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Robust Tactical Qualification Decisions in Flexible Manufacturing Systems

Abstract

In some flexible manufacturing systems, such as semiconductor manufacturing systems, machines

must be qualified, i.e. certified and eligible, to process a product. This paper investigates a tactical

capacity planning problem that consists in minimizing the number of (product, machine) qualifications

to ensure that the manufacturing system is robust against the uncertainty on the product mix. First,

we propose a deterministic modeling of the problem, followed by a robust modeling based on the robust

optimization paradigm when demand uncertainty is characterized by product cannibalization. Then, a

mathematical model, also based on the robust optimization paradigm, to characterize the robustness

of a set of qualifications is introduced. Finally, in the computational study on industrial data, we

show that the price of uncertainty is small, often less than a few additional qualifications by machine

whereas the robustness of the qualifications determined for the nominal product mix often lead to

capacity constraint violations. We also show that a restricted number of new relevant qualifications

out of all possible new qualifications is required to achieve the same robustness as the case where

all new qualifications are performed. Considering demand uncertainty in qualification management is

therefore critical since robustness is relatively cheap.

Keywords: Robust Optimization; Duality; Flexible Manufacturing Systems; Qualification
Management

1. Introduction

1.1. Qualification management

In semiconductor manufacturing, Integrated Circuits (ICs) consist of transistors that are made in

“front-end” factories. ICs are built on silicon wafers, and up to one thousand operations are required to

complete the fabrication of one wafer. Each operation is performed in a work center grouping parallel

machines. A work center ranges from a few machines to two hundred machines. As the number of

operations is larger than the number of work centers, semiconductor factories are characterized by a

high degree of re-entrant product flows in work centers. A wafer can visit more than forty times the

same work center. To perform an operation, a “recipe” is run by a machine on a wafer. The recipe

defines the pressure conditions, temperature conditions, chemicals and associated actions necessary to

perform the operation. There might be more than one thousand different operations and recipes in a

work center.

However, machines cannot simply run recipes once they are purchased and installed in the factory.

They must be qualified to meet quality and yield requirements. In other words, when a machine is

qualified, it is certified that the machine can run the recipe without deteriorating the product being

manufactured on the wafer. If a machine is not qualified for the recipe, the machine cannot process

the product at the operation. A qualification then corresponds to a couple (operation, machine). Note

that not all recipes are “qualifiable” on a machine, i.e. only a subset of recipes can be qualified on a

machine.

Satisfying the demand associated to each product is difficult in semiconductor manufacturing.

Several hundred products compete for the same production machines in high mix manufacturing
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facilities. In addition, the demand by product is time-varying, often significantly from one month to

another, and can be highly uncertain (Ponsignon and Mönch, 2014). There are also manufacturing

risks (e.g. machine breakdowns, yield losses) that can prevent manufacturing facilities from satisfying

the demand. When such conditions are met, the need for flexibility (the ability to respond effectively

to changing circumstances, see Sethi and Sethi 1990) is imperative (De Toni and Tonchia, 1998).

Qualification management is closely related to the the notion of production flexibility, which is defined

as all products a factory is able to produce without requiring additional major capital investment.

Production flexibility is the result, among others, of process flexibility, which is defined as the ability

of processing different products at the same time (Boyer and Leong, 1996; Sethi and Sethi, 1990; Jain

et al., 2013). Adding new qualifications improves the level of process flexibility of work centers and

therefore improves the capacity of a factory to satisfy the demand.

In this paper, we are interested in the qualification optimization problem that typically arises at a

tactical decision level where the planning horizon is between six and twelve months. The considered

qualification optimization problem is a tactical capacity planning problem: The production capacity

of a work center must be configured to satisfy the demand. There are existing machines in the work

center, and new machines might be installed. Similarly, new products are being introduced in the fac-

tory, and new qualifications are necessary to increase the production capacity of new products and the

production capacity of existing products with a ramp-up demand. This is because new qualifications

enable operations associated to the product to be processed on more machines. More precisely, a set

of new qualifications, i.e. new couples (operation, machine) to qualify, must be determined so that

the demand for all products is satisfied while respecting production capacity constraints. The couple

(operation, machine) must be either determined as to be qualified or not to be qualified.

Because qualifications can be expensive and time-consuming, between one week and several months

mainly in the form of delay, the number of new qualifications to perform must be minimized and

anticipated. Moreover, the demand by product, which is an external parameter to the company, is

affected by uncertainty. In factories with a high product mix, i.e. many products, the uncertainty

on the demand by product is particularly strong, as factories face frequent product mix changes with

products that have short lifetimes. In other words, the set of qualifications determined to satisfy a

nominal demand by product may be inappropriate if the realized demand by product is too different

from the nominal demand by product. A significant change in the demand can significantly decrease

the manufacturing performances. This is because the wafer of a product does not lead to the same

workload of a wafer of another product due to different re-entrant flow factors and throughput rates

(Kotcher and Chance, 1999). Determining a “robust” set of new qualifications, which covers the

uncertainty on the demand, is therefore also critical.

1.2. Related work

1.2.1. Process flexibility

Qualification management is closely related to the the notion of process flexibility. The scientific

literature on process flexibility is mostly interested in measuring the performances of process flexibility

designs (which could be called qualification configurations or designs in this paper) in terms of expected

service levels using notably linear programming and max-flow models. The term “link” is preferred

to the term qualification. In general, the literature on process flexibility deals with strategic problems

at the supply chain level. Links are determined between products and factories. The quality of the

links (the quality of the process flexibility design) between products and factories is evaluated. Link

costs are constrained to a given budget. For instance, if n is the number of factories and products,

then 2-chain designs considers at most 2n links. From a general point of view, the literature shows
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that a production system with limited process flexibility can achieve almost the same performances

as a fully flexible system (Wang et al., 2019).

Under balanced (same number of factories and products) and symmetrical assumptions (each unit

of product leads to the same amount of workload at any plant, and plants have the same production

capacity), given a set of demand scenarios (demand is assumed to be independent and identically

distributed), the seminal work of Jordan and Graves (1995) shows that effective sparse flexibility

designs with at most 2n links can almost achieve the same benefits as full flexibility designs. In

particular, they show that 2-chain designs (also referred as long chain designs in the literature) where

each product is exactly linked to two factories (see Figure 1a) and where the design forms undirected

cycle containing all machines and products, is almost as effective as the full flexibility designs (see

Figure 1b) with much fewer links. They also show that there can exist multiple process flexibility

designs with similar performances. Chain designs perform better than other sparse designs as they

pool more products and factories, thus allowing to better face demand uncertainty. Based on this

work, Boyer and Leong (1996), Graves and Tomlin (2003), Chou et al. (2010), Simchi-Levi and Wei

(2012), Wang and Zhang (2015), Désir et al. (2016) and Bidkhori et al. (2016) further study, validate

and complement the benefits of sparse, chain and long chain flexibility designs. Interestingly, Chan

and Fearing (2019) propose an analogy between flexibility in baseball, called positional flexibility, and

process flexibility: “a baseball team can be viewed as a production network in which players (plants)

produce innings-played to satisfy the demand for all positions (products) on a team.” The authors

show that positional flexibility, mostly through long (sub)chains, can contribute by itself to a few wins

by season, notably by covering uncertainty sources such as injuries.

(a) 2-chain design. (b) Full flexibility design.

Figure 1: Visual comparison of different flexibility designs.

Nevertheless, the main limits of chain flexibility designs for direct applications to qualification

management in a manufacturing facility are:

• Most often, balanced systems (same number of factories and products) are studied, which is

unrealistic in the work center of a semiconductor manufacturing facility.

• Most often, any factory can be linked to any product. This is impossible in qualification man-

agement in a manufacturing facility due to continuous investment. Machines belong to different

generations, have different software and hardware restrictions and can be of different types.

They cannot be all qualified for the same fabrication operations. Consequently, chain designs

are unlikely.

• Most often, only symmetrical systems. In such systems, products have the same demand dis-

tribution, each product unit leads to the same workload at any plant, all plants have the same
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production capacity, and the mean demand is equal to the total capacity. This is typically not

true for instance in semiconductor manufacturing facilities, as two products can require different

operations with different processing times. In addition, the mean demand in terms of workload

is always smaller than the production capacity to control the fabrication time (see Hopp and

Spearman 2011 and Section 3.1).

• Link delays are not considered. The qualification process of an operation on a machine may take

several weeks to several months.

• Single period models are often considered. However, demands of products are highly dynamic

(see e.g. Figure 2 in Section 2.2), which cannot be easily captured with single period models.

• Demand is often assumed to be independent and identically distributed. In high-mix (with a

large portfolio of products) factories, demands are not independent and identically distributed.

Typically, a few products are associated to most of the demand.

Other works contribute to the process flexibility literature by releasing some of these assumptions

(but never all of them at the same time) to study more “general” manufacturing systems. Mak and

Shen (2009) propose a two-stage stochastic programming approach to determine process flexibility de-

signs. The studied setting is a balanced system. Process flexibility costs are distinguished by factory

and product and factories have different production capacities. They show that, when the demand

by product is heterogeneous, the flexibility design determined with the stochastic programming ap-

proach generates a better profit than chain designs. For an unbalanced and unsymmetrical system,

Chou et al. (2010) identify underlying conditions such that sparse (not necessarily chained) flexibility

designs achieve most of the benefits of the full flexibility design for an unbalanced and unsymmetrical

system in a single period setting. They also show that adding a restricted number of links is often

sufficient to significantly improve the ability of a production system to meet the demand. Deng and

Shen (2013) formulate recommendations for process flexibility designs for unbalanced but symmetrical

systems. Bidkhori et al. (2016) derive a lower bound for chain designs when systems are unbalanced

and factories have different production capacities. Chen et al. (2019) further study unbalanced and

unsymmetrical systems by proposing a simple scheme to satisfy the expected demand with high prob-

ability in a single-period setting. Shi et al. (2019) study flexibility designs in a multi-period setting for

an unbalanced manufacturing system. The system is partially unsymmetrical as processing times are

not differentiated between products. However, the demand is assumed to be identically distributed

across time periods, which is not always realistic (see Section 2). Yan et al. (2018) propose a distri-

butionally robust approach and a dual variable based heuristic to design effective sparse structures in

a single period setting. From the full flexibility design, the dual variable based heuristic removes one

link at a time while maximizing the total number of products. On numerical examples of balanced but

unsymmetrical systems (processing times between products are not differentiated), they show that the

heuristic proposes effective sparse structures, even long chain designs are proposed when enough links

are removed. The heuristic performs also well for unbalanced systems. Wang et al. (2020) propose a

promising robust optimization approach to determine effective flexibility designs for unbalanced and

unsymmetrical systems in a single period setting. Instead of modeling the demand with an uncer-

tainty set and then determining the best flexibility design, the approach builds and ranks flexibility

designs that are effective for a class of uncertainty sets. However, the studied class of uncertainty

sets (partwise independently symmetric uncertainty sets) is not representative of demand uncertainty

in our industrial context. Fiorotto et al. (2018) present a deterministic lot-sizing problem motivated

by the semiconductor industry. They propose two different lot-sizing optimization models to build
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the best long chain configuration or to find the best links (the total number of links is limited to a

given number) while minimizing the setup, production, holding and backlogging costs. They analyze

different flexibility designs and compare them to different long chain designs (Jordan and Graves,

1995). They show that, when the capacity is tight or when inventory and backlogging costs are very

different from one product to another, scenarios that are actually frequently encountered in high-mix

factories, even the best long chain design is not satisfactory. Flexibility links can be misplaced because

backlogging costs and setup times are not considered in the long chain principle. The authors show

that the optimization obtains better cost effective designs with half the links used by the long chain

design.

There are other features of high-mix semiconductor manufacturing that are not considered in

the literature. For instance, the demand by product is also considered as uncertain, but another

layer of complexity is added by the fact that qualifications are carried out for operations which may

be common to some products. Probability distributions are not easy to obtain as new products

are frequently introduced and are subject to product cannibalization (see Section 2). In addition,

qualifying any operation on any machine, which is assumed in the literature, is not possible due to

technological restrictions.

To improve the realism and for a relevant usability in semiconductor manufacturing, all of these

assumptions should be ignored. As it is unlikely to determine analytic formulas under such conditions

to help determine relevant process flexibility designs, and therefore relevant qualification configura-

tions, solving complex combinatorial optimization problems is required as shown in Mak and Shen

(2009) and Fiorotto et al. (2018).

1.2.2. Qualification management in semiconductor manufacturing

The literature is scarce on the design of qualification configurations in semiconductor manufac-

turing, in particular when the demand is uncertain. Stochastic programming has been a method of

choice so far to deal with the uncertainty on the demand. Klemmt et al. (2010) propose to design

qualification configurations for a specific work center by covering a few scenarios on the demand by

product, which is a common practice in the semiconductor industry. Nevertheless, the approach is not

entirely detailed. Chang and Dong (2017) propose a stochastic programming optimization approach

to maximize the weighted expected number of processed product quantities. The demand and the

production capacities are subject to uncertainty. In addition, they consider that new qualifications

lead to a stochastic capacity loss that can be described with a distribution probability. However, the

approach proposed by Chang and Dong (2017) cannot be used at a tactical level. This is because

their stochastic model does not ensure that the demand by operation has to be satisfied. Then, only

a fraction of the operations corresponding to a product could be qualified, and the product could

potentially never be delivered. Fu et al. (2015) also consider that the demand is uncertain in a qual-

ification management optimization problem. Nevertheless, the problem is treated from an extended

production planning standpoint and not from a capacity planning standpoint. Consequently, simi-

larly to Chang and Dong (2017), the work of Fu et al. (2015) cannot be used at a tactical level. Liao

et al. (2017) propose a two-stage stochastic programming optimization approach to maximize the total

profit of a semiconductor company. The first stage problem consists in minimizing qualification costs

while second stage problem consists in allocating product quantities to production sites to maximize

revenue.

However, stochastic programming implies characterizing demand scenarios and associated proba-

bilities. This is difficult as products tend to have dependent demands due to product cannibalization,

which is not mentioned in the literature. Product cannibalization is particularly critical for manufac-

turers with a high product mix. Determining nominal demands and plausibility limits is a promising
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alternative: It is as natural as defining demand scenarios without requiring probabilities and can

consider product cannibalization.

1.3. Contributions

Our contributions to the qualification management and robust optimization literature are as fol-

lows:

• We propose a new mixed integer linear programming mathematical model for the tactical quali-

fication management problem when the demand is deterministic and the qualification lead times

are considered. We show that the studied problem is NP-Hard.

• As the demand by product can be subject to uncertainty, we motivate the choice of robust

optimization for the considered problem. We propose an uncertainty set based on the budget

of uncertainty (Bertsimas and Sim 2004) to cover the demand uncertainty. A novelty of our

approach is to take product cannibalization into account, rarely considered in the literature.

• We propose a new static robust reformulation of the deterministic model when the demand is

considered as uncertain but can be described by Dt.

• We propose a new decision-dependent uncertainty linear program to characterize the robustness

of a set of qualifications. As the problem is NP-complete, a binary search solution approach is

proposed when the uncertainty on the demand is symmetrical.

• In the computational study, we show on industrial data that the price of uncertainty is small,

often less than a few qualifications, whereas the qualifications determined for the nominal demand

often lead to capacity constraint violations.

The remainder of the paper is organized as follows. In Section 2, we describe and motivate the

type of demand uncertainty faced in semiconductor manufacturing. We motive the use of robust

optimization to cover demand uncertainty. In Section 3, the deterministic mathematical model is

presented. Then, a mathematical robust optimization approach is proposed to cover demand uncer-

tainty. In Section 4, we propose a mathematical model and discuss several approaches to determine

the robustness of a given set of qualifications (e.g. the set of initial qualifications). In Section 5, a

computational study on industrial data is conducted to evaluate the price of uncertainty (Gorissen

et al., 2015), the practical tractability of the proposed optimization models, and possible the capacity

constraint violations and consequences if the set of qualifications obtained by solving the deterministic

optimization problem is used. In Section 6, we discuss how the proposed optimization models can be

used for a practical use by capacity planners in a decision support system. Finally, in Section 7, we

conclude and give some perspectives.

2. Uncertainty on the demand

2.1. Demand uncertainty and product cannibalization

Processing times, production capacities, qualification lead times and the demand by product can be

subject to uncertainty. In this paper, only the demand uncertainty is considered, which is critical to a

manufacturing company. The uncertainty on the demand is an external uncertainty, which is difficult,

if not impossible, to control with discount prices and incentives even if the product is innovative.

Considering the uncertainty on other parameters is left for future research.
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Note that the uncertainty on the demand by operation is a consequence of the uncertainty on the

demand by product. In the semiconductor industry, operations need to be run to process a product.

However, all products do not share the same operations. Moreover, although two products share

common operations, operations will not have the same processing times. This is due to differences in

the re-entrant product flows. We are therefore interested in characterizing and modeling the demand

uncertainty and linking it to the uncertainty on the demand by operation.

Although it is possible to accurately predict the total quantity of products that a manufacturing

facility must complete in the future, it is often impossible to exactly know the quantity of each

product. One important reason why is that high-tech companies such as semiconductor manufacturers

with a large portfolio of products often face product cannibalization (Moorthy and Png 1992; Kim and

Chhajed 2000). Product cannibalization occurs when a company manufactures different products that

compete with each other on the same market. Consider the following example. A client that seeks

to design an electronic system has the choice between several micro-controller among those that the

company sells. A micro-controller is integrated circuit with essentially the same features as modern

computers, i.e. computing unit, memory, input and output interfaces, but are dedicated to specific

applications and require little energy. Several micro-controllers are suitable for a given application,

and the final choice will be made based on cost, energy consumption and memory among other

characteristics. The client will probably never buy all suitable micro-controllers. Therefore, selling

one unit of a product may mean selling fewer units of other products. Nevertheless, a product cannot

be replaced by any other product because all products are not used for the same application. Some

products will be used in the automotive industry, whereas others will be used for industrial applications

in factories, or telecommunication applications. Products are distinguished by their family. A product

family is then a set of products that have similar characteristics, can be used for similar applications,

and therefore compete on the same market segment.

2.2. Managing the demand uncertainty

To cover the demand uncertainty, two main methods exist: Stochastic optimization and robust

optimization. Stochastic optimization assumes that the probability distribution of the demand un-

certainty is known. Then, in general, the expected value of the objective function is optimized. In

this paper, the objective would consist in minimizing the expected number of qualifications after gen-

erating, possible many, scenarios from the estimated probability distribution (Birge and Louveaux,

2011). Robust optimization is different because the probability distribution of the uncertainty is not

required. In robust optimization, the objective consists in minimizing the objective function while

ensuring that the constraints are never violated (Ben-Tal and Nemirovski, 2002; Ben-Tal et al., 2009;

Bertsimas et al., 2011; Gorissen et al., 2015).

Robust optimization is more relevant when determining a set of qualifications at the tactical de-

cision level. First, estimating the probability distribution of the demand of a product when it is

correlated to the demands of other products is difficult. Furthermore, estimating the probability dis-

tribution of the demand for new products is difficult. This is because semiconductor manufacturers

may not have enough data on the demands to derive relevant distribution probabilities as they expe-

rience frequent product mix changes (Bertsimas and Thiele, 2006a), i.e. the demand for a product

strongly varies from one month to another. The demand for a product is therefore, in general, not

identically distributed over time. Figure 2 provides an illustrative example using historical industrial

data on the changes of the demand for one product over 12 months. For confidentially purposes,

product names are not mentioned. In addition, the monthly demand is divided by the mean demand

over the 12 months. The mean demand is several hundred units. The demand for this product is
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particularly interesting. There is a large, quick and intense ramp-up demand. Nevertheless, the de-

mand quickly fades away. These demand fluctuations are critical, especially since their intensities

are extremely difficult to predict in advance. This is when a robust optimization based approach is

relevant to cover the demand uncertainty.

Figure 2: Illustrative example on the demand profile for one product.

Second, it is critical to anticipate relevant qualifications to cover the demand uncertainty. This

is because, in general, it is important to perform the right qualifications and not all qualifications to

respect capacity constraints and satisfy the demand (Jordan and Graves, 1995; Benjaafar et al., 1995;

Graves and Tomlin, 2003; Chou et al., 2010; Johnzén et al., 2011; Fiorotto et al., 2018; Chen et al.,

2019).

Furthermore, as qualification decisions are made at a tactical decision level, they have a major

impact on all production planning and control management issues (Hopp and Spearman, 2011). For

instance, if new qualifications are not properly determined, then effective robust production plans may

not be found to satisfy the demand. Determining the right set of new qualifications is thus critical for

manufacturing and financial performances.

Third, in practice, a way to deal with uncertainty is to frequently adjust the current set of qual-

ifications by performing new qualifications when the nominal demand is updated. However, this is

not always possible because the qualification process may sometimes take several weeks or months to

validate the quality and the yield of the operation. Therefore, if the demand is updated late, it may

be impossible to perform additional qualifications to satisfy the demand. Then, anticipating the right

qualifications to cover the demand uncertainty is critical. Also, determining a set of robust qualifica-

tions could save critical time for capacity planners. This is because the set of qualifications would be

determined in a less reactive manner but in a more proactive manner against demand changes. Capac-

ity planners could therefore be assigned to other tasks. Note that the set of qualifications would still

need to be adjusted when completely new products are introduced or old products are reintroduced

because of unnoticed disqualifications.

3. Problem modeling

3.1. Problem description

Let us consider a work center of M unrelated parallel machines, both in terms of qualifications

and throughput rates, which must process R different operations. Machines are unrelated because
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they are of different generations. A demand is associated to each operation on the considered horizon.

The horizon consists of T periods. The work center is asymmetrical and unbalanced, i.e. the demand

varies from one operation to another and the number of operations is much greater than the number of

machines. A machine can only process qualified operations, and a “qualifiable” operation can only be

processed on a machine if it is qualified. Qualifying an operation on a machine induces a qualification

cost and is subject to a qualification lead time. The qualification matrix defines the initial set of

active qualifications. A qualification is therefore a pair (operation, machine). The initial set of active

qualifications is known and deterministic. Each machine has a finite production capacity that must

be respected at each period on the considered horizon.

The objective is to minimize the total cost of the qualifications to perform, among the qualifi-

able pairs (operation, machine) not already qualified, while meeting demand and respecting capacity

constraints.

This problem will be referred as the Minimum Cost Qualification Configuration Problem (MCQCP)

in the remainder of the paper.

3.2. Deterministic modeling

Parameters:

M : Number of machines,

R: Number of operations,

P : Number of products,

T : Number of periods,

qr,m: Is equal to 1 if machine m is initially qualified for operation r, to 2 if machine m is qualifiable

for operation r, to 0 if machine m cannot be qualified for operation r,

tpr,m: Throughput rate (per hour) of operation r on machine m,

ct,m: Production availability (in hours) of machine m at period t,

umaxt,m : Maximum utilization rate allowed for machine m at period t,

rfp,r: How many times (re-entrant flow factor) operation r needs to be run to produce one unit of

product p,

dt,p: Demand for product p at period t,

lt,r,m: Lead time (in number of periods) when starting qualification procedure at period t of operation

r on machine m,

δt: Discount factor at period t,

cqr,m: Cost of qualifying operation r on machine m.

Decision variables:

OQt,r,m ∈ {0, 1}: Is equal to 1 if there is qualification procedure to start for operation r at period t

on machine m, and 0 otherwise,

WIPt,r,m ∈ [0, 1]: Ratio of the demand for operation r processed by machine m at period t.

min
∑
t,r,m

δtcqr,mOQt,r,m (1)

s. t.
∑
r

(
∑

p rfp,rdt,p)WIPt,r,m

tpr,m
≤ ct,mumaxt,m ∀t,∀m (2)∑

m

WIPt,r,m = 1 ∀t,∀r |
∑
p

rfp,rdt,p > 0 (3)

WIPt,r,m ≤ qr,m ∀t,∀r, ∀m | qr,m 6= 2 (4)
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WIPt,r,m ≤
t∑

t′=1|t−t′≥lt′,r,m

OQt′,r,m ∀t,∀r, ∀m | qr,m = 2 (5)

WIPt,r,m ≥ 0 ∀t,∀r, ∀m (6)

OQt,r,m ∈ {0, 1} ∀t,∀r, ∀m (7)

The objective function (1) minimizes the cost of performing qualifications on the planning horizon.

The discount factor is used to decide if qualifications must be made as soon as possible or as late as

possible. For instance, assume that qualification procedures must be started as late as possible. This

is possible by ensuring that δt ≥ δt+1 ∀t ∈ {1, ..., T − 1}. Constraints (2) ensure that the capacity

constraint for each machine m and each period t is respected. Constraints (2) also limit the utilization

rate of machine m at period t to a maximum of umaxt,m . This controls the mean cycle time (fabrication

time) in the work center as the mean cycle time increases exponentially with the utilization rate, and

improves the responsiveness of the work center (Hopp and Spearman, 2011). Constraint (3) are the

flow constraints. They ensure that the demand by operation must be satisfied. Constraints (3) are

active only if there is demand for operation r at period t, ∀t,∀r |
∑

p rfp,rdt,p > 0. For new operations

or machines, if
∑

p rfp,rdt,p > 0 is not enforced for some periods, then new qualifications will be

required because
∑

mWIPt,r,m = 1 has to be satisfied even if there is no demand. This condition

is therefore used to avoid qualifying operations on machines in the early periods if the demand is

only expected in the late periods. Constraints (4)-(5) are the qualification constraints. They ensure

that machine m is qualified for operation r at period t, if it has been newly qualified or was initially

qualified while considering qualification lead times. Finally, Constraints (6) are the non-negativity

constraints and Constraints (7) are the binary constraints.

Let us discuss below some important characteristics of our problem:

• The deterministic optimization model is relevant, although it does not consider demand un-

certainty, because it considers essential features of qualifications which are qualification costs

and delays, and models unbalanced and unsymmetrical systems. In the computational study on

industrial data, we found that the deterministic model is easy to solve (see Section 5) for the

considered work centers.

• MCQCP can also be solved factory-wide, i.e. by considering all work centers simultaneously.

However, as two different work centers do not share operations, optimality is preserved when

breaking down the problem by work center to reduce the size of the problem in terms of machines

and operations.

• It is important to mention that MCQCP can be infeasible if the production capacities of machines

are too small and if too few qualifiable pairs (operation, machine) exist to better balance the

workload between the machines. Note that in the numerical experiments performed in Section

5, MCQCP is always feasible contrary to its robust counterpart.

• The deterministic model can still be used to determine a set of qualifications even if lead times

are not modeled, i.e. if lt,r,m = 0 ∀t,∀r, ∀m. In this case, decision variables OQt,r,m should be

interpreted as the period at which operation r must be qualified on machine m if OQt,r,m = 1.

• Time-varying lead times are considered to better consider the fact that the periods can have

different durations (as it is the case in the considered industrial context) and also different

demand quantities, and therefore different loads, which influence both fabrication times (Hopp
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and Spearman, 2011) and qualification times as test lots are used for qualifications. Time-varying

lead times can also be used by capacity planners to simulate the acceleration or deceleration of

qualification procedures during certain periods.

• In order to correctly consider new machines, it is sufficient to set ct,m to appropriate values

until machine m is actually started-up in the factory. Start-up periods are notably used for

qualification purposes. For instance, if the horizon is of 3 months with 3 periods of one month

and the start-up period lasts one month, then ct,m must be equal to zero for the first two months.

• New qualifications can lead to capacity losses in the considered work center as it is required to

run quality tasks on machines by using test products. Chang and Dong (2017) model this aspect

by using a probability distribution. As it is complex to define relevant probability distributions,

capacity losses due to new qualifications are modeled with available historical data as exogenous

factors in the production capacity of each machine. Note that quality tasks are also frequently

run even for existing qualifications, which is also considered in the production capacity of each

machine.

• There are other sources of capacity loss, such as setups, which are considered in the value of the

production capacity of each machine.

• In practice, operations are often subject to precedence constraints, i.e. operations must be

performed in a precise order. In this paper, we are not interested in making detailed scheduling

decisions but, at a tactical level, in verifying from a capacity planning standpoint that the

demand can be met with the current and potentially new qualifications. Precedence constraints

are therefore not explicitly considered as in most capacity planning models and for instance in

Rowshannahad et al. (2015) for qualification management.

3.3. Computational complexity

Even for a single period, it is possible to show that MCQCP is a NP-Hard problem by reducing

MCQCP to the Generalized Assignment Problem (GAP), known to be NP-Hard (see e.g. Nauss 2003).

Let us state GAP in terms of tasks and agents, where I is the number of tasks and J the number

of agents. Let ci,j be the cost of assigning task i to agent j, ri,j the processing time required for task

i by agent j, and bj the total capacity of agent j. Task i is assigned to agent j when Xi,j = 1, and 0

otherwise. The question is “is there an assignment of tasks to agents such that the total assignment

cost is equal to K, i.e.
∑

i,j ci,jXi,j = K, and the constraints are satisfied, i.e.
∑

i ri,jXi,j ≤ bj ∀j,
and

∑
j Xi,j = 1 ∀i?”.

Given a general instance of GAP, it is possible to build an instance of MCQCP as follows: Let

T = 1, P = 1, the number of operations be equal to the number of tasks, i.e. R = I, and the number

of agents be equal to the number of machines, i.e. M = J . Let us use the subscripts i and j in

the remainder of this section. We can therefore set tpi,j = 1
ri,j
∀i,∀j, cj = bj ∀j, d1 = 1, qi,j = 2

∀i,∀j, li,j = 0 ∀i,∀j, and rf1,i = 1 ∀i, umaxj = 1 ∀j. Finally, let us set cqi,j = g + ci,j ∀i,∀j, with

g a large fixed cost such that g >
∑

i,j ci,j . The question is “is there a set of qualifications such that

the total qualification cost is equal to K + Ig, and the capacity, flow and qualification constraints are

respected?”

Assume GAP has a yes answer with a total assignment cost of K. The solution for GAP is also

feasible for MCQCP because tasks and operations have the same throughput rates on agents and

machines, and because the demand for each operation is equal to one unit. Therefore, MCQCP also

has a yes answer with a total cost of K + Ig.
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Assume that MCQCP has a yes answer. Because g is a large fixed cost such that g >
∑

i,j ci,j ,

each operation is qualified on one and only one machine, and therefore the total production flow of

each operation is assigned to one and only one machine. In addition, because tasks and operations

have the same throughput rates on agents and machines, GAP also has a yes answer with a total cost

of K.

3.4. Robust modeling

3.4.1. Polyhedral uncertainty with budget of uncertainty

To consider demand uncertainty and product cannibalization, a polyhedral uncertainty set, based

on budget uncertainty proposed by Bertsimas and Sim (2004), is used. Let us introduce the new

notations below:

New parameters:

F : Number of product families,

dt,p: Nominal demand for product p at period t,

d̂t,p ≤ dt,p: Maximum deviation from nominal demand for product p at period t,

αp,f : Is equal to 1 if product p belongs to product family f , and 0 otherwise,

Γt,f : Budget of uncertainty for product family f at period t.

The demand dt,p is assumed to be an uncertain parameter that takes values as follows: dt,p ∈
[dt,p − d̂t,p, dt,p + d̂t,p] ∀t,∀p. dt,p − d̂t,p and dt,p + d̂t,p are the plausibility limits for product p at

period t. The uncertainty set Dt that models the effect of product cannibalization by product family

at period t is described below:

Dt = {dt,p | dt,p ≥ dt,p − d̂t,p ∀p, dt,p ≤ dt,p + d̂t,p ∀p,∑
p|αp,f=1

dt,p ≤ Γt,f ∀f} (8)

In Dt, the total demand by product family f at period t is limited to the budget of uncertainty Γt,f ,

which is the maximum demand to cover for product family f at period t. Therefore, if the demand

for a product in the product family increases above its nominal value, then the increase is made at

the expense of another product in the product family, whose demand must decrease. In addition, if

Γt,f =
∑

p|αp,f=1 dt,p, then, for each product family f , the maximum overall quantity to produce is

equal to the overall quantity in the nominal case, but the distribution of the demand between the

products in the product family is unknown. Setting Γt,f =
∑

p|αp,f=1 dt,p is a practical assumption.

This ensures that qualifications are not determined to cover extreme cases where the quantity by

product family would actually be much larger than the nominal quantity by product family, which is

often unrealistic. Instead, qualifications are optimized to cover any demand realization given an overall

quantity by product family. Note that, although the uncertainty set Dt ensures that the total demand

of all products in a family is not large, the total demand over all operations arriving in work centers

can significantly increase as re-entrant flow factors significantly vary from one product to another.

Parameters dt,p and d̂t,p do not necessarily reflect the real uncertainty on the demand of product

p at period t. They can be defined in a such way that they correspond to the uncertainty capacity

planners want to manage if the real uncertainty is too expensive to cover (Bertsimas and Sim, 2004).

3.4.2. Static reformulation

We investigate a static reformulation of the deterministic optimization problem. We follow Ben-Tal

and Nemirovski (2002), Gorissen et al. (2015) and Yanıkoğlu et al. (2019) to write the robust formu-
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lation of MCQCP. First, constraints with uncertain parameters, the demand, need to be identified,

then the robust counterpart can be derived.

There are two constraints with uncertain parameters: The flow constraints (3), and the capacity

constraints (2).

Flow constraints (3). The demand is used to control when the flow constraint must be active. To

make sure the flow constraints hold for any demand realization within Dt, it is sufficient to replace

the condition ∑
m

WIPt,r,m = 1 ∀t,∀r |
∑
p

rfp,rdt,p > 0

by ∑
m

WIPt,r,m = 1 ∀t,∀r |
∑
p

rfp,r(dt,p + d̂t,p) > 0.

Capacity constraints (2). If the demand uncertainty is row-wise and the uncertainty set is compact,

then an optimal solution for the static reformulation problem is also an optimal solution for the ad-

justable robust reformulation problem (Ben-Tal et al., 2004; Yanıkoğlu et al., 2019). In this paper, the

uncertainty set Dt is compact: The uncertainty set Dt is bounded, because 0 ≤ dt,p ≤ dt,p+ d̂t,p ∀t,∀p,
and is closed because Dt consists of a set of closed half spaces described by linear inequalities. However,

the uncertainty is not row-wise because the uncertain parameter for period t, i.e. dt,p, is found in the

capacity constraint of each machine. The uncertainty would be row-wise if the demand for a product

also depended on the machine, which is impossible. Investigating adjustable robust reformulation is

therefore interesting but left for future research.

By considering the uncertainty set Dt to model the demand uncertainty, capacity constraints

become in a static reformulation:∑
r

(
∑

p rfp,rdt,p)WIPr,m

tpr,m
≤ ct,mumaxt,m ∀t,∀m,∀d ∈ Dt

Robust counterpart: The next step consists in determining the robust counterpart of the capacity

constraints. The robust counterpart is independently determined from one capacity constraint to

another. Consider one capacity constraint for a given machine m at period t:

Step 1 (worst-case reformulation):

max
d∈Dt

∑
p

dt,p(
∑
r

rfp,rWIPt,r,m
tpr,m

) ≤ ct,mumaxt,m

Intuitively, covering the worst-case realization in the uncertainty set Dt will conduct to add qualifi-

cations to machines for operations common to many products, or for operations associated to products

with large re-entrant flow factors, as they are the operations that will impact the most the utilization

rate of machines.

Step 2 (duality):

The next step consists in taking the dual of the inner maximization problem. The inner maximiza-

tion problem and its dual, which is a minimization problem, have the same objective value because

the inner maximization problem is linear. For a given period t, the following optimization problem
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must be solved:

max
∑
p

dt,p(
∑
r

rfp,rWIPt,r,m
tpr,m

)

s. t. dt,p ≥ dt,p − d̂t,p ∀p (9)

dt,p ≤ dt,p + d̂t,p ∀p (10)∑
p|αp,f=1

dt,p ≤ Γt,f ∀f (11)

The dual variables associated to Constraints (9)-(11) are listed in Table 1.

Table 1: Dual variables associated to constraints in the uncertainty set Dt for a capacity constraint (2).

Constraints Dual variables

(9) yminp

(10) ymaxp

(11) ygammaf

The dual of the inner maximization problem is a minimization problem. The minimization problem

for a given capacity constraint for machine m at period t is modeled below:

min
∑
p

(−(dt,p − d̂t,p)yminp ) +
∑
f

(Γt,fy
gamma
f )

+
∑
p

((dt,p + d̂t,p)y
max
p )

s. t. − yminp + ymaxp +
∑

f |αp,f=1

ygammaf ≥
∑
r

rfp,rWIPt,r,m
tpr,m

∀p

yminp , ymaxp ≥ 0 ∀p
ygammaf ≥ 0 ∀f

Step 3 (Robust Counterpart): The final step consists in omitting the minimization term to obtain

the robust counterpart. Therefore, the robust counterpart of the capacity constraint for a given

machine m and a given period t can be found below:∑
p

(−(dt,p − d̂t,p)yminp ) +
∑
f

(Γfy
gamma
f )

+
∑
p

((dt,p + d̂t,p)y
max
p ) ≤ ct,mumaxt,m

− yminp + ymaxp +
∑

f |αp,f=1

ygammaf ≥
∑
r

rfp,rWIPt,r,m
tpr,m

∀p

yminp , ymaxp ≥ 0 ∀p
ygammaf ≥ 0 ∀f
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3.4.3. Robust optimization model

By deriving the robust counterpart for each capacity constraint and each time period and indexing

the dual variables by period t and machine m, the overall robust optimization problem is:

min
∑
t,r,m

δtcqr,mOQt,r,m (12)

s. t. (4)− (7)∑
p

(−(dt,p − d̂t,p)ymint,m,p) +
∑
f

(Γt,fy
gamma
t,m,f )

+
∑
p

((dt,p + d̂t,p)y
max
t,m,p) ≤ ct,mumaxt,m ∀t,∀m (13)

− ymint,m,p + ymaxt,m,p

+
∑

f |αp,f=1

ygammat,m,f ≥
∑
r

rfp,rWIPt,r,m
tpr,m

∀t,∀m,∀p (14)

∑
m

WIPt,r,m = 1 ∀t,∀r |
∑
p

rfp,r(dt,p + d̂t,p) > 0 (15)

ymint,m,p, y
max
t,m,p ≥ 0 ∀t,∀m,∀p (16)

ygammat,m,f ≥ 0 ∀t,∀m,∀f (17)

The objective function (12) minimizes the cost of performing qualifications, while Constraints (13)-

(14) are the “robustification” constraints. Constraints (15) ensure that the demand by operation must

be satisfied if there is demand. Note that Constraints (15) are slightly different from Constraint (3) as

it must be active when
∑

p rfp,r(dt,p+d̂t,p) > 0 for operation r at period t instead of
∑

p rfp,r(dt,p) > 0.

Constraints (16)-(17) correspond to the non-negativity constraints introduced by the “robustification”

procedure.

Note that the robust optimization model (12)-(15) can still be used when a product belongs to

several product families. Only input parameters must be changed.

The robust optimization problem will referred as the Minimum Cost Robust Qualification Config-

uration Problem (MCRQCP) in the remainder of the paper.

Similarly to MCQCP, it is important to mention that MCRQCP can be infeasible if the production

capacities of machines are too small and if too few qualifiable pairs (operation, machine) exist to better

balance the workload between the machines. Note that in the numerical experiments performed in

Section 5, MCRQCP is infeasible for some values of dt,p and d̂t,p.

3.5. Illustrative example on tractability

MCQCP and MCRQCP can be both modeled with mixed integer linear programs, and thus can be

solved by standard solvers. Although no new binary variables are required in the robust reformulation

of MCQCP, reformulating capacity constraints can modify the problem structure and introduce many

more variables and constraints. The reformulation can also worsen the quality of linear relaxations,

thus increasing the computational time required to reach an optimal solution in a branch and cut

algorithm. It is then expected that MCRQCP requires more computational time to be solved than

MCQCP. MCQCP has T ×M + T ×R+ 4× T ×R×M constraints, T ×R×M continuous variables

and T ×R×M binary variables. MCRQCP has 2×T ×M×P +T ×M×F more continuous variables

and 3× T ×M × P + T ×M × F more constraints than MCQCP.

Table 2 illustrates the additional computational effort required to solve MCRQCP by reformulating

capacity constraints with respect to MCQCP in terms of number of decision variables and constraints.
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The number of decision variables and constraints of MCQCP and MCRQCP are given for P = 238,

R = 1208, F = 3, M = 20, T = 7. These values come from one work center (work center A) in

the computational study. Assuming that the demand and worst-case demand are greater than 0 for

all products and all periods, the increase of the number of continuous variables is equal to 16.6%

and the increase of the number of constraints is equal to 12.8%. This makes the robust optimization

problem more difficult to solve than the deterministic optimization problem as the robust optimization

problem also tighten the capacity constraints. In practice, the robust optimization problem is much

more difficult to solve than the deterministic optimization problem although most optimal solutions

can be found in one hour (see Section 5.3.2).

Table 2: Comparison of the number of variables and constraints between MCQCP and MCRQCP. P = 238, R = 1208,
F = 3, M = 20, T = 7.

Optimization problem

Number of MCQCP MCRQCP Increase(%)

Continuous variables 169,120 202,860 16.6
Binary variables 169,120 169,120 0.0
Constraints 685,076 785,456 12.8

4. Characterizing the robustness of a set of qualifications

4.1. Motivation

Determining intuitively relevant values for d̂t,p can be difficult. The first option consists in using

values estimated by decision-makers in charge of defining and predicting future demands. However,

determining relevant values can be difficult for some products, in particular for new products because

data can be insufficient.

If it is too difficult to provide relevant d̂t,p for each product, another option is to propose initial

values for d̂t,p. d̂t,p can first roughly initialized, e.g. initialized to dt,p, and then refined by character-

izing the robustness of a set of qualifications (typically the set of initial qualifications) with respect to

the demand uncertainty. More precisely, characterizing the robustness of a set of qualifications means

determining to what extent a work center is able to correctly absorb the demand uncertainty. Char-

acterizing a set of qualifications is similar to determining the largest d̂t,p for each product p at period

t. Therefore, determining the robustness of a set of qualifications provides capacity planners with the

tolerated changes on the demand by a work center. Then, if possible, demand changes should be made

in the bounds defined by dt,p and d̂t,p to limit additional costs with outsourcing or new machines.

In the context of qualification management, Rossi (2010) and Aubry et al. (2012) assume that

satisfying the demand by product is a key issue to characterize the robustness of a set of qualifications.

Rossi (2010) seeks to characterize the robustness of a set of qualifications by determining the minimum

additional quantity of products from the nominal demand that can be absorbed without the makespan

exceeding a specified value. Robustness is defined as a distance in Rossi (2010). Similarly, Aubry

et al. (2012) seeks to characterize the robustness of a set of qualifications by determining the largest

perturbation from the nominal demand while ensuring that all machines have the same workload and

that qualification costs do not exceed a predefined value. The L-1 norm is used. Similarly to Rossi

(2010) and Aubry et al. (2012), we assume that satisfying the demand by product is a key issue when

characterizing the robustness of a set of qualifications. The major differences with Rossi (2010) and

Aubry et al. (2012) are that: (1) We do not assume that machines are uniform or related; (2) We

consider large scale production systems with hundreds of products and thousands of operations; (3)

16



Product cannibalization and correlated demands are considered. To characterize the robustness of

a set of qualifications, we resort to robust optimization and the uncertainty set Dt. More precisely,

we seek to determine to what extent a set of qualifications is able to absorb the demand uncertainty

when it is described by the uncertainty set Dt. Assessing the robustness of a set of qualifications

depends on the utility function used to evaluate it. First, we propose a generic mathematical model

to model the robustness of a set of qualifications with respect to the demand uncertainty. Second, we

propose a solution approach, based on a binary search approach, to determine the robustness of a set

of qualifications.

4.2. Problem statement

The problem is mostly identical to the problem introduced in Section 3.1. The only difference is

that the objective is to characterize the robustness of a set of given qualifications. This problem will

be referred as the Maximum Robustness Budgeted Qualification Problem (MRBQP) in the remainder

of the paper.

4.2.1. Problem modeling

Let us introduce a new decision variable θt,p ≥ 0 ∀t,∀p that is used to evaluate the robustness

of a set of qualifications. Let us assume that dt,p is an uncertain parameter that depends on θt,p:

dt,p ∈ [dt,p − dt,pθt,p, dt,p + dt,pθt,p] ∀t,∀p. Let βt,p ≥ 0 ∀t,∀p be a weight whose value corresponds the

preferences of capacity planners when evaluating the robustness of a set of qualifications. The larger

βt,p, the larger the emphasis on the robustness of product p at period t. Let f(θ) =
∑

t,p βt,pθt,p be

a utility function that evaluates the robustness of a set of qualifications, where θ = (θ1,1, ..., θT,P ).

Formally, the problem can be modeled as follows:

max f(θ) (18)

s. t.
∑
r

(
∑

p rfp,rdt,p)WIPt,r,m

tpr,m
≤ ct,mumaxt,m ∀t,∀m,∀d ∈ Dt(θ) (19)∑

m

WIPt,r,m = 1 ∀t,∀r |
∑
p

rfp,r(dt,p + dt,pθt,p) > 0 (20)

WIPt,r,m ≤ qr,m ∀t,∀r, ∀m | qr,m 6= 2 (21)

WIPt,r,m ≤ 0 ∀t,∀r, ∀m | qr,m = 2 (22)

θt,p ≤ 1 ∀t,∀p (23)

WIPt,r,m ≥ 0 ∀t,∀r, ∀m (24)

θt,p ≥ 0 ∀t,∀p (25)

The objective function (18) maximizes the utility function f(θ). The capacity constraints (19)

depend on θ, which is used to control the demand uncertainty. Constraints (20) model the flow

constraints, while Constraints (21) and (24) model the qualification constraints. Constraints (23)

ensure that the demand by product cannot be negative. Finally, Constraints (24) and (25) are the

non-negativity constraints.

Solving MRBQP is equivalent to determining the robustness of the initial set of qualifications, or

any set of qualifications as input parameter.
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4.2.2. Robust counterpart

MRBQP is an optimization problem under decision-dependent uncertainty because the capacity

constraints depend on the matrix θ used to control the demand uncertainty to cover. Optimization

problems under decision-dependent uncertainty are known to be difficult to solve. When the uncer-

tainty set is polyhedral, the objective function is linear and the constraints are linear, the optimization

problem is NP-Complete (Nohadani and Sharma, 2018; Lappas and Gounaris, 2018).

Nevertheless, as in the classical robust optimization paradigm, it is possible to reformulate decision-

dependent uncertainty constraints with duality. This is because θ is not a decision variable of the

inner robust maximization problem. Let us consider the same uncertainty set as in Equations (8).

The only difference stems from the fact that the plausibility limits of dt,p are now dependent on θt,p.

Similarly to Section 3.4.2, it is possible to “robustify” the capacity constraints (19).

We follow the same procedure as the one in Section 3.4.2, and the same notations for dual variables

are used. Steps 1 and 2 are similar to Section 3.4.2. By deriving the robust counterpart of each capacity

constraint, it is possible to write the robust reformulation of MRBQP below:

max f(θ) (26)

s. t. (20)− (25)∑
p

(−(dt,p − dt,pθt,p)ymint,m,p)

+
∑
f

(Γt,fy
gamma
t,m,f )

+
∑
p

((dt,p + dt,pθt,p)y
max
t,m,p) ≤ ct,mumaxt,m ∀t,∀m (27)

− ymint,m,p + ymaxt,m,p

+
∑

f |αp,f=1

ygammat,m,f ≥
∑
r

rfp,rWIPt,r,m
tpr,m

∀t,∀m,∀p (28)

ymint,m,p, y
max
t,m,p ≥ 0 ∀t,∀m,∀p (29)

ygammat,m,f ≥ 0 ∀t,∀m,∀f (30)

The objective function (26) maximizes the robustness of a set of qualifications. Constraints (27)-

(30) correspond to the “robustification” constraints. They ensure that the capacity constraints must

be respected for any realization in the uncertainty set Dt.
Solving MRBQP leads to determining the largest θt,p for product p at period t, and consequently

to characterize the robustness of a set of qualifications. The main drawback of MRBQP is that it

is computationally challenging to solve. This is because MRBQP contains products of variables, θt,p
and ymaxt,m,p, and θt,p and ymint,m,p, which are introduced by the “robustification” procedure for capacity

constraints. There are other possible MILP reformulations when one the variables is binary (Nohadani

and Sharma 2018; Lappas and Gounaris 2018). To determine an estimate of the robustness of a set

of qualifications, a binary search solution approach is presented in Section 4.3.

4.3. Binary search approach

To characterize the robustness of a set of qualifications, it is possible, for each period, to maximize

θt,p assuming that θt,p = θt ∀p. For this objective, Algorithm 1, which a binary search like algorithm,

can be used when θ0, an initial upper bound for θ, is provided.
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Algorithm 1 Binary search

Input data: θ0

1: procedure Binary search
2: θmaxt ← θ0

t ∀t
3: θmint ← 0 ∀t
4: θt ← 0 ∀t
5: for i = 1 to T do
6: θi ←

θmax
i +θmin

i
2

7: while θmaxi > ε and
θmax
i −θmin

i
θmax
i

> ε do

8: Verify that MRBQP is feasible for θ at period t (no capacity constraint violation at
period t)

9: if feasible then
10: θmin ← θ
11: else
12: θmax ← θ
13: end if
14: θi ←

θmax
i +θmin

i
2

15: end while
16: end for
17: return θmin

18: end procedure

The computational difficulty in Algorithm 1 comes from solving multiple large-scale linear pro-

grams. The computational burden can be lowered by warm-starts as only the coefficients ymint,m,p, y
max
t,p,m,

and ygammat,m,f variables in the “robustification” constraints must be changed.

Note that if θ is assumed to be identical for all periods and products, Algorithm 1 returns the

smallest θmin over all periods. From a practical standpoint, some products can be filtered out of

Algorithm 1 if there is no uncertainty on the product, or if the uncertainty on the product does not

need to be covered.

If Algorithm 1 is run when all new qualifications are started at t = 0, then an ideal value of θ

is computed. This is an estimate of the largest value of θ for which the demand uncertainty can be

covered in the work center. Reporting this value is interesting for capacity planners to assess the

robustness of the work center against an ideal situation.

5. Computational study

The computational study is performed to answer the following questions: What is the price of

uncertainty? Is it risky to use the set of qualifications determined by considering only the nominal

demand? Is the robust optimization problem difficult to solve?

In Section 5.1, the instances used for the computational study and generated from industrial data

are described. For confidentially purposes, raw values by product, by operation, by product family

and by machine of parameters are not provided. Instead, means, minimums, maximums and standard

deviations are presented. In Section 5.2, the design of experiments is presented, and the numerical

results in Section 5.3. We show that the price of uncertainty, defined by comparing the number of

qualifications determined for the robust optimization problem and for the deterministic optimization

problem, when the demand is fully known (perfect handsight), is actually very small. Moreover, in

a large number of experiments, the robustness of the set of qualifications determined by solving the
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deterministic optimization problem with the nominal demand is far from the robustness of the set

of qualifications determined by solving the robust optimization problem whereas both qualification

matrices have about the same number of qualifications. In addition, we show that only considering the

nominal demand can lead to a large number of capacity constraint violations. The computational study

highlights that selecting the right qualifications is more important for robustness than the number of

qualifications.

5.1. Instance generation

In this section, the instances used in the computational study are described, and can be used to

further generate instances from real industrial data. Note that the instances can be made available to

the reader by contacting one of the authors.

Work center: The computational study is performed by using industrial data from a semiconductor

factory located at Crolles, France. Two critical work centers, work center A and work center B, of the

factory are considered. Work center A has M = 20 machines. Work center B has M = 30 machines.

Demand: A horizon of 7 periods, i.e. T = 7, is considered. Each period corresponds to one month.

The nominal demand by product is given by internal forecasts for each period of the horizon. Exact

demand values are not provided for confidentiality reasons. Instead, Table 3 illustrates the number of

products with a non nul demand by period and the Coefficient of Variability (CV) of the demand by

period. On the horizon, there are in total 238 products, i.e. P = 238. For work center A, these 238

products lead to 1,208 operations, i.e. R = 1, 208. For work center B, these 238 products lead to 401

operations. There is no uncertainty on the demand for the first month.

Production capacities: For work center A, umaxt,m = 0.95 ∀t,∀m in the industrial data. Consider a

given period t. For work center B, the mean of umaxt,m is equal to 0.80, the minimum of umaxt,m to 0.63,

the maximum of umaxt,m to 0.87, and the standard deviation of umaxt,m to 0.079. Both work centers do

not have the same values for umaxt,m because machine types are completely different. Note that umaxt,m is

constant from one period to another. Similarly, the production capacity by machine ct,m is constant

from one period to another, but is different from one machine to another. This is mainly because

machines are non-identical and are of different ages and generations. Values for ct,m are given based

on the length of period t. For work center A, the mean of ct,m is equal to 59% of the length of the

period, the minimum of ct,m to 44%, the maximum to 66%, and the standard deviation to 6%. For

work center B, the mean of ct,m is set to 75%, the minimum to 36%, the maximum to 85%, and the

standard deviation to 9%. ct,m is not equal to 100% because machines have capacity losses, e.g. due

to maintenance operations, engineering operations, setup times.

Re-entrant flow factors: For work center A, the re-entrant flow factors vary between 14 and 72,

with a mean of 41.2 and a standard deviation of 11.0. For work center B, the re-entrant flow factors

vary between 1 and 28, with a mean of 16.0 and a standard deviation of 4.3.

Product families: There are three product families, i.e. F = 3. Each product belongs to exactly one

product family. The first product family contains 120 products. The second product family contains

64 products. The third product family contains 54 products.

Qualification matrix: The initial set of qualifications is partially initialized, in particular because

some machines are already qualified for existing operations. Consider work center A. The mean number

of qualified machines by operation is equal to 4.2, and the standard deviation to 2.0. The minimum,

respectively maximum, number of qualified machines for an operation is equal to 1, respectively 13.

The mean number of qualified operations by machine is equal to 251.3, and the standard deviation to

188.0. The minimum, respectively maximum, number of qualified operations for a machine is equal

to 25, respectively 645. Note that some operations cannot be qualified on some machines due to

technological restrictions. In total, 2,843 new qualifications are possible in work center A. Consider
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work center B. The mean number of qualified machines by operation is equal to 3.5, and the standard

deviation to 1.6. The minimum, respectively maximum, number of qualified machines for an operation

is equal to 1, respectively 6. The mean number of qualified operations by machine is equal to 48.0, and

the standard deviation to 43.8. The minimum, respectively maximum, number of qualified operations

for a machine is equal to 0, respectively 130. Note that some operations cannot be qualified on some

machines due to technological restrictions. In total, 1,266 new qualifications are possible in work

center B. Some machines have no qualified operations because they are being started up.

Qualification costs: We could not access to the qualification costs. Therefore, we assume that all

qualification costs are identical and equal to one. This is a common assumption made by capacity

planners in practice. Hence, in the computational study, the number of qualifications to perform must

be minimized.

Qualification lead times: Qualification lead times are rough estimates of the lead times to perform

the qualification procedures. Qualification lead times vary between several days and two months. For

qualification lead times that are smaller than 2 weeks, they are set to 0 because the considered period

in the computational study is one month. Consider work center A. The minimum lead time for all

operations and machines is equal to 0 period, the mean to 1.6, the standard deviation to 0.8, and the

maximum to 2. Consider work center B. The minimum lead time for all operations and machines is

equal to 0 period, the mean to 1.1, the standard deviation to 0.4, and the maximum to 2.

Throughput rates: Throughput rates strongly vary from one machine to another and from one

operation to another. Consider work center A. The minimum throughput rate for all operations and

machines is equal to 11.4 wafers per hour, the mean to 221.6, the standard deviation to 126.7, and

the maximum to 527.8. Consider work center B. The minimum throughput rate for all operations and

machines is equal to 6.8 wafers per hour, the mean to 48.0, the standard deviation to 13.9, and the

maximum to 83.3.

Table 3: Nominal demand by month.

Month

1 2 3 4 5 6 7

CV 2.78 1.97 2.88 2.29 2.06 3.58 3.09

5.2. Design of experiments

Different values of θ are studied: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. Values of 0.2 and 0.3 for θ is

not unusual even for early periods of the horizon for high mix factories. Larger values of θ are not

considered because the robust optimization problem becomes infeasible from θ = 0.770 for work center

A (see Section 5.3). In addition, the robust optimization problem becomes infeasible from θ = 0.294

for work center B. The budget of uncertainty Γt,f is set to
∑

p|αp,f=1 dt,p, ∀t,∀f . The discount factor

δt is set to 1 ∀t in numerical experiments. This means that there are no incentives on performing

qualifications as soon as possible or as late as possible. In Algorithm 1, we consider that θ0
t,p = 1

∀t,∀p.
In the experiments, MCQCP is solved once. The robustness of the optimized set of qualifications

is evaluated with Algorithm 1. Then, for each possible value of θ, MCRQCP is solved. For each

value of θ, 3,600 demand scenarios are generated to evaluate the capacity constraint violations if the

nominal set of qualifications was considered, and the price of uncertainty. Because the true distribution

of the demand is unknown and the demand between products is correlated, scenarios are randomly

generated by using a linear program. The linear program, described in Appendix A. The linear
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program generates for a given θ a scenario on the demand by product and by period for a given

demand level ηt,f by product family and by period. In the experiments, it is assumed that ηt,f is equal

to the nominal demand by product family.

For the sake of presentation, in the remainder of the computational study, the set of qualifica-

tions determined by solving MCQCP for the nominal demand are called nominal qualifications, the

set of qualifications determined by solving MCQCP for the perfect handsight demand scenario, per-

fect handsight qualifications, and the set of qualifications determined by solving MCRQCP, robust

qualifications.

Note that the robust and nominal qualifications are not compared in a rolling horizon in the

computational study, i.e. where qualifications could be updated at each period after demand realiza-

tions for the following reasons: (1) It is difficult to known the final practical decision when capacity

constraint violations occur; (2) Qualification decisions must be anticipated due to long qualification

processes; (3) Comparing the robust and nominal set of qualifications is possible and fair because both

are computed from “static” optimization models.

5.3. Numerical results

Mathematical models and Algorithm 1 are implemented in Java 8 on a computer with an Intel

Xeon CPU W3530 running at 2.80GHz with 8 threads and 12GB of RAM. Mathematical models are

solved by using the solver IBM ILOG CPLEX 12.9 with default parameters. A computational time

limit of one hour is given to the solver, ε is set to 0.0001 in Algorithm 1.

Section 5.3.1 answers the question “What is the price of uncertainty?”, Section 5.3.2 the question

“It the robust optimization problem difficult to solve?”, and Section 5.3.3, the question “Is it risky to

use the set of qualifications determined by considering only the nominal demand?”

5.3.1. What is the price of uncertainty?

The Price of Uncertainty (PoU) is computed by comparing the number of robust qualifications

and the number of perfect handsight qualifications. Gorissen et al. (2015) argue that a low mean PoU

and standard deviation indicate a good robust solution. Table 4 shows the mean PoU, its standard

deviation (std.) and its maximum value for each θ. Note that as for θ > 0.294, MCRQCP is infeasible

for work center B, PoU is not presented.

Consider work center A. The mean PoU varies between 1.08 qualifications on average for θ = 0.1,

with a standard deviation of 0.30, and 31.99 qualifications on average for θ = 0.7 with a standard

deviation of 2.03. Note that the increase of PoU when θ increases is mainly due to the fact that

the number of robust qualifications increases (see Figure 3). The standard deviation of PoU is small

with respect to the mean PoU. To better put into perspective, the meaning of about 30 qualifications,

consider θ = 0.7. In the worst case, PoU is equal to 35. Recall that the number of machines in

work center A is equal to 20. In other words, to cover the demand uncertainty, it is required to

add 35
20 = 1.75 qualifications on average to each machine, each having a few hundred qualifications

on average, which seems acceptable in practice. Therefore, robust qualifications for work center A

appear to be good solutions. In addition, a small number of additional qualifications, in the worst

case 35, is required to cover the demand uncertainty. This is small compared to the 2,843 possible new

qualifications. This suggests that it is possible to be robust by performing the right qualifications.

Robust qualifications are also relevant because they can avoid capacity constraint violations contrary

to nominal qualifications (see Section 5.3.3).

Similar observations can be observed for work center B (see Table 4 and Figure 4). The maximum

PoU varies between 5 and 19 qualifications. Similarly to work center A, to better put into perspective

the meaning of a PoU of 19 qualifications, recall that the number of machines in work center B is
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equal to 30. With respect to the perfect handsight qualifications, to cover the demand uncertainty,

it is required to add 19
30 = 0.63 qualifications on average to each machine, each having a few tens of

qualifications on average. This is also small compared to the 1,266 possible new qualifications. This

again suggests that it is possible to be robust by performing the right qualifications.

Implementing perfect handsight qualifications is impossible because it is impossible to know in

advance the demand realizations. A more practical price of uncertainty can be computed by comparing

the number of robust qualifications and nominal qualifications. We found that the actual price of

uncertainty is close to the PoU presented in Table 4. This is because, for both work centers, the

number of nominal qualifications is equal to 4 and the mean number of perfect handsight scenarios is

also close to 4 (see Figures 3 and 4).

Now consider the case where θ = θmax, where θmax is the largest possible value of θ for the

considered work center. It can be computed by running Algorithm 1 when all new qualifications are

started at t = 0. For work center A, this gives θmax = 0.77. When MCRQCP is solved for θ = θmax, 96

new qualifications are required (the set of new qualifications is optimal). 96
2,843×100 = 3.37% of all new

possible qualifications are required to reach the same robustness than the one when all qualifications

are performed. For work center B, θmax = 0.294. When MCRQCP is solved for θ = θmax, 135 new

qualifications are required (optimality gap of 25.0% after 3,600 seconds). 135
1,266×100 = 10.6% of all new

possible qualifications are required to reach the same robustness than the one when all qualifications

are performed. In the best case, d135 − 0.25 × 135e = 102 new qualifications are required, which

corresponds to 8.05% of all possible new qualifications. This further suggests that it is possible to be

robust by performing a limited number of qualifications. In other words, it can be ineffective to add

many qualifications, if they are irrelevant. Similar observations can be found in other contributions on

flexibility, e.g. on the long-chain and closed-chain principles (Jordan and Graves, 1995; Chou et al.,

2010). Thus, relevant qualifications must be carefully optimized and planned to immunize a work

center against demand uncertainty.

Table 4: Price of Uncertainty (PoU).

Work center A Work center B

θ Mean Std. Max. Mean Std. Max.

0.1 1.08 0.30 2 2.88 0.41 5
0.2 3.10 0.63 4 16.66 0.94 19
0.3 5.05 0.85 7 - - -
0.4 7.96 1.11 10 - - -
0.5 12.70 1.41 15 - - -
0.6 18.44 1.68 21 - - -
0.7 31.99 2.03 35 - - -

One of the reasons why PoU is small is that qualification costs are assumed identical in the com-

putational study, which is in fact a common assumption in practice. PoU could potentially be larger if

qualification cost profiles are different from one machine to another and from one operation to another.

Nevertheless, PoU is not necessarily expected to be significantly larger since new qualifications must

be paid in the nominal, perfect handsight and robust cases for the following reasons: (1) Qualifications

are made for new operations or new machines, or existing operations that have never been qualified on

existing machines and (2) A ramp-up demand for a product, even uncertain, implies adding new quali-

fications to machines to increase product capacity and balance the workload between the machines. If

new qualifications are not performed, then it is impossible to satisfy the demand, and both MCRQCP
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(a) Number of robust qualifications by θ. (b) Mean number of qualifications by θ (PH).

Figure 3: Work center A. Number of qualifications by θ.

(a) Number of robust qualifications by θ. (b) Mean number of qualifications by θ (PH).

Figure 4: Work center B. Number of qualifications by θ.
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and MCQCP are infeasible. If qualification cost profiles are very different, it may be possible to keep

a small PoU by performing a lot of inexpensive qualifications and avoid performing expensive qualifi-

cations whenever possible. Finally, PoU is also small because of product cannibalization that limits

the overall demand of products.

Now assume that the manufacturer faces an extreme case where too many qualifications must be

performed to cover the demand uncertainty with respect to the number of nominal qualifications. This

information is still valuable for capacity planners because they will have to refine plausibility limits to

limit additional outsourcing and machine purchasing costs. In this situation, MRBQP is relevant to

help refining plausibility limits.

Finally, from a practical standpoint, as both work centers are located in the same factory, covering

the demand uncertainty for θ larger than 0.3 in work center A is probably unnecessary as θmax is

equal to 0.294 for work center B.

5.3.2. Is the robust optimization problem difficult to solve?

Consider work center A. For all values of θ, a set of optimal robust qualifications is determined.

However, determining optimal robust qualifications is much more time consuming than determining

optimal nominal qualifications (about 3 seconds). Similarly, determining optimal perfect handsight

qualifications requires between 2 and 6 seconds in most cases, and never exceeds 13 seconds. Deter-

mining optimal robust qualifications requires between 46 seconds for θ = 0.1 and 1,551 seconds for

θ = 0.7 (see Figure 5). For θmax, the optimal set of robust qualifications is determined in 656 seconds.

It is also worth mentioning that all optimal nominal qualifications are determined at the root node

by IBM ILOG CPLEX. Except for θ = 0.4, 0.5, 0.7 and θ = θmax, all robust qualifications are also

determined at the root node by IBM ILOG CPLEX. This can be explained by the fact that modern

solvers such as IBM ILOG CPLEX embed advanced preprocessing, probing, heuristic and cutting

plane routines that are used to strengthen the linear relaxation of mixed integer linear problems (see

e.g. Savelsbergh, 1994; Atamtürk et al., 2000) and quickly to determine good solutions. It can also

be observed that it is faster to get the optimal robust qualifications for θ = 0.6 than for θ = 0.5.

For work center B, determining nominal qualifications takes about 1 second, while, similarly to

work center A, determining optimal robust qualifications is more difficult. For θ = 0.1, optimal robust

qualifications are determined in 85 seconds (see Figure 5), and in 3,472 seconds for θ = 0.2. Branching

in IBM ILOG CPLEX is required for both θ = 0.1 and θ = 0.2.

(a) Work center A. (b) Work center B.

Figure 5: Computational time (in seconds) required to determine the set of robust qualifications by θ.
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5.3.3. Is it risky to use the set of qualifications determined by only considering the nominal demand?

The numerical experiments show that it can be risky to implement nominal qualifications because

it can lead to capacity constraint violations, which are computed with the following procedure:

1. A demand scenario is generated with the linear program in Appendix A.

2. Then, for the set of nominal qualifications and the generated demand, the Total Overtime (OT)

is minimized with the linear program (B.1)-(B.6) in Appendix B.

3. If OT > 0, then there is at least one capacity constraint violation for the considered scenario.

In this case, to put into perspective what a positive overtime means, in particular in terms

of machine utilization rates, we solve the nonlinear utilization balancing optimization problem

proposed in Rowshannahad et al. (2015). This avoids the problem where the total overtime for

a period is set to a specific machine whereas, in practice, it would be balanbced with similarly

qualified machines. The utilization balancing optimization problem is parameterized by an

utilization balancing exponent γ, which is set to 20 in this paper.

For scenario i, the procedure enables us to determine what would be the utilization rate U it,m of

machine m at period t for a given demand by product and a given set of qualifications (here the

nominal qualifications) if there is a capacity constraint violation. If U it,m > umaxt,m , then there is a

capacity constraint violation for scenario i. Repeating this procedure for the 3,600 scenarios enables

us to estimate the capacity constraint violations if only nominal qualifications were implemented.

Table 5 shows capacity constraint violations. Column “A” corresponds to the percentage of sce-

narios where there is at least one capacity constraint violation, Column “B” to the number of capacity

constraint violations. Mathematically, the mean number of capacity constraint violations is com-

puted as follows: 1
3,600×T×M×I

∑3,600
i=1 1(U it,m − umaxt,m ), where 1(x) = 1 if x > 0, and 0 otherwise

and I = 3, 600. The maximum (max.) number of capacity constraint violations is computed as fol-

lows: maxi(
∑

t,m 1(U it,m − umaxt,m )). Column “C” quantifies capacity constraint violations when there

is at least one capacity constraint violation. Mathematically, the mean capacity constraint violation

is computed as follows: 1
3,600×T×M×I

∑3,600
i=1 (

∑
t,m max(0, U it,m − umaxt,m )), and the maximum capacity

constraint violation is computed as follows maxi,t,m max(0, U it,m − umaxt,m ). Columns “B” and “C” are

computed only if there is at least one capacity constraint violation.

Table 5: Capacity constraint violations.

Work center A Work center B

A B C A B C

θ Mean Max. Mean Max. Mean Max. Mean Max.

0.1 0.72% 0.058 8 0.004 0.010 15.56% 7.096 11 0.010 0.029
0.2 15.64% 1.241 8 0.010 0.029 44.28% 8.947 22 0.014 0.048
0.3 26.19% 2.080 12 0.015 0.046 - - - - -
0.4 30.78% 2.670 13 0.020 0.066 - - - - -
0.5 38.39% 3.693 24 0.024 0.086 - - - - -
0.6 45.31% 5.058 36 0.027 0.106 - - - - -
0.7 57.83% 7.704 51 0.030 0.126 - - - - -

Consider work center A, θ = 0.1, 0.72% of the scenarios have a capacity constraint violation (see

Table 5), i.e. a relatively small number of scenarios. In addition, the number of capacity constraint

violations is relatively small. In the worst case, 8 out of 140 (T = 7 and M = 20) capacity constraints
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are violated, capacity constraint violations are not very large, on average 0.004 and at most 0.010.

This means that if the maximum utilization rate of a machine was set to 0.95, then on average, its

real utilization rate would be equal to 0.9504, at most 0.96. Therefore, for θ = 0.1, using the nominal

qualifications is probably acceptable. For θ = 0.2, 15.64% of the scenarios have a capacity constraint

violation, which is significantly larger than for θ = 0.1. On average, the capacity constraint violation

is equal to 0.010, and in the worst case to 0.029, which starts to be appreciable. For larger values

of θ, using nominal qualifications is more risky. For instance, consider θ = 0.4 where 30.78% of the

scenarios have at least one capacity constraint violation (see Table 5). In the worst case, 13 out of

140 capacity constraints are violated. In addition, the largest capacity constraint violation is equal to

0.066. This means, that if the maximum utilization rate of a machine was set to 0.95, then its real

utilization rate would be equal to 1.003. The same observations can be made for larger values of θ.

Utilization rates near 1.0 are not sustainable in terms of service levels. This is due to the fact that

the cycle time increases almost exponentially with the utilization rate (queuing theory) and due to

production variability (Hopp and Spearman, 2011). In other words, even small capacity constraint

violations should be avoided.

Capacity constraint violations are more critical for work center B than for work center A. For

θ = 0.1, 15.56% of the scenarios lead to at least one capacity constraint violation, and for θ = 0.2,

44.28% of the scenarios. In the worst case, there are 11 capacity constraint violations for θ = 0.1 and

22 capacity constraint violations for θ = 0.2. For θ = 0.1, the mean capacity constraint violation is

equal to 0.010. umaxt,m is set to low values (compared to work center A) because it is known that, in

the industrial context, small increases of utilization rates can lead to much larger cycle times due to

production variability.

Using nominal qualifications can lead to capacity constraint violations because nominal qualifica-

tions are not robust against demand uncertainty, and are in fact much less robust than robust qualifi-

cations. For work center A, Algorithm 1 for the nominal qualifications gives θ = 0.043, and θ = 0.024

for work center B. With a limited number of additional qualifications, robust qualifications lead to a

much better robustness (see Section 5.3.1). Consider work center A and θ = 0.2, 7 robust qualifications

are required instead of 4 nominal qualifications to avoid capacity constraint violations in 15.64% of the

scenarios. For θ = 0.3, 9 robust qualifications are sufficient to avoid capacity constraint violations in

26.19% of the scenarios. Similar observations can be made for work center B. For instance, for θ = 0.1,

7 robust qualifications are required instead 4 of nominal qualifications to avoid capacity constraint

violations in 15.56% of the scenarios. It is worth mentioning that robust qualifications are more ro-

bust against demand uncertainty because more qualifications are performed. Nevertheless, even by

adding a large number of qualifications, the nominal qualifications are still outperformed by the robust

qualifications in terms of demand uncertainty coverage. Let us consider the case where α-flexibility

designs are enforced when nominal qualifications are determined by the optimization model (1)-(7).

An α-flexibility design enforces that at least α machines must be qualified by operation. For opera-

tions where it is not possible to have α qualified machines, the number of largest number of qualified

machines is enforced. An α-flexibility design is enforced by adding the two following constraints: (1’)∑t
t′=1|t′+lt′,r,m≤t

OQt′,r,m ≤ 1 ∀t,∀r, ∀m, (2’)
∑

m

∑t
t′=1|t′+lt′,r,m≤t

OQt′,r,m ≥ min(α, α′) − α′′ ∀t,∀r.
α′ is the the number of qualifiable and qualified couples (operation, machine) for a given period, and

α′′ is the number of qualified couples (operation, machine) for a given period. Constraints (1’) are

required, otherwise Constraints (2’) could be satisfied by performing the new qualification at different

periods. Table 6 shows that enforcing α-flexibility designs for the nominal qualifications does not lead

to a better robustness against demand uncertainty than the robust qualifications even though many

qualifications are performed. This is because there are many different ways to enforce an α-flexibility
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design. This reinforces the idea that if qualifications are not optimized, then even many qualifications

may not be effective to tackle demand uncertainty.

Table 6: Number of qualifications (NQ) and robustness (θ) of nominal qualifications when an α-flexibility design is
enforced.

Work center A Work center B

α NQ θ NQ θ

1 4 0.043 4 0.024
2 84 0.043 14 0.021
3 251 0.061 77 0.012
4 611 0.071 224 0.087
5 1119 0.152 394 0.140

Practical consequences of capacity constraint violations are lower service levels, larger cycle time

and larger inventory holding costs. Due to to capacity constraint violations, the number of products

in the factory would have to be decreased so that the real utilization rates of machines violating their

capacity constraint in the factory is at least lower than 1.0, and ideally lower than umax to control

the cycle times. This can severely affect deliveries and the production objectives of the factory.

In practice, a method to deal with uncertainty is to continuously updating nominal qualifications

each time the demand is updated. This should be avoided. This is because, as mentioned in Section

2.1, this does not guarantee to find feasible nominal qualifications because the qualification process

may sometimes take several weeks or months to validate the quality and the yield of the operation. As

the demand by product for the early months on the horizon is also subject to uncertainty, determining

and planning robust qualifications is preferable for the whole horizon.

It is worth observing that, if θ is not adequately selected, there may also exist multiple sets of robust

qualifications with the same number of qualifications. However, some sets of robust qualifications may

actually be better to cover a larger demand uncertainty than other sets of robust qualifications, which

is not captured by the robust optimization model because it only seeks to immunize the work center

against the specified uncertainty. This is why Algorithm 1 is relevant to identify the most robust set

of qualifications among all robust sets of qualifications. These observations are consistent with other

observations in the literature: There may exist multiple robust solutions to an optimization problem.

Although these robust solutions have the same worst-case objective value, they can have different

performances for the nominal scenario (Iancu and Trichakis, 2014; Gorissen et al., 2015; de Ruiter

et al., 2016, 2017; Yanıkoğlu et al., 2019).

6. Practical use of optimization models

6.1. Determining qualification decisions

A straightforward use of the robust optimization model (12)-(14) is to determine new qualifications

to perform to satisfy the demand while respecting capacity constraints and covering the demand

uncertainty.

6.2. Further improving manufacturing performances

As illustrated on the industrial data in Section 5, a small number of qualifications among several

hundreds of new qualifications is sufficient to cover the demand uncertainty. Consequently, it is likely

that there are two different sets of robust qualifications that cover the demand uncertainty but lead
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to different performances, for instance in terms of utilization balance of the machines or production

variability. It is necessary to distinguish them to further improve manufacturing performances. Dif-

ferentiating identical sets of robust qualifications in terms of number of qualifications can be done

by populating the solution pool after determining the minimum number of qualifications to perform.

Modern solvers such as IBM ILOG CPLEX provide this functionality:

1. Two sets of robust qualifications may not be identical in terms of robustness. Algorithm 1 can

be used to identify the most robust set of qualifications.

2. Two sets of robust qualifications may also be different in terms of real utilization rates although

they all satisfy capacity constraints. Johnzén et al. (2011) and Rowshannahad et al. (2015)

propose a “time flexibility measure” to evaluate sets of new qualifications in terms of total

utilization rate and utilization balance of the machines. This flexibility measure is interesting

as maximizing the utilization balance contributes to further control and reduce cycle times.

However, Johnzén et al. (2011) and Rowshannahad et al. (2015) do not consider that demand

uncertainty. Their model need to be robustifieds.

3. Robust qualifications can be differentiated in terms of production variability as a large produc-

tion variability contributes to significantly increase cycle times (Hopp and Spearman, 2011). In

semiconductor factories, partly due to re-entrant flow, it is unlikely that products arrive contin-

uously in work centers. Work centers are often subject to large Work-In-Process (WIP) peaks

leading to congestion. To better capture this phenomenon, Johnzén et al. (2011) propose “a

toolset” flexibility measure that captures the fact that operations with large demands must be

more qualified than operations with low demands. Pianne et al. (2016) argue that qualified pro-

cess times should be balanced between machines in the work center. A machine should not be

overqualified at the expense of other machines. This is because machines with few qualifications

must process almost all their qualified products every qualified to meet the optimized utilization

balance, which is difficult due to production variability. Associated flexibility measures are pro-

posed in Pianne et al. (2016). They can be seen as ways to measure the quality of the balancing

of the qualified process times, and not the quality of the utilization balance of the machines.

4. The principle of large closed chains or long chains can also be used to differentiate sets of

qualifications. If one set of qualifications creates more closed chains or larger closed chains

between machines and operations than other sets of qualifications, it is very likely that the

former will deal better with WIP peaks than the latter (Jordan and Graves, 1995; Graves and

Tomlin, 2003).

5. Another straightforward way of differentiating sets of qualifications consists in enforcing α-

flexibility designs. However, note that enforcing α-flexibility designs without optimizing a cri-

terion that helps to tackle WIP peaks, such as flexibility measures, may not necessarily lead to

better performances (see Section 5.3.3).

6.3. Exploiting dual variables of robust reformulation

Bertsimas and Thiele (2006b) report that dual variables correspond to the sensitivity of the ob-

jective function to changes in parameters of the budget uncertainty set for an inventory management

problem. Similarly, dual variables of the robust optimization model, namely ymint,m,p, y
max
t,m,p, y

gamma
t,m,f , can

also be exploited:

• ymint,m,p is the sensitivity of the number of qualifications to perform to changes in the parameter

dt,p − d̂t,p. In other words, if dt,p − d̂t,p increases, ymint,m,p indicates the potential reduction of the

number of qualifications.
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• ymaxt,m,p is the sensitivity of the number of qualifications to perform to changes in the parameter

dt,p + d̂t,p. In other words, if dt,p + d̂t,p decreases, ymaxt,m,p indicates the potential reduction of the

number of qualifications.

• ygammat,m,f is the sensitivity of the number of qualifications to perform to changes in the parameter

Γt,f . In other words, if ygammat,m,f decreases, Γt,f indicates the potential reduction of the number

of qualifications.

Exploiting the values of dual variables is particularly relevant from an industrial standpoint to

identify if the demand uncertainty on some products or product families is very expensive in terms

of number of qualifications. Reporting the values of dual variables can be used by capacity planners

to refine the uncertainty set, i.e. by defining a smaller uncertainty set, and initiate a discussion with

the departments in charge of defining future demands in the case where the number of qualifications

to perform is overwhelming. Capacity planners can also initiate a discussion with the departments in

charge of defining future demands that the demand uncertainty on some products or product families

is not constraining for the production system. The departments can therefore consider new future

potential product mixes, i.e. by defining a larger uncertainty set, that would have never been initially

considered.

6.4. On infeasibilities

The optimization problems can be infeasible (see Section 5.3). For instance, this can be caused by

large qualification lead times and too small production capacities to cover the demand uncertainty.

Determining that optimization problems are infeasible is also valuable in practice.

If the nominal optimization problem is infeasible, it indicates to capacity planners that the demand

must be changed. An option would then consist in adapting the product mix and production quantities,

either by producing more products during some months or postponing production to make the best

use of the installed process flexibility and still meet the demand (Yayla-Küllü et al., 2021). However,

it is difficult to anticipate how would be the new demand as it depends on different stakeholders (e.g.

capacity planning, demand planning) within a company. For instance, if the nominal optimization

problem is infeasible, the demand for products that generate a large workload at the work center can

be decreased while the demand for products that generate a lesser workload can be increased. In this

case, the total number of product units made may not decrease, backlogging costs may be acceptable,

but lost sales may be incurred on critical products.

If both MCQCPLT or MCRQCPLT cannot be solved because capacity constraints cannot be

respected, it is also possible to solve a utilization balancing problem where the demand is described

by the uncertainty Dt to highlight critical machines, i.e. machines for which Ut,m > umaxt,m . We refer

the reader to Rowshannahad et al. (2015) and Christ et al. (2019) for existing utilization balancing

approaches. These approaches also need to be robustified. In a decision support system, systematically

solving a robust utilization balancing problem is relevant to either identify infeasibilities or most loaded

and critical machines.

7. Conclusions and perspectives

In this paper, we first proposed a new mixed-integer linear programming mathematical model for

a tactical qualification management problem, which is shown to be NP-Hard, when the demand is

deterministic. We showed that the studied problem is NP-Hard. Second, we motivated the choice of

robust optimization when the demand is uncertain, in particular for high mix factories. We proposed
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an uncertainty set based on the budget of uncertainty to describe product cannibalization and cover

the demand uncertainty. Third, we proposed a new robust reformulation of the deterministic model

when the demand is described by product cannibalization. Fourth, we proposed a linear program and

a binary search approach to characterize the robustness of a set of qualifications when the demand

is uncertain. Fifth, we performed a computational study by using industrial data from a high mix

semiconductor manufacturer. In particular, we showed that, (1) The price of uncertainty is acceptable,

often less than a few additional qualifications for each machine, (2) It is possible to achieve the same

level of robustness as the case where all new qualifications are performed by only performing a restricted

number of relevant qualifications, (3) Depending on the forecast uncertainty and the work center, the

robust optimization problem can be difficult to solve, and (4) Using the nominal set of qualifications

can lead to significant capacity constraint violations, although it can be used for some work centers

when the forecast uncertainty is small. Finally, practical applications and implications of the developed

models are discussed.

We believe the following perspectives are worth investigating in the future. First, other parameters

can also be subject to uncertainty, e.g. production capacities, throughput rates of operations on

machines, qualification costs and lead times. Studying the relevance and effect of uncertainty on these

parameters can be valuable. Second, a large number of qualifications can be difficult to maintain at an

operational level. Including disqualification decisions, e.g. constraining the number of qualifications

by machines, or constraining the total number of qualifications in each period, could be relevant.

Third, extending the static robust reformulation to adjustable robust reformulations may be valuable

to further reduce qualification costs. Fourth, for work centers where the numbers of operations and

machines are large, efficient solution approaches can be valuable. An option consists in using a

cutting-plane solution approach with lazy constraints as proposed by Bertsimas et al. (2016). This

might be a viable approach as the computational time required to solve MCQCP is small. Fifth,

as there may exist several sets of robust qualifications in terms of number of qualifications given an

immunization level, it would be interesting to use additional objective functions to select the most

set of robust qualifications. This leads to considering a multi-objective optimization approach for the

studied problem. Sixth, other solution approaches for MRBQP can be considered. Iterated max-min

approaches are probably relevant not to restrict to the same value of θ for all products and periods.

Seventh, studying the effect of different qualification cost profiles by machine or by machine and time

dependent qualification decisions on the price of uncertainty can be interesting. Finally, as the ability

of qualifications to cover the uncertainty on the demand strongly depends on the machines in the

work center (Hopp and Spearman, 2011), considering the investment decisions in terms of machines

could also be investigated to cover the uncertainty on the demand. In the same vein than in Xu et al.

(2015) with pricing flexibility for supply uncertainty or in Li et al. (2021) with capacity reservation and

quantity flexibility contracts, considering other types of flexibility should lead to interesting research

avenues.
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Appendix A. Linear programming for scenario generation

The linear program (A.1)-(A.4) consists in simulating a (perfect handsight) scenario on the demand

from a nominal demand and the uncertainty parameters defined in the uncertainty set Dt. The w

parameters are weights and can be randomly drawn to generate a scenario on the demand. Note that

dt,p is a decision variable in the linear program (A.1)-(A.4) as a scenario on the demand must be

generated.

min
∑
t,r

wt,r
∑
p

rfp,rdt,p (A.1)

s. t. dt,p ≥ dt,p − d̂t,p ∀t,∀p (A.2)

dt,p ≤ dt,p + d̂t,p ∀t,∀p (A.3)∑
p|αp,f=1

dt,p = ηt,f ∀t,∀f (A.4)

Equation (A.1) is the objective function that is used to simulate a scenario on the demand from

the nominal demand. If weights w are randomly generated, e.g. between -1 and 1, the objective

function can be used to generate random scenarios. Constraints (A.2)-(A.4) are the constraints that

correspond to the uncertainty set Dt.
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Appendix B. Total overtime minimization for evaluating capacity constraint violations

Let us introduce the new decision variable Ot,m for machine m at period t. Ot,m is greater than 0

if there is an overtime on machine m at period t. The linear program (B.1)-(B.6) minimizes the total

overtime over the planning horizon:

min
∑
t,m

Ot,m (B.1)

s. t.
∑
r

(
∑

p rfp,rdt,p)WIPt,r,m

tpr,m
≤ ct,mumaxt,m +Ot,m ∀t,∀m (B.2)∑

m

WIPt,r,m = 1 ∀t,∀r |
∑
p

rfp,rdt,p > 0 (B.3)

WIPt,r,m ≤ qr,m ∀t,∀r, ∀m | qr,m 6= 2 (B.4)

WIPt,r,m ≤ 0 ∀t,∀r, ∀m | qr,m = 2 (B.5)

WIPt,r,m ≥ 0 ∀t,∀r, ∀m (B.6)

Here, q is the initial qualification matrix with new (nominal) qualifications.
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