate change time distribu-

tion. This analysis indicates that only a small percentage of neurons passed at least 50% of the

total time being either phase-locked (RS: 4.4%, FS: 13%) or increasing its firing (RS: 20.6%, FS:

52.2%). Moreover, even though no cell was 100% of the time phase-locked to Gamma, some

cells were 100% of the time not phase-locked to Gamma (RS: 22.1%, FS: 13%) and others never

increased their firing (RS: 41.2%, FS: 17.4%).

(TIF)

S9 Fig. Firing rate distribution of individual neurons inside Gamma bursts and their

phase-locking classification in human data recordings. The average firing rate of each neu-

ron in each of the 5 data segments (inside Gamma bursts) is depicted as a point in this graph

(each neuron presents 5 points). The color of each point corresponds to the neuron classifica-

tion with respect to phase-locking in the correspondent data segment (purple: phase-locked,
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red: not phase-locked and gray: inconclusive). The average firing rate inside Gamma bursts

was calculated based on the total Gamma duration (recorded by the electrode, that also

recorded the particular neuron, in the respective data segment) and the total number of spikes

emitted by this particular neuron exclusively inside the Gamma bursts of the respective data

segment. Cells classified as inconclusive are cells that spiked less then 5 times inside Gamma

bursts, or cells whose electrode measured less then 1 second of Gamma bursts in the respective

data segment. FS neurons are depicted on the left and RS neurons on the right. Box plots refer-

ent to each neuron distribution are added to help in the visualization (regardless of the reduced

number of points). The box extends from the lower to upper quartile values of the data, with

a line at the median. The whiskers extend from the box to show the range of the data. Flier

points are those past the end of the whiskers and are depicted with black circle together with

the color point. This graph illustrates the fact that phase-locking and not phase-locking behav-

iors are observed both in cells with high and low firing rates.

(TIF)

S10 Fig. Firing rate distributions. Firing rate distributions of different neuron types (inside

and outside Gamma bursts) are depicted in A, B, C and D for each studied system. A: Human

recordings. B: PING Network. C: ING Network and D: CHING Network. Average firing rates of

each cell type is indicated by the dotted line.

(TIF)

S11 Fig. Average excitatory and inhibitory synaptic conductances. A: Illustration of the ana-

lyzed system: PING Network, ING Network and CHING Network. B: Ratio between excitatory

conductance (Ge) and leakage conductance (GL). C: Ratio between inhibitory conductance

(Gi) and leakage conductance (GL). Averages are indicated by the dotted line. The distributions

fall inside of the physiological range observed experimentally [87].

(TIF)

S12 Fig. Average level of phase-locking. The average level of phase-locking is defined as the

averaged percentage of cells in the network considered to be phase-locked, across the 5 seg-

ments of data recorded. The analysis was done separately for excitation and inhibition. A:

Human Data recordings, B:PING Network, C: ING Network and D: CHING Network. The per-

centage of cells signaled as inconclusive relates to cells in which the number of spikes inside

Gamma burst were too small to allow statistical significant phase-locking.

(TIF)

S13 Fig. Network responsiveness of a network composed of RS and FS neurons randomly

connected with different synaptic time scales. A: AI network receiving a Poissonian drive of

3Hz. B: PING network receiving a Poissonian drive of 3Hz (inducing Gamma). C: PING net-
work receiving a Poissonian drive of 2Hz (not inducing Gamma). In addition to the drive

each network received a Gaussian stimulus of 2Hz pick and a standard deviation of 50 ms. The

drive and stimulus are depicted in each case in a1, b1 and c1. The raster plot of each network

during the stimulation is depicted in each case in a2, b2 and c2. The membrane potential of 3

randomly picked neurons are depicted in each case in a3, b3 and c3. The raw and the filtered

simulated LFP are depicted in each case in a4, b4 and c4.

(TIF)

S14 Fig. Responsiveness of individual cells in computational models. A: PING Network. B:

ING Network. C: CHING Network. To estimate the individual cell responsiveness, we calcu-

lated the average spiking frequency of each cell inside (y-axis) and outside stimulus (x-axis)

during AI-like states (left) and Gamma states (right). RS cells are displayed in green and FS

PLOS COMPUTATIONAL BIOLOGY Integration, coincidence detection and resonance in networks of spiking neurons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009416 September 16, 2021 27 / 33

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009416.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009416.s011
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009416.s012
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009416.s013
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009416.s014
https://doi.org/10.1371/journal.pcbi.1009416


cells in red. In each plot the linear regression from the points is depicted with the identity. We

observe that all cells follow the same rule of responsiveness (proportional to their firing outside

the stimulus). No difference can be seen between the responsiveness of neurons classified as

Gamma participating and the Gamma non-participating cells.

(TIF)

S15 Fig. Phase-dependent network response protocol. A: Protocol scheme in ING Network

when it displays Gamma oscillations (45-65 Hz). Top: stimulus used to measure network

phase-dependent response. The stimulus consisted of fast Gaussian fluctuation (standard devi-

ation of 1 ms) which modulated the firing rate of the external Poissonian spike trains injected

into network from 0 to 50 Hz. Middle: Raster plot indicating the network response to the

Gaussian stimulus. The network responsiveness was calculated according to Eq 6, in a time

window T = 18ms (shaded gray area). Bottom: Gamma oscillation phase around the the stimu-

lus pick. The phase at the time the stimulus was applied is indicated. The Phase-dependent net-

work responsiveness was measured in three different network states: B: AI state (Poissonian

noise = 2Hz, no external current). C: AI-modulated states (Poissonian noise = 1Hz, with sinu-

soidal external current). D: Gamma state (Poissonian noise = 3Hz, no external current). Items

A, B and C display the Raster activity of ING Network without the Gaussian stimulation. Only

20% of network is shown.

(TIF)

S16 Fig. Linear representation of color maps depicted in Fig 9. A: Resonant properties of

PINGNetwork. B: Resonant properties of INGNetwork. C: Resonant properties of CHING
Network. The curves displayed in B, C and D depict, for each oscillatory frequency (color

scheme) the amplitude (average number of spikes per neuron per time bin) as a function of

the oscillation phase, during Gamma and AI-like states. All values were normalized by the

average firing inside of each state to exclude the state dependent firing rate level (which is

higher on Gamma). Δnoise = 0.5 Hz in all network models but μnoise varied in each case. For

AI, in PING and ING Networks μnoise = 2 Hz and in CHING Network μnoise = 1 Hz, while for

Gamma, μnoise = 3 Hz in in PING and ING Networks and μnoise = 2 Hz in CHING Network.

(TIF)

S17 Fig. Resonant properties of computational models during Gamma in each cell type. A:

Resonant properties of PINGNetwork. B: Resonant properties of INGNetwork. C: Resonant

properties of CHINGNetwork. The color maps displayed in A, B and C depict, for each oscil-

latory frequency and oscillation phase, the average number of spikes per cell type (RS, FS,

FS2 or Ch) and time bin, during Gamma state. Differently than Fig 9 no normalization was

applied. Δnoise = 0.5 Hz in all network models but μnoise varied in each case. In PING and ING

Networks μnoise = 3 Hz and in CHING Network μnoise = 2 Hz.

(TIF)
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72. Maršálek P, Koch C, Maunsell J. On the relationship between synaptic input and spike output jitter in

individual neurons. Proceedings of the National Academy of Sciences. 1997; 94(2):735–740. https://

doi.org/10.1073/pnas.94.2.735 PMID: 9012854

73. Rudolph M, Destexhe A. Tuning neocortical pyramidal neurons between integrators and coincidence

detectors. Journal of computational neuroscience. 2003; 14(3):239–251. https://doi.org/10.1023/

A:1023245625896 PMID: 12766426

74. Lepousez G, Lledo PM. Odor discrimination requires proper olfactory fast oscillations in awake mice.

Neuron. 2013; 80(4):1010–1024. https://doi.org/10.1016/j.neuron.2013.07.025 PMID: 24139818

75. Ledoux E, Brunel N. Dynamics of networks of excitatory and inhibitory neurons in response to time-

dependent inputs. Frontiers in computational neuroscience. 2011; 5:25. https://doi.org/10.3389/fncom.

2011.00025 PMID: 21647353

76. Akam T, Kullmann DM. Oscillations and filtering networks support flexible routing of information. Neu-

ron. 2010; 67(2):308–320. https://doi.org/10.1016/j.neuron.2010.06.019 PMID: 20670837

77. Melloni L, Molina C, Pena M, Torres D, Singer W, Rodriguez E. Synchronization of neural activity across

cortical areas correlates with conscious perception. Journal of neuroscience. 2007; 27(11):2858–2865.

https://doi.org/10.1523/JNEUROSCI.4623-06.2007 PMID: 17360907

78. McCarley RW. Brainstem control of Wakefulness and Sleep. New York: Plenum Press; 1990.

79. Fries P, Roelfsema PR, Engel AK, König P, Singer W. Synchronization of oscillatory responses

in visual cortex correlates with perception in interocular rivalry. Proceedings of the National Acad-

emy of Sciences. 1997; 94(23):12699–12704. https://doi.org/10.1073/pnas.94.23.12699 PMID:

9356513

80. Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nature reviews

neuroscience. 2010; 11(2):100–113. https://doi.org/10.1038/nrn2774 PMID: 20087360

81. Kulli J, Koch C. Does anesthesia cause loss of consciousness? Trends in neurosciences. 1991; 14

(1):6–10. https://doi.org/10.1016/0166-2236(91)90172-Q PMID: 1709532

PLOS COMPUTATIONAL BIOLOGY Integration, coincidence detection and resonance in networks of spiking neurons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009416 September 16, 2021 32 / 33

https://doi.org/10.1016/j.cophys.2019.12.006
https://doi.org/10.1016/j.cophys.2019.12.006
https://doi.org/10.1038/nn.4569
http://www.ncbi.nlm.nih.gov/pubmed/28530664
https://doi.org/10.1152/jn.00493.2015
http://www.ncbi.nlm.nih.gov/pubmed/26912589
https://doi.org/10.1103/PhysRevE.98.022217
http://www.ncbi.nlm.nih.gov/pubmed/30253475
https://doi.org/10.1068/p010371
http://www.ncbi.nlm.nih.gov/pubmed/4377168
https://doi.org/10.1038/nn.2501
http://www.ncbi.nlm.nih.gov/pubmed/20173745
https://doi.org/10.1126/science.278.5345.1950
https://doi.org/10.1126/science.278.5345.1950
http://www.ncbi.nlm.nih.gov/pubmed/9395398
https://doi.org/10.1038/373515a0
https://doi.org/10.1038/373515a0
http://www.ncbi.nlm.nih.gov/pubmed/7845462
https://doi.org/10.1016/S0893-6080(01)00083-1
http://www.ncbi.nlm.nih.gov/pubmed/11665765
https://doi.org/10.1162/neco.2008.20.1.91
https://doi.org/10.1162/neco.2008.20.1.91
http://www.ncbi.nlm.nih.gov/pubmed/18045002
https://doi.org/10.1371/journal.pcbi.1000433
https://doi.org/10.1371/journal.pcbi.1000433
http://www.ncbi.nlm.nih.gov/pubmed/19593378
https://doi.org/10.1016/j.neuron.2009.03.021
http://www.ncbi.nlm.nih.gov/pubmed/19447097
https://doi.org/10.1038/nrn4026
http://www.ncbi.nlm.nih.gov/pubmed/26507295
https://doi.org/10.1073/pnas.94.2.735
https://doi.org/10.1073/pnas.94.2.735
http://www.ncbi.nlm.nih.gov/pubmed/9012854
https://doi.org/10.1023/A:1023245625896
https://doi.org/10.1023/A:1023245625896
http://www.ncbi.nlm.nih.gov/pubmed/12766426
https://doi.org/10.1016/j.neuron.2013.07.025
http://www.ncbi.nlm.nih.gov/pubmed/24139818
https://doi.org/10.3389/fncom.2011.00025
https://doi.org/10.3389/fncom.2011.00025
http://www.ncbi.nlm.nih.gov/pubmed/21647353
https://doi.org/10.1016/j.neuron.2010.06.019
http://www.ncbi.nlm.nih.gov/pubmed/20670837
https://doi.org/10.1523/JNEUROSCI.4623-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17360907
https://doi.org/10.1073/pnas.94.23.12699
http://www.ncbi.nlm.nih.gov/pubmed/9356513
https://doi.org/10.1038/nrn2774
http://www.ncbi.nlm.nih.gov/pubmed/20087360
https://doi.org/10.1016/0166-2236(91)90172-Q
http://www.ncbi.nlm.nih.gov/pubmed/1709532
https://doi.org/10.1371/journal.pcbi.1009416


82. Koch C, Massimini M, Boly M, Tononi G. Neural correlates of consciousness: progress and problems.

Nature Reviews Neuroscience. 2016; 17(5):307–321. https://doi.org/10.1038/nrn.2016.22 PMID:

27094080

83. Destexhe A. Oscillations, complex spatiotemporal behavior, and information transport in networks of

excitatory and inhibitory neurons. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994;

50(2):1594–1606. PMID: 9962131

84. VanRullen R, Thorpe SJ. Surfing a spike wave down the ventral stream. Vision research. 2002; 42

(23):2593–2615. https://doi.org/10.1016/S0042-6989(02)00298-5 PMID: 12446033

85. Sherfey J, Ardid S, Miller EK, Hasselmo ME, Kopell NJ. Prefrontal oscillations modulate the propagation

of neuronal activity required for working memory. Neurobiology of learning and memory. 2020;

173:107228. https://doi.org/10.1016/j.nlm.2020.107228 PMID: 32561459

86. Schneider M, Dann B, Sheshadri S, Scherberger H, Vinck M. A general theory of coherence between

brain areas. bioRxiv. 2020.

87. Rudolph M, Pospischil M, Timofeev I, Destexhe A. Inhibition determines membrane potential dynamics

and controls action potential generation in awake and sleeping cat cortex. Journal of neuroscience.

2007; 27(20):5280–5290. https://doi.org/10.1523/JNEUROSCI.4652-06.2007 PMID: 17507551

PLOS COMPUTATIONAL BIOLOGY Integration, coincidence detection and resonance in networks of spiking neurons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009416 September 16, 2021 33 / 33

https://doi.org/10.1038/nrn.2016.22
http://www.ncbi.nlm.nih.gov/pubmed/27094080
http://www.ncbi.nlm.nih.gov/pubmed/9962131
https://doi.org/10.1016/S0042-6989(02)00298-5
http://www.ncbi.nlm.nih.gov/pubmed/12446033
https://doi.org/10.1016/j.nlm.2020.107228
http://www.ncbi.nlm.nih.gov/pubmed/32561459
https://doi.org/10.1523/JNEUROSCI.4652-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17507551
https://doi.org/10.1371/journal.pcbi.1009416

